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Abstract: In recent decades, the development of surgical systems that minimize patient impact has been a major 
focus for surgeons and researchers, leading to the advent of robotic systems for minimally invasive surgery. 
These technologies offer significant patient benefits, including enhanced outcome quality and accuracy, 
reduced invasiveness, lower blood loss, decreased postoperative pain, diminished infection risk, and shorter 
hospitalization and recovery times. Surgeons benefit from the elimination of human tremor, ergonomic 
advantages, improved vision systems, better access to challenging anatomical areas, and magnified 3DHD 
visualization of the operating field. Since 2000, Intuitive Surgical has developed multiple generations of master-
slave multi-arm robots, securing over 7,000 patents, which created significant barriers for competitors. This 
monopoly resulted in the widespread adoption of their technology, now used in over 11 million surgeries 
globally. With the expiration of key patents, new robotic platforms featuring innovative designs, such as 
modular systems, are emerging. This review examines advancements in robotic surgery within the fields of 
general, urological, and gynaecological surgery. The objective is to analyse the current robotic surgical 
platforms, their technological progress, and their impact on surgical practices. By examining these platforms, 
this review provides insights into their development, potential benefits, and future directions in robotic-
assisted surgery. 
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1. Introduction 

In recent decades, robotics has expanded beyond traditional industrial applications to serve 
humans more closely in diverse fields, most notably in healthcare [1,2]. One of the most 
groundbreaking advancements has been the integration of robots in the medical field, particularly in 
surgery. Robotic-assisted surgical systems (RASS) have gained considerable traction in minimally 
invasive surgery (MIS), where robots assist surgeons in performing intricate procedures with 
enhanced precision, dexterity, and control [3,4]. Initially met with scepticism, robotic surgery has 
evolved, and as new technologies have made systems more reliable, many patients now opt for 
robotic procedures without hesitation. This has resulted in the worldwide increase in robotic 
surgeries, which today account for approximately 3% of all surgeries, providing patients with the 
benefits of fewer complications, faster recovery times, reduced hospital stays, and a quicker return to 
normal activities [5,6]. 

The COVID-19 pandemic further underscored the role of robotics in healthcare, particularly in 
telemedicine. Hospitals, being high-risk environments for infectious disease transmission, saw an 
increase in the need for remote medical interventions. Robotic systems allowed healthcare 
professionals to maintain social distancing while still offering quality care, thus enhancing safety for 
both patients and medical staff [7]. In surgical settings, robotic systems are particularly valuable due 
to their ability to perform complex tasks with high precision, even in confined spaces. With their 
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small size, optimized force control, and high accuracy, robots are now instrumental in performing 
procedures that minimize tissue trauma, such as those used in urology, gynecology, and general 
surgery [3,4–6]. For these reasons, the use of robotic surgery has grown more significantly in these 
surgical specialties compared to others [8,9]. 

RASS systems are designed to assist surgeons by providing highly dexterous instruments, 
enabling smaller and less traumatic access into the patient’s body [2]. This precision leads to faster 
healing times and shorter hospital stays, ultimately reducing the overall costs of surgical procedures 
per patient. Moreover, the use of robotic arms for positioning and holding surgical tools alleviates 
the physical strain on assistants and reduces mental stress for surgeons, who can rely on the robot’s 
enhanced positioning and working accuracy [10]. 

Despite these advancements, the widespread adoption of robotic surgery is hindered by several 
challenges. The technological complexity of these systems, coupled with a difficult patent landscape 
and stringent regulatory barriers, has slowed their integration into everyday surgical practice [11]. 
The high cost of robotic systems, as well as the significant time and effort required to train surgeons 
in new robotic techniques, further limit the widespread use of these systems [12]. 

Intuitive Surgical®‘s Da Vinci system, the most widely recognized and used robotic surgical 
system, has dominated the market for more than two decades due to its set of patents, with over 7,500 
installations worldwide and more than 11 million procedures performed as of early 2023 [13,14]. 
However, the scenario is changing: the expiration of key patents has paved the way for new 
competitors to enter the market, prompting the development of alternative robotic systems that aim 
to challenge Da Vinci’s dominance [2,15,16]. 

Despite the initial barriers, the market for surgical robotics is expected to grow significantly in 
the coming years. This growth is fueled not only by technological advancements but also by increased 
demand for minimally invasive procedures, which offer better outcomes for patients in terms of 
safety and recovery [17]. 

However, the high cost of surgical robots, along with the need for specialized training, currently 
limits access to these systems, especially in low- and middle-income countries where healthcare 
resources are already scarce [18]. As robotic surgery continues to evolve, it is critical to ensure that 
these advancements are accessible to the broader global population, not just wealthier healthcare 
systems. Reducing the costs of these platforms is key to their worldwide adoption, and increased 
competition among industries can help achieve this goal. 

This narrative review provides a comprehensive overview of the state-of-the-art robotic systems 
used to perform urology, gynecology and general surgery which represent an alternative to the 
Intuitive®’s robots. In particular, it is essential to examine the alternative platforms that have been 
developed and for which studies are available in the literature, focusing on both their technical 
aspects and the outcomes achieved. A thorough analysis of these platforms will provide insights into 
their design innovations, operational efficiency, and clinical performance, allowing a better 
understanding of their potential advantages and limitations. 

2. Materials and Methods 

A narrative literature review was conducted to provide a comprehensive overview of the 
surgical systems available for use in urology, gynecology, and general surgery. 

An initial search was conducted in grey literature and online to identify newly available robotic 
platforms, distinct from the ones produced by the Intuitive Surgical® company. 

An electronic search was carried out across the PubMed, Scopus, and Web of Science databases 
up to June 2024. The following keywords were used to perform the search: “avatera surgical robot”, 
“senhance surgical robot”, “canady surgical robot”, “revo-i surgical robot”, “autolap surgical robot”, 
“enos surgical robot”, “micro hand s surgical robot”, “hugo surgical robot”, “mira surgical robot”, 
“vicarios surgical robot”, “anovo surgical robot”, “dexter surgical robot”, “emaro surgical robot”, 
“vista surgical robot”, “panorama surgical robot”, “Endomaster EASE system surgical robot”, 
“hinotori surgical robot”, “EPIONE surgical robot”, “LBR Med surgical robot”, “XACT surgical 
robot”, “Galen surgical robot”, “Versius surgical robot”, “Bitrack surgical robot”, “Verb surgical 
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robot”, “SurgiBot surgical robot”, “PROCEPT surgical robot”, “Roboflex surgical robot”, “Flex 
surgical robot”, Monarch surgical robot”, “Maestro surgical robot”, “Mantra surgical robot”, 
“Kangduo surgical robot”, “Sensei X surgical robot”, “Toumai surgical robot”. 

The following criteria for inclusion were employed in the article selection process: 
1. Written in English language. 
2. Full articles excluding reviews, perspectives, and communications. 
3. Full text available. 
4. Published from 2014 to June 2024. 
5. Any general surgery intervention performed in gynecology, urology or general surgery. 
6. Any robotic system which has a console 

Otherwise, the following exclusion criteria were considered: 
1. Articles that contained simulation and tests. 
2. Papers centered on telesurgery, telementoring or telepresence. 
3. Studies which report only the procedure. 
4. Papers related to study on animals or cadavers. 
5. Articles which concern with the surgeon training. 

The references from the review were examined to identify relevant papers for inclusion in the 
research. Titles and abstracts of the articles were screened to evaluate their relevance based on the 
inclusion and exclusion criteria. 

3. Results 

During the keyword searches in the relevant databases, several of the previously mentioned 
robots were excluded for two main reasons: their lack of relevance to the specific types of surgery 
being investigated and the absence of related articles in the literature. Consequently, the following 
robots were retained for further consideration: Avatera, Senhance®, Revo-i®, Micro Hand S, HugoTM, 
Dexter, HinotoriTM, Versius®, Mantra, KangDuo, and Toumai®. 

In searching for these robots across the databases, a total of 1,298 articles was re-trieved from the 
previously mentioned electronic research sources, along with 13 records identified through snowball 
sampling. After eliminating duplicates, 856 papers were left. Screening the titles and abstracts led to 
the exclusion of 649 items. Of the 197 articles that remained, 73 did not fulfil the inclusion criteria. 
The selection process is illustrated in the PRISMA flowchart (Figure 1). 

Appendix A provides a comprehensive list of the 124 papers that were included in this review. 
Alongside each entry, key characteristics are detailed, including the surgical platform used, the 
surgical specialty, the publication year, and the country of origin. 

This section is dedicated to presenting the findings of the review. The first paragraph (Section 
3.1) offers an in-depth analysis of the characteristics of the studies under consideration, highlighting 
important aspects of their methodologies. In the second paragraph (Section 3.2), a summary of the 
technical features of each platform is provided, allowing for a comparative analysis that underscores 
the distinctions and similarities among them. 
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Figure 1. PRISMA flowchart. 

3.1. Studies Characteristics 

Among the studies included in this review, there were 22 case reports [19–40], 73 non-
comparative studies [41–113], and 27 comparative studies [114–142]. In the majority of the 
comparative studies, the Da Vinci robot served as the primary comparator (n = 23), though in some 
cases, traditional laparoscopy (n = 6) and open surgery (n = 1) were also used. Of the comparative 
studies, only 4 were randomized controlled trials (RCTs). 

Considering the studies included in this review, the total number of patients that are treated 
with the new platforms is 4993. The reported cases belong to different surgical specialties: general 
surgery [19–22,24,26,34,35,37,39,41,42,44–48,51,53,55,60,62,64,67,69,74,79,82,84–87,91,93,100–
103,105,107,112,115–120,124,128,137–139], urology [23,25,28,30,33,36,40,49,54,56,58,59,63,66,68,71–
73,75–78,80,83,89,90,92,94–99,104,109–111,113,114,121,123,125–127,129–136,140–142], gynecology [27, 
[29,31,32,38,43,50,52,57,61,70,81,88,106,108,122]. Table 1 reports the number of patients treated with 
the new surgical platform divided by specialty. 

Table 1. The number of patients treated with a new surgical platform by specialty and surgical 
robot. 

 Robotic platform 

Surgical 
Specialty 

HugoTM Versius® Senhance® 
Revo-

i® 

Micro 
Hand 

S 
Avatera Dexter HinotoriTM Mantra KangDuo Toumai® 

General 
Surgery 

126 607 764 27 277 - 12 33 10 101 - 

Gynaecology 253 204 114 - - - 1 12 - - - 
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Urology 962 86 1036 48 - 9 11 105 - 175 20 
The majority of the papers included in the review are studies conducted in Italy (n = 24), Japan 

(n = 20), China (n = 18), Belgium (n = 7) and Germany (n = 7). Figure 2 reports the number of papers 
for each country. 

 

Figure 2. Number of paper per country. 

3.2. Surgical Robotic Platforms 

In this section, the new surgical robotic platforms are described, and a technical comparison is 
reported. 

Table 2 reports the main information about the surgical robotic platforms that are included in 
this review. 

Table 2. Main information about the new surgical platforms. 

Surgical 
platform 

Company Year Country CE Mark FDA approval 

Approved 
in the 

origine 
nation 

Senhance® 

TransEnterix Surgical 
which became Asensus 

Surgical in 2021 
2017 USA yes yes yes 

Revo-i® Meerecompany Inc. 2017 South Korea no no yes 

Micro Hand 
S 

Shandon Wego 
Surgical Robot Co 

2017 China no no yes 

Toumai® 
Shanghai MicroPort 

MedBot (Group) 
2018 China no no yes 

Avatera Avatera Medical 2019 Germany yes NAI yes 

Versius® CMR Surgical 2019 UK yes no yes 

HinotoriTM Medicaroid Inc 2020 Japan no yes yes 

KangDuo Suzhou KangDuo 
Robot Co., Ltd. 

2020 China NAI no yes 
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HugoTM Medtronic 2021 USA yes yes yes 

Dexter Distalmotion 2022 Switzerland yes no yes 

Mantra SS Innovation 2023 India ongoing ongoing yes 

NAI= Not Available Information. 

3.2.1. Senhance® 

The Senhance® Surgical System [143], developed by TransEnterix Surgical, Inc., is a robotic 
platform designed to improve precision and control in minimally invasive surgeries. Launched in 
2017 after receiving FDA clearance and CE Mark approval in 2016, Senhance® (Figure 5) was 
introduced as a cost-effective alternative to systems like the da Vinci Surgical System [127,141]. It 
incorporates unique features such as haptic feedback, which provides tactile sensations to the 
surgeon, and eye-tracking camera control, allowing hands-free camera manipulation based on the 
surgeon’s gaze. 

The system uses standard laparoscopic ports, which reduces the learning curve for surgeons 
accustomed to traditional laparoscopy and makes conversion to standard surgery easier if needed. 
Reusable instruments significantly lower operational costs [127,141], a key advantage over other 
robotic systems that rely on expensive disposable tools. Senhance® also features an open cockpit 
design, where the surgeon sits in a comfortable, ergonomic position at the console, reducing physical 
strain during long procedures. 

Senhance®‘s multi-arm robotic design offers versatility in a wide range of surgeries, including 
general surgery, gynaecology and urology. Clinical studies and case reports have demonstrated its 
safety and feasibility [24,25,44,56,91], including its use in procedures such as laparoscopic 
gastrectomy for gastrointestinal tumours and robotic sigmoidectomy for colon cancer. The system is 
used in the United States, Europe, and Asia, with notable uptake in Japan following regulatory 
approval in 2019. 

 
Figure 3. Senhance® robotic platform. 

3.2.2. Revo-i® 
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The Revo-i® (Figure 4) robotic surgical system, developed by South Korean company 
Meerecompany, was launched in 2017 [144]. It provides an affordable alternative to other robotic 
systems like the da Vinci [114,128], to offer lower costs. The system includes a master console that the 
surgeon operates, translating their movements into the robotic arms for precise, minimally invasive 
surgeries. The Revo-i® provides high-definition 3D visualization for enhanced depth perception and 
magnified views during surgery [20,48]. 

The system’s robotic arms offer 7 degrees of freedom, allowing for flexibility in instrument 
movements, mimicking the natural movements of a human wrist. Additionally, the system features 
haptic feedback, enabling surgeons to feel tactile sensations, and enhancing precision during tissue 
manipulation. The Revo-i® is equipped with advanced optical control and camera-hopping 
technology, enabling the surgeon to adjust views dynamically during the procedure. 

Cost efficiency is a key benefit, as the system incorporates reusable instruments [48], 
significantly reducing the cost per procedure compared to other robotic platforms. The clutching 
mechanism allows the surgeon to reposition instruments without moving the robotic arms, and this 
process is operated via finger or foot pedals. 

Revo-i® is used in various surgical fields, including urology, gynecology general surgery, and 
thoracic surgery. 

 

Figure 4. Revo-i® patient chart. 

2.3.3. Micro Hand S 

The Micro Hand S surgical system represents a significant advancement in minimally invasive 
surgical technology, developed domestically in China. Launched in clinical trials between 2017 and 
2019, it was designed to meet the growing demand for precision and efficacy in surgeries, particularly 
in the realm of robotic-assisted procedures[19,120]. 

One of the standout features of the Micro Hand S is its articulated robotic arms, which offer 
seven degrees of freedom. This flexibility allows surgeons to perform intricate manoeuvres that 
would be challenging with traditional laparoscopic tools. Coupled with 3D visualization capabilities, 
the system enhances depth perception and spatial awareness, crucial for delicate operations. 

The design also prioritizes ergonomics. The surgeon’s console is crafted for comfort, enabling 
prolonged use without the physical strain that can accompany lengthy procedures. This focus on user 
experience is complemented by features such as tremor reduction and motion scaling, which help 
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mitigate hand tremors and allow for greater control over instrument movements. Such advancements 
are particularly beneficial in surgeries where precision is paramount. 

Clinical evaluations comparing the Micro Hand S to established robotic systems, such as the da 
Vinci, have shown promising results [116,117]. Although the operative time was slightly longer than 
laparoscopic techniques[119], the quality of surgical outcomes remained high, with a notable increase 
in sphincter-preserving procedures. 

2.3.4. HugoTM 

The Hugo™ Robotic-Assisted Surgery system (Figure 5) [145], developed by Medtronic, 
represents a significant advancement in minimally invasive surgical technology. Launched in Europe 
in March 2022, the system has received CE approval for various applications, including 
gynaecological and urological surgeries. 

One of the defining features of the Hugo™ RAS system is its modular design, which allows for 
flexible configurations depending on the surgical procedure. It can accommodate setups with three 
or four robotic arms, enhancing the versatility of the surgical approach. The open console design is 
another notable aspect; it provides a 3D high-definition visualization system that allows both the 
surgeon and observers to view the surgical field simultaneously. This is particularly beneficial for 
training and collaborative surgical environments. 

The system is equipped to support a variety of instruments, such as bipolar graspers, monopolar 
scissors, and needle drivers, all designed to enhance surgical precision. Its docking configurations, 
including the “compact” and “bridge” setups, allow for optimal access to different anatomical areas, 
reducing the likelihood of instrument collisions—a common challenge in robotic surgery. 

While early experiences with the Hugo™ system have shown promising results, including 
significant symptom relief in procedures such as robotically assisted endometriosis surgery[29,108], 
further research is needed to compare its effectiveness against established robotic platforms like the 
da Vinci system [122,129,131,132]. Overall, the Hugo™ RAS system represents a valuable tool for 
surgeons seeking to enhance their capabilities in complex surgical scenarios. 

 

Figure 5. HugoTM robotic platform. 

2.3.5. HinotoriTM 

The Hinotori™ Surgical Robot System (Figure 6), developed by Medicaroid Inc., marks a 
significant advancement in robotic surgical technology, particularly within Japan. Launched in 2020 
and receiving clinical approval in November 2022, the HinotoriTM system is designed to enhance 
surgical precision and patient outcomes in minimally invasive procedures, such as robotic 
gastrectomy and colorectal surgeries. 

One of the distinguishing features of the HinotoriTM system is its closed console design, which 
creates a stable and immersive environment for surgeons. This setup allows for a high-definition 3D 
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visualization of the surgical field, utilizing a 16:9 monitor that expands the surgeon’s view compared 
to traditional systems. The robotic arms feature eight axes of movement, enabling greater flexibility 
and reducing the risk of interference between instruments. This enhanced manoeuvrability is crucial 
during complex procedures, where precision is paramount. 

HinotoriTM also integrates advanced imaging capabilities, including fluorescence imaging, 
which helps in identifying critical structures and assessing tissue viability during surgery. While the 
system currently lacks haptic feedback and eye-tracking features, its ergonomic design and intuitive 
controls contribute to a more comfortable surgical experience. 

Despite being a newer entrant in the market, HinotoriTM has demonstrated its potential through 
successful clinical applications[34,89,125,126]. It has gained acceptance in Japan, where it was 
specifically developed to address the growing demand for robotic surgeries. The system’s pricing is 
notably lower than that of its primary competitor, the da Vinci system [126,140], which may facilitate 
wider adoption and accessibility in surgical settings. 

 

Figure 6. HinororiTM surgical system. 

2.3.6. KangDuo 

The KangDuo Surgical System (Figure 7), developed by Kangduo Medical Robotics Co., Ltd., 
was launched in 2019 and is based in China. This innovative robotic surgical platform is designed to 
enhance the precision and effectiveness of minimally invasive surgeries across various medical fields, 
including general, urological, and gynaecological procedures [33,49,123,136]. 

One of the standout features of the KangDuo system is its high-definition imaging capabilities. 
While it does not include 3DHD vision, the system provides clear, detailed visuals that are crucial for 
surgeons during complex operations. The ergonomic design of the surgical console allows for optimal 
comfort and control, enabling surgeons to perform intricate tasks with improved dexterity. 

The system’s robotic arms are engineered for superior manoeuvrability, allowing surgeons to 
navigate through the surgical site with precision. This enhances the ability to perform delicate 
procedures while minimizing trauma to surrounding tissues. Additionally, the KangDuo system 
includes advanced fluorescence imaging technology, which aids in the visualization of critical 
structures and tissues during surgery, improving surgical outcomes. 

With a focus on user experience, the KangDuo also features haptic feedback, providing surgeons 
with tactile sensations that simulate the feel of traditional surgery. This feedback is essential for 
maintaining control and accuracy. The inclusion of eye-tracking technology further enhances the 
system’s usability, allowing surgeons to maintain focus and precision throughout the procedure. 

The KangDuo Surgical System is CE marked, indicating its compliance with European health 
and safety standards, and it is commercially available, making it a competitive option in the field of 
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robotic surgery. Its affordability and versatility make it an attractive choice for hospitals and surgical 
centres looking to adopt robotic-assisted techniques. 

 
Figure 7. KangDuo Surgical system. 

2.3.7. Versius® 

The Versius® Surgical Robotic System [145] (Figure 8), developed by CMR Surgical, is a cutting-
edge platform designed to enhance the precision and accessibility of minimally invasive surgeries. 
Launched in 2019, Versius® has gained recognition for its innovative approach to robotic surgery, 
offering several advantages over traditional systems. 

One of the defining features of Versius® is its modular and flexible design. Unlike conventional 
robotic systems, which are often bulky and confined to specific setups, Versius® consists of 
independent robotic arms that can be arranged around the patient as needed. This flexibility allows 
it to adapt to various surgical environments, making it suitable for a wide range of procedures, 
including colorectal, urological, gynaecological, thoracic, and general surgeries. 

The system is controlled by a surgeon console, which provides a high-definition 3D view of the 
surgical site and hand-held controllers that mimic the natural movements of the human hand. This 
precise control allows for intricate procedures with improved dexterity and range of motion 
compared to standard laparoscopic methods. Versius® was designed with surgeon ergonomics in 
mind, offering a seated position at the console to reduce fatigue during lengthy operations—a 
significant improvement over older systems. 

 

Figure 8. Versius® surgical robot. 

2.3.8. Avatera 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 October 2024 doi:10.20944/preprints202410.0121.v1

https://doi.org/10.20944/preprints202410.0121.v1


 11 

 

The Avatera robotic system [146], launched in 2021 by the German company Avatera Medical 
GmbH, represents a major advancement in robotic-assisted surgery. Designed with both precision 
and ease of use in mind, this system offers surgeons enhanced control over minimally invasive 
procedures, aiming to improve patient outcomes while reducing surgical complexity. 

At its core, the Avatera system features a modular design comprising a surgeon’s console and a 
surgical unit with robotic arms. The console’s slender eyepiece is ergonomically designed to allow 
the surgeon to maintain visual contact with the operating room team, fostering improved 
communication throughout procedures. This open design differentiates Avatera from other robotic 
systems that require the surgeon to be more isolated while operating. 

One of the key innovations of the Avatera system is its use of single-use instruments. These 
disposable instruments not only ensure sterility for every procedure but also significantly reduce the 
risks associated with cross-contamination and infection. The robotic arms, equipped with seven 
degrees of freedom, provide surgeons with precise control for intricate tasks such as suturing and 
dissection, offering a high level of dexterity. The system supports 5 mm trocars, enabling less invasive 
access points for surgeries, thus promoting quicker recovery times for patients. 

Additionally, the system operates on bipolar energy, which ensures safer tissue manipulation 
by minimizing the depth of energy penetration and reducing potential damage to surrounding 
tissues. This safety feature makes the Avatera system particularly appealing for complex surgeries. 

With its compact, flexible setup and focus on ergonomics, safety, and accessibility, Avatera is 
positioned as a cost-effective alternative to existing robotic systems [68], offering a more streamlined 
and efficient solution for hospitals and surgical teams aiming to adopt robotic technology. 

2.3.9. Dexter 

The Dexter Robotic System [147], developed by Distalmotion SA in Switzerland and launched 
in 2020, is a groundbreaking robotic platform designed to enhance minimally invasive surgery. 
Unlike fully robotic systems that often replace traditional laparoscopic methods, Dexter offers a 
hybrid approach, combining the precision of robotics with the flexibility of standard laparoscopy. 
This on-demand setup allows surgeons to seamlessly switch between robotic and manual control, 
optimizing workflow and reducing procedure times. 

Dexter’s system consists of a sterile surgeon console, two patient carts, and a robotic endoscope 
arm. The robotic arms feature seven degrees of freedom and a 75-degree angulation, providing a 
wide range of motion and high dexterity, critical for intricate procedures like suturing or central 
vascular dissection. The endoscope arm is fully compatible with any 3D endoscopic system, allowing 
surgeons complete control of camera navigation from the console while ensuring stability and image 
clarity. 

One of Dexter’s significant advantages is its open platform design, allowing integration with 
existing operating room equipment, including insufflation devices, and 3D optics. This flexibility 
eliminates the need for specialized or proprietary tools, reducing costs and making it easier to 
implement in various surgical environments. Additionally, the system uses single-use instruments, 
such as needle holders and graspers, ensuring sterility and reliability during each procedure. 

A key feature of Dexter is its ability to switch between robotic and laparoscopic modes in 
seconds [69]. The robotic arms can be folded back at the press of a button, providing space for 
traditional laparoscopic tools and techniques without undocking the robot. This seamless transition 
is particularly useful in colorectal and gynaecological surgeries, where certain tasks may be 
performed more efficiently through laparoscopy, while others benefit from robotic precision. 

2.3.10. Mantra 

The SSI Mantra Surgical System [148]is a groundbreaking robotic surgical platform launched in 
2023 by SS Innovations. Designed to enhance the efficiency and effectiveness of minimally invasive 
surgeries, the Mantra system represents a significant advancement in surgical technology, aiming to 
make robotic surgery more accessible and cost-effective. 
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One of the standout features of the Mantra system is its wristed instruments, which offer 
unparalleled dexterity. This allows surgeons to perform intricate movements with greater precision, 
particularly in confined spaces. Coupled with a high-definition three-dimensional camera system, 
the platform provides enhanced visualization, ensuring that surgeons have a clear and 
comprehensive view of the surgical field. This combination of advanced instruments and superior 
optics facilitates complex procedures that may be challenging with traditional laparoscopic 
techniques. 

The port placement flexibility of the Mantra system is another significant advantage. By allowing 
meticulous placement of ports, the system maximizes the working space and minimizes the risk of 
complications. This feature is particularly beneficial during procedures like robotic transabdominal 
pre-peritoneal (rTAPP) hernia repairs[93], where precise manoeuvring is crucial. 

A key aspect of the SSI Mantra Surgical System is its focus on cost-effectiveness. Robotic 
surgeries have traditionally been associated with high costs, which can limit their availability in many 
healthcare settings. The Mantra system addresses this concern by providing similar benefits to other 
robotic platforms at a significantly lower price point. This affordability has the potential to 
democratize access to robotic surgery, making it a viable option for a broader range of patients. 

As the medical community begins to evaluate the long-term implications of the SSI Mantra 
system, early experiences suggest it is a promising tool for enhancing surgical outcomes while 
reducing costs. Continued research will be essential to fully understand its advantages and to 
establish its role in the evolving landscape of robotic surgery. 

 

Figure 9. Mantra surgical robot. 

2.3.11. Toumai® 

The Toumai® surgical robotic platform is a cutting-edge system developed by Shanghai 
MicroPort MedBot (Group) Co., Ltd., a prominent Chinese company specializing in medical robotics. 
Introduced in the early 2020s, the platform represents a significant advancement in robotic-assisted 
surgery, particularly in the field of urology, and is poised to offer an affordable alternative to the 
dominant da Vinci robotic system. 

The Toumai® system operates on a master-slave model, where the surgeon controls the robotic 
arms from a closed console. This setup allows for precision and dexterity during complex procedures, 
such as nephrectomies (both partial and radical) and radical prostatectomies. The system includes 
four robotic arms mounted on a cart, which can manipulate instruments with high accuracy. 

The platform is equipped with high-definition 3D optics, providing the surgeon with a 
magnified, immersive view of the surgical field. However, details such as haptic feedback and 
camera-hopping technology are not disclosed, though these are common in modern surgical robotics 
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to enhance the precision of procedures. The docking time for surgeries was reported to be efficient, 
with a median of 20-22 minutes depending on the type of procedure, and no major robotic 
malfunctions were observed [94]. 

2.3.12. Technical Comparison 

Table 3 reports a comparison between the different robotic platforms from a technical point of 
view. 

Table 3. Technical comparison of the surgical platforms. 

Surgical 
platform 

Single 
port or 

Multiport
Chart 

Number 
of arms Console Vision Fluorescence

Haptic 
Feedback

Eye 
trackingInstruments

Senhance® Multiport multiple 4 Semi-
open 

3DHD NAI yes NAI 
Wristed, 5 

mm, 
disposable 

Revo-i® Multiport single 4 Open 3DHD yes yes yes 

rigid with a 
kit of 

wristed, 
unlimited 

uses, 5 mm 

Micro Hand 
S Multiport single 4 Close 3D HD no yes no 

wristed, 
multi-uses 

(20) 

Toumai® Multiport single 4 Open 3DHD yes no no 
wristed, 
reusable 

Avatera Multiport single 4 open 3D HD no no yes 
wristed, 
Reusable 

Versius® Multiport multiple 4 open 3D HD yes no yes wristed, 
disposable 

HinotoriTM Multiport single 4 
semi-
open 3D HD NAI no no 

wristed, 
reusable 

used up to 
10 times 

Kangduo Multiport single 3 Open 3D HD yes yes NAI 
Wristed, 

Reusable up 
to 10 uses 

HugoTM Multiport multiple 4 Open 3D 4k NAI NAI Yes NAI 

Dexter Multiport multiple 3 Open 3DHD yes No NAI reusable up 
to 10 times 

Mantra Multiport multiple 5 open 3DHD NA NAI NAI NAI 

NAI= Not Available Information. 

All the robots included in the review have a multiport architecture. 
Six robotic platforms (Revo-i®, Micro Hand S, Toumai®, Avatera, HinotoriTM, and KangDuo) 

feature a single patient cart equipped with 3 to 4 robotic arms. In contrast, other systems utilize a 
modular multi-arm design, where each cart supports a single robotic arm, providing greater 
flexibility during surgery. 
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Most robotic surgical systems (Revo-i®, Toumai®, Avatera, Versius®, KangDuo, HugoTM, Dexter, 
and Mantra) use an open console for surgeon vision, allowing the surgeon to remain engaged with 
the operating room environment. Micro Hand S, however, features a closed console similar to the Da 
Vinci systems, where the surgeon’s face is fully immersed in the vision system for a more immersive 
experience. Meanwhile, the HinotoriTM and Senhance® platforms offer a semi-open console design, 
which includes a visor, enabling the surgeon to maintain communication with the operating room 
staff while still benefiting from focused visual guidance. 

4. Discussion 

The evolution of surgical robotics has dramatically transformed the realm of minimally invasive 
surgery over the past two decades, particularly with the significant impact of the Da Vinci system by 
Intuitive Surgical [1–4,13,14]. Initially dominating the market due to its advanced capabilities and 
comprehensive regulatory approvals, the Da Vinci system has established a high standard that 
upcoming robotic platforms now seek to challenge [2,13–16]. Since the expiration of critical patents 
in 2019, a wave of new surgical robots has emerged, driven by technological advancements and the 
need for more cost-effective solutions. Many companies have developed innovative systems, some 
of which have already secured CE marking in Europe and have already obtained FDA approval. In 
some cases, the new robotic platforms include technological innovation. For instance, the Senhance® 
system [43,56] incorporates eye-tracking and haptic feedback, features that could enhance surgeon 
control and precision compared to the Da Vinci system, which notably lacks such advancements. This 
indicates a shift towards more ergonomic designs that prioritize user experience alongside clinical 
efficacy. 

Furthermore, the design philosophies of newer platforms highlight a significant departure from 
the centralized multi-arm configuration characteristic of Da Vinci. Systems like CMR’s Versius® 
[85,109] exemplify a modular approach that enhances flexibility in surgical settings, allowing 
surgeons to adapt robotic assistance to the specific needs of each operation. This modularity could be 
particularly beneficial in specialties such as colorectal and hepatobiliary surgery, where the 
complexity of procedures demands precise movements. Miniaturization of the system has also 
become a focal point, introducing compact robots designed for portability and ease of use. Such 
innovations could democratize access to robotic surgery, especially in smaller medical facilities that 
may not have the resources to accommodate larger, more expensive systems. 

Despite these advancements, several challenges remain in evaluating the clinical efficacy and 
economic impact of these new robotic platforms. While recent reviews indicate that many surgical 
procedures performed with these systems have minimal adverse events, the existing studies often 
feature small sample sizes and lack long-term follow-up data, making it difficult to ascertain 
definitive conclusions regarding their efficacy. The number of randomized controlled trials in this 
area must be increased to provide a more robust evidence base for clinical practices. Furthermore, 
there is a pressing need for comprehensive cost analyses, safety evaluations, and studies assessing 
the organizational impact of adopting these new robotic systems. 

The need for standardized training and credentialing programs presents another significant 
hurdle for the adoption of these new robotic platforms. While the Da Vinci system has established 
pathways for training, many of the newer systems lack a universal framework for assessing and 
certifying surgeon proficiency. This inconsistency raises concerns about skill transferability across 
platforms, which may complicate the integration of multiple robotic systems within hospitals. Efforts 
to develop simulation-based training and proctoring for new robots are encouraging but require 
further validation to ensure comprehensive adoption. 

Looking ahead, the future of robotic surgery promises continued innovation, particularly with 
the integration of artificial intelligence and machine learning capabilities. As these technologies 
evolve, they may significantly enhance the capabilities of robotic surgery, ultimately leading to better 
patient outcomes and more efficient surgical practices. In summary, while the Da Vinci system 
remains a cornerstone of robotic surgery, the emergence of new platforms introduces possibilities 
and challenges that could reshape the future of surgical interventions. However, to realize the full 
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potential of these new robotic systems, further rigorous research is essential, particularly in RCTs and 
comprehensive analyses covering costs, safety, and organizational impacts. 

In conclusion, the emergence of new robotic surgery platforms presents significant advantages 
for market competition, potentially leading to reduced costs and continuous technological 
advancements. 
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Appendix A 

Source Year Surgical platform Surgical specialty Country 

Yi, B., et al.[19] 2016 Micro Hand S General surgery China 

Ku, G., et al. [20] 2020 Revo-i General surgery South Korea 
Kang, I., et al.[21,22] 2020 Revo-i General surgery South Korea 
Kondo, H., et al. [22] 2020 Senhance General surgery Japan 
Kanego, G., et at. [23] 2021 Senhance Urology Japan 
Minagawa, Y., et al. 
[24] 

2021 Senhance General surgery Japan 

Sugita, H., et al. [25] 2021 Senhance General surgery Japan 
Hirano, Y., et al. [26] 2021 Senhance General surgery Japan 
Monterossi, G., et al. 
[27] 

2022 Hugo 
Gynecology Italy 

Böhlen, D., et al. [28] 2023 Dexter Urology Switzerland 
Pavone, M., et al. [29] 2023 Hugo Gynecology Italy 
Mottaran, A., et al. [30] 2023 Hugo Urology Belgium 
Panico, G., et al. [31] 2023 Hugo Urogynecology Italy 
Campagna, G., et al. 
[32] 2023 Hugo 

Gynecology Italy 

Chen, S., et al. [33] 2023 KangDuo Urology China 
Miura, R., et al. [34] 2023 Hinotori General surgery Japan 
Miyo, M., et al. [35] 2023 Hinotori General surgery Japan 
Alkatout, I., et al. [36] 2024 Dexter Gynecology Germany 
Formisano, G., et al. 
[37] 

2024 Hugo 
General surgery Italy 

Komatsu, H., et al. [38] 2024 Hugo Gynecology Japan 
Tomihara, K., et al. 
[39] 

2024 Hinotori General surgery Japan 

Hayashi, T., et al. [40] 2024 Hinotori Urology Japan 
Spinelli, A., et al. [41] 2017 Senhance General Surgery Italy 
Stephan, D., et al. [42] 2018 Senhance General surgery Germany 
Montlouis-Calixte, J., 
et al. [43]   2019 Senhance 

Gynecology and General 
surgery France 

Melling, N., et al. [44] 2019 Senhance General surgery Germany 
Yao, Y., et al. [45] 2020 Micro Hand S General surgery China 
Li, J., et al. [46] 2020 Micro Hand S General surgery China 
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Samalavicius, N.E., et 
al. [47] 2020 Senhance 

General Surgery, Gynecology, 
Urology Lithuania 

Lim, J.H., et al. [48] 2021 Revo-I General Surgery South Korea 
Fan, S., et al. [49] 2021 Kangduo Urology China 
Puntamberkar, S.P., et 
al. [50] 2021 Versius Gynecology india 
Collins, D., et al. [51] 2021 Versius General surgery UK 

Kelkar, D., et al. [52] 2021 Versius 
Gynecology and General 

surgery India 
Dixon, F., et al. [53] 2021 Versius General surgery UK 
Kastelan, Z., et al. [54] 2021 Senhance Urology Croatia 
Lin, C.C., at al. [55] 2021 Senhance General surgery Taiwan 
Venckus, R., et al. [56] 2021 Senhance Urology Lithuania 
Siaulys, R., et al. [57] 2021 Senhance Gynecology Lithuania 
Bravi, C.A., et al. [58] 2022 Hugo Urology Belgium 
Fan, S., et al. [59] 2022 Kangduo Urology China 
Puntamberkar, S.P., et 
al. [60] 2022 Versius General surgery UK 
Borse, M., et al. [61] 2022 Versius Gynecology India 
Puntambekar, S., et al. 
[62] 2022 Versius General surgery India 
Knežević, N., et al. [63] 2022 Senhance Urology Croatia 
Sasaki, M., et al. [64] 2022 Senhance General surgery Japan 
Samalavicius, N.E., et 
al. [65] 2022 Senhance General surgery Lithuania 
Sassani, J.C., et al. [66] 2022 Senhance Urology USA 

Samalavicius, N.E., et 
al. [67] 

2022 Senhance General surgery 

Multiple 
(Europe: 

Germany, 
Belarus, 

Lithuania) 
Kallidonis, P., et al. 
[68] 2023 Avatera Urology Grece 
Hahnloser, D., et al. 
[69] 2023 Dexter general surgery Switzerland. 
Monterossi, G., et al. 
[70] 2023 Hugo Gynecology 

Italy 

Bravi, C.A., et al. [71] 2023 Hugo Urology Belgium 
Gallioli, A., et al. [72] 2023 Hugo Urology Spain 
Territo, A., et al. [73] 2023 Hugo Urology Spain 
Bianchi, P.P., et al. [74] 2023 Hugo General surgery Italy 
Paciotti, M., et al. [75] 2023 Hugo Urology Belgium 
Marques-Monteiro, 
M., et al. [76] 2023 Hugo Urology Portugal 

Ou, Y.C., et al. [77] 2023 Hugo Urology Taiwan 
Elorrieta, V., et al. [78] 2023 Hugo Urology Chile 
Belyaev, O., et al. [79] 2023 Hugo General surgery Germany 
Alfano, C.G., et al. [80] 2023 Hugo Urology USA 
Panico, G., et al. [81] 2023 Hugo Urogynecology Italy 
Raffaelli, M., et al. [82] 2023 Hugo General surgery Italy 
Xiong, S., et al. [83] 2023 Kangduo Urology China 
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Dong, J., et al. [84] 2023 Kangduo General surgery China 
Kelkar, D.S., et al. [85] 2023 Versius General surgery UK 
Wehrmann, S., et al. 
[86] 2023 Versius General surgery Germany 
El Dahdad, J., et al. 
[87] 2023 Versius General surgery 

United Arab 
Emirates 

Togami, S., et al. [88] 2023 Hinotori Gynecological Surgery Japan 
Motoyama, D., et al. 
[89] 2023 Hinotori Urology Japan 
Hudolin, T., et al. [90] 2023 Senhance Urology Croatia 
Sasaki, T., et al. [91] 2023 Senhance General surgery Japan 
Thillou, D., et al. [92] 2024 Dexter Urology France 
Mehrotra, M., et al. 
[93] 2024 Mantra General surgery 

India 

Pokhrel, G., et al. [94] 2024 Toumai Urology China 
Prata, F., et al. [95] 2024 Hugo Urology Italy 
Dell’Oglio, P., et al. 
[96] 

2024 
Hugo Urology 

Italy 

Totaro, A., et al. [97] 2024 Hugo Urology Italy 
Takahara, K., et al. [98] 2024 Hugo Urology Japan 
Prata, F., et al. [99] 2024 Hugo Urology Italy 
Prata, F., et al. [142] 2024 Hugo Urology Italy 
Caputo, D., et al. [100] 2024 Hugo General surgery Italy 
Belyaev, O., et al. [101] 2024 Hugo General surgery Germany 
Jebakumar, S.G.S, et 
al. [102] 

2024 
Hugo General surgery India 

Caputo, D., et al. [103] 2024 Hugo General surgery Italy 
Andrede, G.M., et al. 
[104] 

2024 
Hugo Urology 

Brazil 

Salem, S.A., et al. [105] 2024 Hugo General surgery Israel 
Gioè, A., et al. [106] 2024 Hugo Gynecology Italy 
Quezada, N., et al. 
[107] 

2024 
Hugo General surgery 

Chile 

Pavone, M., et al. [108] 2024 Hugo Gynecology Italy 
Dibitetto, F., et al. 
[109] 

2024 
Versius Urology 

Italy 

Meneghetti, I., et al. 
[110] 

2024 
Versius Urology Italy 

De Maria, M., et al. 
[111] 

2024 
Versius Urology Italy 

Inoue, S., et al. [112] 2024 Hinotori General surgery Japan 

Kulis, T., et al. [113] 
2024 Senhance Urology 

Lithuania, 
Croatia 

Chang, K.D., et al. 
[114] 2018 Revo-I 

Urology South Korea 

Aggarwal, R., et al. 
[115] 2020 Senhance General surgery UK 
Zeng, Y., et al. [116] 2021 Micro Hand S General Surgery China 
Wang, Y., et al. [118] 2021 Micro Hand S General surgery China 
Jiang, J., et al. [117] 2021 Micro Hand S General surgery China 
Wang, Y., et al. [120] 2022 Micro Hand S General Surgery China 
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Lei, Y., et al. [119] 2022 Micro Hand S General surgery China 
Kulis, T., at al. [121] 2022 Senhance Urology Croatia 
Collà Ruvolo, C., et al. 
[122] 2023 Hugo Gynecology Belgium 
Li, X., et al. [123] 2023 Kangduo Urology China 
Motoyama, D., et al. 
[124] 2023 Hinotori general surgery Japan 
Motoyama, D., et al. 
[125] 2023 Hinotori Urology Japan 
Motoyama, D., et al. 
[126] 2023 Hinotori Urology Japan 
Glass Clark, S., et al. 
[127] 2023 Senhance Urology USA 
Kim, J.S., et al. [128] 2024 Revo-I General Surgery South Korea 
Bravi, C.A., et al. [129] 2024 Hugo Urology Belgium 
Balestrazzi, E., et al. 
[130] 2024 Hugo Urology 

Belgium 

Brime Menendez, R., 
et al. [131] 2024 Hugo Urology 

Spain 

Ou, H.C., et al. [132] 2024 Hugo Urology Taiwan 
Prata, F., et al. [133] 2024 Hugo Urology Italy 
Grandi, C., et al. [134] 2024 Hugo Urology Italy 
Antonelli, A., et al. 
[135] 2024 Hugo Urology 

Italy 

Shen, C., et al. [136] 2024 Kangduo Urology China 
Sun, Z., et al. [137] 2024 Kangduo General surgery China 
Liu, Y., et al. [138] 2024 Kangduo General surgery China 

Halabi, M., et al. [139] 
2024 Versius General surgery 

United Arab 
Emirates 

Kohjimoto, Y., et al. 
[140] 2024 Hinotori Urology Japan 
Lin, Y.C., et al. [141] 2024 Senhance Urology Taiwan 
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