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Abstract: In this study, we investigate a yaw control strategy in a two-turbine wind farm with 3.5 MW turbines, 
aiming to optimize power management. The wind farm is equipped with a nacelle-mounted multi-plane 
LiDAR system for wind speed measurements. Using an analytical model and integrating LiDAR and SCADA 
data, we estimate wake effects and power output. Our results show a 2% power gain achieved through optimal 
yaw control over a year-long assessment. The wind predominantly blows from the southwest, perpendicular 
to the turbine alignment. The optimal yaw and power gain depend on wind conditions, with higher turbulence 
intensity and wind speed leading to reduced gains. The power gain follows a bell curve across the range of 
wind inflow angles, peaking at 1.7% with a corresponding optimal yaw of 17 degrees at an inflow angle of 12 
degrees. Further experiments are recommended to refine the estimates and enhance the performance of wind 
farms through optimized yaw control strategies, ultimately contributing to the advancement of sustainable 
energy generation. 

Keywords: wind turbine; partial wake; power gain; lidar measurements; yaw control 
 

1. Introduction 

The monotonic growth of wind energy has significantly expanded the renewable energy sector, 
reducing reliance on fossil fuels [1]. Efficient control of wind farms plays a crucial role in optimizing 
energy output and ensuring their sustainability. By effectively managing the operation, maintenance, 
and performance of each turbine, we can maximize energy yield, minimize downtime, and prevent 
component failure. This becomes increasingly important in our current era, where renewable energy 
is vital for mitigating climate change and ensuring energy security. A notable advancement in this 
field is the utilization of Light Detection and Ranging (LiDAR) technology. LiDAR enables precise 
measurement of wind speed and direction at greater distances ahead of the turbines, facilitating the 
implementation of predictive control strategies. This technology not only optimizes the performance 
of individual turbines but also enhances the overall efficiency and productivity of the entire wind 
farm, resulting in improved economic viability and better integration of wind energy into the power 
grid. 

In single wind turbine management for maximizing power production and reducing load 
variation, it is aligned with the upcoming wind flow [2]. Within wind farm arrays, wind turbines 
may experience significant underperformance [3] and encounter unsteady loading, leading to 
increased maintenance costs. Additionally, climate change trends can cause shifts in wind roses, 
potentially creating unfavorable conditions for wind farms. Therefore, monitoring and control 
strategies are crucial for achieving optimized operations in an ever-changing environment[4]. 
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Extensive studies have advanced wind turbine control and optimization, resulting in significant 
performance and load reductions [5]. Coupled control and position optimizations yield the best 
improvement, increasing power density substantially [6]. Nacelle-mounted forward-looking LiDAR 
enhances turbine alignment and power performance [7], as well as improves evaluation of flow 
interaction models within wind farms [8].  Combining LiDAR with strategies like feed-forward 
collective pitch control shows potential for optimizing wind plant efficiency [7]. LiDAR-based control 
techniques, including a model predictive controller (MPC), significantly reduce generator speed 
variation [9]. Nacelle-mounted scanning LiDAR improves energy production and reduces fatigue 
loads [10]. LiDAR-assisted control reduces rotor speed variation, tower loads, and power fluctuations 
[11]. Optimizing LiDAR scan patterns and utilizing ground-based LiDAR improve accuracy and 
enable advanced control capabilities [12–14]. Efficient LiDAR-enabled controllers outperform non-
LiDAR controllers [15]. High LiDAR data availability and consideration of wind profile and rotor 
area characteristics are important for effective control of large wind [16]. Comprehensive fatigue 
analysis identifies efficient yaw ranges and optimal angles for increased power output and extended 
operational lifetime [17]. 

The implementation of active yaw control has opened up possibilities for wake management, 
aiming to optimize the power conversion of wind turbines within wind farms while reducing 
unsteady loading[18]. Yawed rotors can induce wake deflection [19,20]. Miao et al. [21] conducted a 
study on the impact of yawing on the performance of two aligned wind turbines, observing an 
increase in combined power production when the up-wind turbine was yawed at a specific level. 
Bartl et al. [22] investigated yaw control in two wind turbines under different turbulence intensities 
and inflow directions through measurements, achieving a 3.5% to 11% increase in total power 
through cooperative control. Fleming et al. [23] estimated a 14% power increase for a downwind 
wind turbine under a 10-degree wind inflow angle (angle between wind direction and the row of 
turbines) and a 4% overall production increase for the wind farm using a wake steering strategy. 
They utilized FLORIS [24], a model based on the works of Jensen [25] and Jimenez [26], which has 
since evolved into more complex formulations [27]. Sinner et al. [28] estimated a 4% increase in power 
production through wake steering at a specific wind inflow angle in a six-turbine wind farm. 
Bastankhah and Porté-Agel [20] conducted wind tunnel experiments using a five-turbine array, 
exploring the effect of various yaw angles on the first turbine and reporting a significant power 
increase. 

In conclusion, the control and optimization of wind turbines play a crucial role in maximizing 
energy output, minimizing maintenance costs, and improving the overall efficiency of wind farms. 
LiDAR technology has emerged as a valuable tool for accurate wind measurement, enabling the 
implementation of advanced control strategies[29]. By incorporating LiDAR data into control 
algorithms, wind turbines can adapt to changing wind conditions, optimize power production, and 
reduce unsteady loading. Active yaw control and wake management techniques further enhance the 
performance of wind turbines within wind farm arrays[30]. Ongoing research and advancements in 
this field continue to contribute to the development of more efficient and sustainable wind energy 
systems.  

However, while many studies have focused on the efficiency of aligned turbines, fewer 
investigations have examined optimal yawing under partial wake overlap. This study aims to explore 
the optimized yaw angle of utility-scale wind turbines under different partial wake and overlap 
scenarios, considering the potential trade-offs between yaw misalignment strategy and power 
production. Section 2 describes the methods and field setup, Section 3 discusses the results, and 
Section 4 summarizes the main findings. 

2. Materials and Methods 

The study is carried out on a two Siemens SG3.4-175, 3.5 MW wind turbine array located in the 
proximity of Rostock, Germany. The turbines are aligned 297 degrees from the north; see Figure 1. 
The downwind turbine (hereon No. 2) is equipped with a four-beam LiDAR system that can measure 
wind parameters at ten distances upwind, namely, 𝑋ௗ= 50, 75, 100, 150, 200, 250, 300, 350. 400, 450 m. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2024 doi:10.20944/preprints202410.0366.v1

https://doi.org/10.20944/preprints202410.0366.v1


 3 

 

 

  
(a) (b) 

Figure 1. a) Top view of the two-wind turbine array, b) photograph of the LiDAR at the nacelle of 
wind turbine 2. 

Figure 2 illustrates the basic quantities of the LiDAR and measurement planes. As indicated in 
reference [31], the production of the downwind turbine can be affected by the partial momentum 
deficit induced by the upwind turbine when the wind is from an angle of approximately 297 or 117 
degrees North. In addition to LiDAR, complementary SCADA data is used to calculate absolute wind 
direction, 𝐷௛, and speed, 𝐻𝑊𝑆௛, at the hub height. The relative angles 𝛼 and 𝛽 from the LiDAR 
sensor, given in Figure 2, are 5 and 15 degrees respectively. The 𝜗 and 𝜑 angles are inferred from 
equations 1 and 2, trigonometrically, as follows. 

 𝜗 = cosିଵ ቆ cos 𝛼ඥ1 + (tan 𝛽)ଶ(cos 𝛼)ଶቇ (1) 

𝜑 = cosିଵ ቆ sin 𝛽ඥ(tan 𝛼)ଶ(cos 𝛽)ଶ + (sin 𝛽)ଶቇ (2) 

 
The parameters needed to compute the wind veer are calculated from equations 3-5 and replaced 

in equation 6. Here, 𝑅𝑊𝑆௜ is the so-called radial wind speed, the projection of the absolute wind 
speed along the sensor i-beam; see Figure 2. 

 

  
 

Figure 2. a) LiDAR’s parameters, b) diagram illustrating the directions of laser beams of the nacelle-
mounted LiDAR for this particular wind farm. 

 𝑍±= 𝑍௛ ± 𝑥ௗ tan 𝜗 sin 𝜑 (3) 

𝛽ା = 𝑡𝑎𝑛ିଵ( 𝑅𝑊𝑆଴ − 𝑅𝑊𝑆ଵ𝑡𝑎𝑛 𝜗 𝑐𝑜𝑠 𝜑 (𝑅𝑊𝑆଴ + 𝑅𝑊𝑆ଵ)) (4) 
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𝛽 = 𝑡𝑎𝑛ିଵ( 𝑅𝑊𝑆ଶ − 𝑅𝑊𝑆ଷ𝑡𝑎𝑛 𝜗 𝑐𝑜𝑠 𝜑 (𝑅𝑊𝑆ଶ + 𝑅𝑊𝑆ଷ)) (5) 

𝑉𝑒𝑒𝑟 = 𝛽ା − 𝛽𝑍ା − 𝑍ି (6) 

 
The parameters needed to calculate the horizontal component of the wind speed from the upper, 𝐻𝑊𝑆ା, and lower, 𝐻𝑊𝑆ି, beams are calculated from equations 7 and 8 and replaced in equation 9. 
 𝑈ା = ோௐௌబାோௐௌభଶ ୡ୭ୱ ణ            &           𝑈ି = ோௐௌమାோௐௌయଶ ୡ୭ୱ ణ  (7) 

𝑉ା = ோௐௌబିோௐௌభଶ ୱ୧୬ ణ ୡ୭ୱ ఝ            &           𝑉 = ோௐௌమିோௐௌయଶ ୱ୧୬ ణ ୡ୭ୱ ఝ  (8) 

𝐻𝑊𝑆± = ට𝑈±ଶ + 𝑉±ଶ  (9) 

 
The direction of the horizontal component of the wind speed at hub height, 𝐷௛, is given by: 
 𝐷ℎ = 𝛽ା − 𝑉𝑒𝑒𝑟(𝑍ା − 𝑍௛) (10) 

 
the shear 𝛼௩[32] and the horizontal component of the wind speed at hub height, 𝐻𝑊𝑆௛, are 

given by: 
 𝛼௩ = ln ൬𝐻𝑊𝑆ା𝐻𝑊𝑆ି൰ ln ൬𝑍ା𝑍ି൰൘  (11) 

𝐻𝑊𝑆௛ = 𝐻𝑊𝑆ା ൬𝑍௛𝑍ା൰ఈೡ
 (12) 

 
Figure 3 illustrates basic parameters used to assess the turbine interaction; these include the 

wake expansion growth rate, K; see e.g., [33]. The radial and axial distances between rotors are 𝑥 =𝑑𝑠𝑖𝑛(𝜃) and 𝑦 = 𝑑𝑐𝑜𝑠(𝜃). Note that for 𝑥 − 𝐾𝑦 ≤ 2𝑟଴, the downwind turbine is affected by the wake. 
The range of wind inflow angle for overlap, 𝜃, is: 

 

(13)  sin 𝜃 − 𝐾 cos 𝜃 ≤ 2𝑟଴𝑑  

 
An overlap in the range of 0° to about 30° is expected for the setup under study. Considering 

all wind directions, the range producing overlap in the two-turbine system is 4𝜃, where each turbine 
takes 2𝜃. The axial induction factor at the rotor plane, a, is estimated from the far-field incoming 
wind speed, 𝑈௜௡௖, and the wind speed at the rotor plane, 𝑈௥ from the LiDAR measurements. The 
thrust coefficient, 𝐶் , is determined from it (equation 14), for the non-yawed rotor [34]: 

 

(14) 𝑎 = 1 − ቀ ௎ೝ௎ಮቁ     ,      𝐶் = 4𝑎(1 − 𝑎)     
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(15) 
𝑈௥𝑈௜௡௖ = 1 − ൮ቌ1 − ඨ1 − 𝐶் cos 𝛾8൫𝜎௬𝜎௭ 𝐷ଶ⁄ ൯ቍ 𝑒ି଴.ହ൫(௬ିఋ) ఙ೤⁄ ൯మ𝑒ି଴.ହ((௭ି௭೓) ఙ೥⁄ )మ൲ 

 
A reference wake profile is approximated using the analytical approximation by e.g., 

Bastankhah and Port´e-Agel [20] (equation 15) considering the full overlap inflow directions (117°and 297°North). Then, using the parameters from Equation 16, the performance and power gain of the 
turbine system are estimated with Equation 17. The value of 𝑉∗ is then calculated using the wind 
speed at the downwind rotor plane and 𝐸, which is between 1.3 and 2.5 [35]. 

 

(16) 𝑃ఊ଴ = ଵଶ 𝜌𝐴𝐶௉(𝑈)ଷ      ,      𝑃ఊ = ଵଶ 𝜌𝐴𝐶௉(𝑈ஶ)ଷ(cos 𝛾)ா     ,      𝑉∗ = ௎௎ಮ 

(17) 𝑃𝑅ఊ = (cos 𝛾)ா + (𝑉∗)ଷ2       ,     𝑃𝑜𝑤𝑒𝑟 𝑔𝑎𝑖𝑛 = ൫𝑃𝑅ఊ − 𝑃𝑅ఊ଴൯ × 100 

 

  
(a) (b) 

Figure 3. The downstream turbine is fully under the overlap of the wake of the upstream turbine, 
where the overlap is full and is 100 percent at the wind inflow angle of zero (𝜃 = 0) (a), Relation 
between wind inflow angle (𝜃) and the overlap. As seen, at the moment of this figure, the overlap is 
just on the border (b). 

Effects of turbulent intensity, thrust coefficient, and wind inflow angle on the optimal yaw and 
the power gain of the wind farm for achieving a yaw control strategy and for a possible wake steering 
application are discussed in the next section. 

3. Results and Discussion 

The year-long LiDAR data indicates a 5.84 𝑚 𝑠⁄  bulk wind speed in the rotor plane (Figure 4). 
Bulk 𝐶்  is 0.62, obtained from the axial induction using SCADA and LiDAR data. The average 
annual wind speed measured by the SCADA system is 7.23 𝑚 𝑠⁄  on the rotor plane, as shown in 
Figure 4. Compared with LiDAR, it is well-calibrated with the far-field upstream wind speed. It 
indicates that the SCADA data provides far-field wind speed at a distance of at least 250 meters 
upwind, not at the rotor plane. 
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Figure 4. One-year measured LiDAR data averaged on the ten measuring planes (vertically arranged 
blue dots) reveals how the rotor’s induction (red line) penetrates the up-stream flow, compared to the 
SCADA measurement at the rotor plane (green dash line) which is well calibrated with the far-field. 

 
Figure 5. Wind rose plotted using one-year measured data by LiDAR and SCADA. 

Wind direction, wind farm layout and location can make a significant influence on yaw control 
strategy [36]. The associated wind rose in the area of this study is illustrated in Figure 5. The wind 
rose at the turbines location is obtained with the LiDAR and SCADA data. It is obtained for a yearlong 
and divided into 30 equal sections. It shows that the turbine pair receives winds from 180 to 270 
degrees north at about 40% of the year. It is roughly 15% for the first quarter and 25% for the second 
and fourth quarters. So, the wind distribution indicates that the third quarter has the major wind. As 
seen, the wind farm layout appears appropriate; the major winds blow from the South-West, i.e., 
perpendicular to the arrangement of the turbines.  

The wake for the referential average of the year modelled under different yaw angles is shown 
in Figure 6. The position of the downwind wind turbine is represented by a black dash line.  

Figure 7 illustrates the wake of the upwind turbine in the rotor plane of the downwind turbine 
(black circles). In a yaw optimization approach, the wake deflection has a positive impact on the 
production of the downstream turbine that must overcome the negative effect of the upstream turbine 
yaw misalignment on its energy production. 
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As indicated by Figure 8, the yaw angle producing the maximum performance changes with the 
change of 𝑇௜ and 𝐶் values in 10° to 15° yaw angles. In studies employing Large Eddy Simulation 
(LES), this is occurred in 10° to 20° yaw angles, pointing that it depends on the location of the wind 
turbine in the wind farm layout [37]. 

 
 

Figure 6. Wake deflection structure at different yaw angles (from 0 to 30 degrees). The position of the 
downstream wind turbine is specified with a white dashed line when the wind inflow angle is Zero. 

 
 

Figure 7. The ratio of upcoming wind speed to the downstream wind speed in the wake area: (a), (b), 
and (c) wind speed ratio at the downstream turbine position, (d), (e), and (f) cropped area of the 
downstream flow at the downstream rotor position for power production calculation, under 0, 15 and 
30 degrees of yaw, respectively. 
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Figure 8. Variation of power gain against inflow angle and yaw angle at the average parameters of 
the year (a), upstream optimal yaw angle (b), and power gain (c) affected by turbulence intensity (𝑇௜) 
and thrust coefficient (𝐶்). 

In Figure 9, the wind speed ratio (𝑈 𝑈ஶ⁄ ) in two cases: data without the yaw angle of the 
upstream turbine obtained from the SCADA and LiDAR systems (Figure 9a and b), and the optimal 
yaw angle obtained from the analytical model (Figure 9c and d) is shown. In Figures 9c and d, we see 
a decrease in areas with a lower wind speed ratio than that in Figures 9a and b. Because with more 
misalignment of the upstream turbine rotor, more intact and high momentum wind flow reaches the 
downstream turbine. 

The maximum amount of power gain in the average annual occurs between wind inflow angles 
of 15 and 20 degrees (Figure 10a), where the corresponding optimal yaw angles are between 3 to 9 
degrees. As seen in Figure 10b, the changes in power gain and the corresponding optimal yaw angle 
behave like a Bell curve along with the range of the wind inflow angle. 

Changes in the power gain at different angles of the upcoming wind indicate that the amount of 
power gain is very low at small values of wind inflow angle (𝜃). But by increasing 𝜃 to values of 12 
and 14 degrees, the amount of power gain reaches its maximum amount. Then with a further increase 
of 𝜃, the amount of power gain decreases again until the downstream turbine leaves the wake area 
of the upstream turbine and then the power gain becomes zero. The appearance behaviours of power 
gain are similar in both 𝐸 values, but their maximum values are different. 

 

 

Figure 9. Wind speed ratio reaches the downwind turbine at different angles of upcoming wind flow: 
Using SCADA and LiDAR without yaw, (a) T1 in downstream, (b) T2 in downstream. Using the 
optimal yaw model of this study, (c) T1 in downstream, (d) T2 in downstream. 

 

Figure 10. Yaw control strategy: (a) Optimal yaw angle, (b) power gain due to applying the 
corresponding optimal yaw angle, at different inflow angles (𝜃) in the studied wind farm. 

Finally, according to the frequency of wind speed in different upstream angles, the amount of 
wind farm power gain increase, both in the overlap range and during one full-year, is calculated 
according to Table 1. 

Table 1. The amount of power gain for the times of overlap and during one full year. 
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 Power Gain (Percent) 
E:(cos 𝛾ா) Overlap Full Year 

E=1.3 (Upper range) 0.58 0.21 
E=2.5 (Lower range) 0.23 0.08 

At first glance, the power gain values obtained in this study, ranging from 0.23 to 0.58 in the 
overlap region and 0.08 to 0.21 in the full year, are relatively lower compared to some other research 
findings. One of the key factors contributing to this difference is the number of turbines in a row, as 
it has been observed that the power gain tends to increase with an increase in the number of turbines 
[31]. As highlighted by Song et al. [36], power plants with only two turbines, similar to the wind farm 
studied in this research, typically exhibit lower power gains. Their study on China Ming Yang 1.5 
MW wind turbines reported a power gain of 0.32% to 0.8% through yaw control, which falls within 
the range of our results. This similarity suggests that the power gain achieved with two turbines may 
be more consistent across different studies. However, it is important to consider that other factors 
such as wind directions and wind farm layouts can also influence the power gain. Rak et al. [38] 
estimated that yaw control in a wind farm consisting of eight rows of NREL 5-MW turbines could 
improve total power production by approximately 3.59% to 14.66%. This significant power gain can 
be attributed to the larger number of turbines and the resulting enhanced wake interactions. 
Similarly, Li et al. [39] reported a power gain of 2.1% in the major wind direction for a realistic 
offshore wind farm. These findings highlight the significance of considering specific wind conditions 
and farm configurations when assessing the potential for power gain through yaw control. 
Furthermore, Puech et al. [40] conducted a simulation-based investigation using real-world MM82 2-
MW logs and reported a power gain of about 0.31% to 0.33%. These results align more closely with 
our findings, suggesting that variations in turbine design and operational conditions can contribute 
to differences in power gain values. Additionally, Howland et al. [41] developed a collective control 
approach using a predictive physics-based, data-assisted wind farm flow control model. In their 
experiment with four utility-scale wind turbines, they achieved a power gain between 0.3% and 1.0%. 
This demonstrates the potential for further enhancing power gain through advanced control 
strategies, even with a limited number of turbines. 

Overall, the comparison with other research emphasizes the complex nature of power gain 
through yaw control, influenced by factors such as the number of turbines, wind directions, wind 
farm layouts and locations, and control strategies employed. While the power gain values obtained 
in this study may be relatively lower, they still demonstrate the potential for improving power 
production through yaw control. Further studies focusing on optimizing control strategies and 
considering specific wind farm configurations are necessary to enhance power gain and maximize 
energy production. 

4. Conclusions 

In this study, using both measurement methods and mathematical models for the wake region, 
the amount of performance and power gain of a wind farm consisting of two 3.5 MW wind turbines 
equipped with a nacelle-mounted multi-plane LiDAR sensor was studied for a full year. First, the 
LiDAR data were analyzed along with SCADA data, and then a data-assisted mathematical model 
was customized to optimize the yaw angle and thus maximize the power gain, and then the results 
were deeply discussed. 

In this case, it was found that in 38 percent of the year, the wind blows from the third quarter 
(southwest), which was called the major wind direction in the wind rose. It was 23 percent for the 
second quarter as well as the fourth quarter. This indicates that the major wind blows perpendicular 
to the line connecting the two turbines, according to the wind farm layout. 

It was also found that the amount of optimal yaw of the upstream turbine and the amount of 
power gain of the wind farm depend on the values of 𝐶் and 𝑇௜. These values depend on the wind 
conditions of the atmospheric boundary layer. With increasing 𝑇௜, the amount of power gain and the 
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optimal yaw decreases [42]. With increasing wind speed, the value of 𝐶் decreases and therefore the 
power gain and the optimal yaw of the upstream turbine decrease. 

Another factor that affects the calculations of both the optimal yaw and the power gain is the 
reduction factor of the upstream turbine production due to the yaw misalignment (cos 𝛾ா). So that by 
reducing the value of 𝐸 here, the calculated optimal yaw and power gain increases and vice versa. 
These values create a range for the estimated parameters in this research. In order to reach the right 
values and achieve more accurate estimations, more experiments should be performed for more 
accurate corrections and evaluations. 

It was also found that the amount of power gain at the corresponding optimal yaw changes as a 
Bell curve along the overlap range. So that in the wind inflow angle of zero, the amount of power 
gain and the corresponding optimal yaw angle are zero. But with increasing the inflow angle, the 
power gain and the optimum yaw increase, so that the power gain, corresponding optimal yaw of 17 
degrees, reach its maximum values of 1.7 percent at an inflow angle of 12 degrees, as an optimistic 
(maximum) estimate (𝐸 = 1.3). At a minimum estimate (𝐸 = 2.5) and an inflow angle of 14 degrees, 
power gain reaches its maximum value of 0.69 percent, corresponding optimal yaw of 7 degrees. 
Then, with a further increase of the wind inflow angle, the downstream turbine exits the wake region 
of the upstream turbine, and then the power gain and the corresponding optimal yaw angle become 
zero. 
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