Preprint Article Version 1 This version is not peer-reviewed

Development of High-Aspect Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding

Version 1 : Received: 1 October 2024 / Approved: 1 October 2024 / Online: 1 October 2024 (11:07:22 CEST)

How to cite: Shin, D. S.; Park, J. W.; Gal, C. W.; Kim, J.; Yang, W. S.; Yang, S. Y.; Kim, M. J.; Kwak, H. J.; Park, S. M.; Kim, J. H. Development of High-Aspect Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding. Preprints 2024, 2024100044. https://doi.org/10.20944/preprints202410.0044.v1 Shin, D. S.; Park, J. W.; Gal, C. W.; Kim, J.; Yang, W. S.; Yang, S. Y.; Kim, M. J.; Kwak, H. J.; Park, S. M.; Kim, J. H. Development of High-Aspect Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding. Preprints 2024, 2024100044. https://doi.org/10.20944/preprints202410.0044.v1

Abstract

Magnetorheological elastomers (MREs) are in demand in the field of high-tech micro- and nano-industries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined advantages of excellent flexibility and precise controllability in a magnetic system. Here, we present the development of a magnetically programmable soft magnetic microarray actuators through field-induced injection molding using MREs, which consist of styrene-ethylene/butylene styrene (SEBS) elastomer and carbonyl iron powder (CIP). The ratio of the CIP/SEBS matrix is designed to maximize the CIP fraction based on a critical solids loading. Further, as part of the design of the magnetization distribution in micropillar arrays, the magnetorheological response of the molten composites is analyzed using the static and dynamic viscosity results for both the on- and off- magnetic states, which reflect the particle dipole interaction and subsequent particle alignment during field-induced injection molding process. To develop high aspect ratio soft magnetic microarray, X-ray lithography is applied to prepare the sacrificial molds with a height-to-width ratio of 10. The alignment of CIP is designed to achieve a parallel magnetic direction along the micropillar columns, and consequently, the micropillar arrays successfully achieve the uniform and large bending actuation of up to approximately 81˚ with an applied magnetic field. This study suggests that the injection molding process offers a promising manufacturing approach to build a programmable soft magnetic microarray actuator.

Keywords

Magnetoactive soft materials; Soft magnetic microarrays; Soft actuator; magnetorheological elastomers (MREs); Field-induced injection molding

Subject

Chemistry and Materials Science, Electronic, Optical and Magnetic Materials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.