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Abstract: The way we connect with the physical world has completely changed because of the 
Internet of Things (IoT) advancement. However, there are several difficulties associated with this 
change. A significant advancement has been the emergence of intelligent machines that are able to 
gather data for analysis and decision-making. In terms of IoT security, we are seeing a sharp increase 
in hacker activities worldwide. Botnets are more common now in many countries, and such attacks 
are very difficult to counter. In this context, Distributed Denial of Service (DDoS) attacks pose a 
significant threat to the availability and integrity of online services. In this paper, we developed a 
predictive model called Markov Detection and Prediction (MDP) using Continuous Time Markov 
Chain (CTMC) to identify and preemptively mitigate DDoS attacks. The MDP model helps in 
studying, analyzing and predicting DDoS attacks in Long Term Evolution for Machine (LTE-M) 
networks and IoT environments. The results show that using our MDP model, the system is able to 
differentiate between Authentic, Suspicious and Malicious traffic. Additionally, we are able to 
predict the system behavior when facing different DDoS attacks. 

Keywords: IoT; LTE-M; DDoS; M2M; CTMC; Markov chain; Botnets 
 

1. Introduction 

Internet and its applications are constantly developing and are an essential element of every 
person's daily. Due to the overwhelming need, research expanded beyond just connecting computers 
to the Internet. Indeed the Internet of Things (IoT) allows Machine-to-Machine (M2M) interactions to 
coexist with Human-to-Human (H2H) interactions over the same network communication. IoT is a 
disruptive technology that has the potential to alter both the physical and digital aspects of our lives. 
This technology describes a specific kind of network that links M2M objects and gadgets to the 
Internet in order to facilitate information sharing and smart recognition [1]. The total number of IoT 
connections grow from 6 billion in 2015 to 27 billion in 2025 [2]. GSMA Intelligence forecasts IoT 
connections to reach more than 38 billion by 2030, with the enterprise segment accounting for more 
than 60% of the total [3]. After a slowdown in enterprise progress caused by the pandemic and chip 
shortages, growth is returning to previous levels. In 2030, smart buildings and smart home will be 
the largest verticals for IoT connections, while smart manufacturing is forecast to grow at a 
Compound Annual Growth Rate (CAGR) of 20% between 2023 and 2030 [3]. 

Long Term Evolution for Machines (LTE-M) is a type of cellular network specifically designed 
for IoT and M2M devices with a limited bandwidth of 1.4 MHz. M2M devices transmit compact data 
packets at varying intervals. 

However, these devices differ from traditional Human-to-Human (H2H) communications in 
terms of their distinctiveness and functionality. M2M devices transmit their data payloads in 
synchronized bursts, creating a phenomenon like coordinated storms [4]. 
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The synchronization behavior described above has led to various issues, particularly in light of 
the increasing prevalence of M2M devices. These issues encompass network saturation, access baring, 
resource depletion, and inefficient utilization of the bandwidth. Consequently, these challenges have 
prompted extensive research efforts within the academic community to develop potential solutions. 
In addition to natural and human-induced catastrophes such as tsunamis, acts of terrorism, and wars, 
there is a significant challenge posed by the simultaneous transmission of alerts from various devices. 
This situation has a detrimental impact on both H2H and M2M communication traffic. Distributed 
Denial of Service (DDoS) attacks have been one of the most security gaps that threatens services, 
applications and information access. According to Forbes, there are about 1.09 billion websites on the 
internet in 2024 [6]. Additionally, a diverse range of online applications have been integrated with 
various web services, encompassing domains such as e-commerce, online banking, online shopping, 
online education, e-healthcare, and Industrial Control Systems (ICS) for critical infrastructure, among 
others [7]. Botnets are a set of devices infected by malicious codes with the aim of overwhelming a 
certain website or service. Botnets refer to overlay networks that consist of compromised mobile 
devices owned by users. Botnets of this nature are managed by individuals known as Botmasters, 
who are cybercriminals responsible for the creation and dissemination of these Botnets. Email 
attachments are a prevalent method of infecting devices. These attachments are commonly associated 
with Trojan viruses. Once the machine is infected by the malware, it establishes a connection with a 
designated central server referred to as Command Control (CC), or alternatively, with a peer-to-peer 
network that constitutes the botnet [7]. Given the limited processing and memory resources for IoT 
devices, it becomes impossible for users to install anti-virus software on it. In addition, the large 
number of IoT devices makes it a desirable target for attackers to enslave IoT devices in their Botnet 
malicious networks [8]. 

If we know that DDoS attacks can target any type of network or device that is connected to the 
Internet, including LTE-M networks, many research questions might arise regarding the impact of 
DDOS attacks over LTE-M networks: 
• How may we detect and predict the occurrence of DDoS attacks? 
• How we can analyze the behavior of the network during a DDoS attack? 
• What are the impacts of a DDoS attack over the M2M traffic? 

2. Literature Review 

Before delving into the core of the paper, let us review the proposed strategies and approaches 
regarding DDoS attacks in terms of prediction, detections or mitigation. 

To anticipate DDoS attacks, the authors of [9] utilized two machine learning models: Support 
Vector Machine (SVM) and Random Forest (RF). Principal Component Analysis (PCA) and Recursive 
Feature Elimination (RFE), two techniques for reducing the number of dimensions, are tested during 
the preparation of the data. Performance of models is assessed using the mean cross-validation 
accuracy. In the same study, they discovered that the performance of SVM is more accurate and stable 
than that of Logistic Regression (LR). As a result and contrary to SVM, LR fails to predict the PortMap 
assaults [8]. Another study [10] proposes an approach that focuses on the anticipation of future 
attacks, with the objective of offering timely alerts to network administrators. This proactive strategy 
enables administrators to promptly implement containment measures or isolate affected hosts. The 
approach used by the researchers is founded upon the utilization of a Markov chain model to 
represent the sequence of Botnet infections. The primary aim of this model is to discern patterns of 
behavior that are indicative of potential attacks. The findings of the study indicate that this particular 
method exhibits considerable potential in generating timely alerts for detecting attacks. The accuracy 
rate for predicting attacks was found to be over 98%, while the maximum rate of false alarms was 
observed to be under 2%.  In [11], the authors presented an innovative architectural framework that 
combines DDoS attack prediction with botnet identification. The architectural design was based on 
the principle that the sooner a system detects signs of an oncoming DDoS attack and identifies the 
related bots, the more efficiently it can respond to neutralize the attack. The prediction process entails 
recognizing early signs of a network assault before it escalates to more advanced phases. The 
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performance evaluations employed the CTU-131 and CAIDA2 (Center for Applied Internet Data 
Analysis). The evaluations effectively detected the existence of bots in the dataset, attaining an 
accuracy rate of 99.9%. The authors of [12] developed a framework for classifying and predicting 
DDoS attacks using machine learning techniques. The framework involves selecting a dataset, 
choosing appropriate tools, pre-processing data, extracting features, encoding data, and dividing 
data into training and testing sets. The model undergoes optimization, including kernel scaling and 
hyper-parameter tuning, resulting in an average accuracy of 90%. Comparatively, the model's 
precision of defect identification improved to 85% and 79%, respectively. The authors in [13] 
introduced ShieldRNN, a novel methodology for training and prediction in Recurrent Neural 
Networks/Long Short-Term Memory models, to protect IoT devices from attacks. Their solution 
consists of an IoT node detector and a server detector. The researchers evaluated ShieldRNN on the 
CIC-IDS20173 dataset and established benchmark outcomes for identifying DDoS attacks on the CIC-
IoT2022 dataset4. The authors in [14] propose a cost-effective method for real-time detection of M2M 
traffic using the Markov chain's recurrence property. They present a DDoS attack targeting Machine 
Type Communications (MTC) devices, aiming to congest Fourth Generation (4G)/5G networks. The 
3rd Generation Partnership Project (3GPP) traffic Markov-based modeling demonstrates the impact 
of these attacks on mobile network elements, highlighting their detrimental effects on signaling load. 
The proposed detection framework can detect active intrusions in around 380 seconds with a 91% 
detection accuracy. In [15], the authors provide a comprehensive analysis of DDoS attacks and their 
impact on cyber security. They present a hierarchical framework and analyze studies in academic 
journals. They discuss strategies to improve intrusion detection systems and emphasize different 
types of intrusion detection systems. The authors explain the core principles of cyber security, 
including DDoS attacks, data anomalies, and intrusion detection. They also highlight the introduction 
of fuzzy logic solutions to address DDoS attacks. The survey's findings offer benefits for businesses 
and governments seeking business sustainability. In [16], the authors proposed a security system 
consisting of two parts. In the first part, the authors explained how to compromise the network by 
infecting some IoT devices, and through them, the infection can be spread to the entire network. 
Second, the authors provided a set of methods that includes filtration, abnormal traffic created by IoT 
devices identification, screening, and publishing the abnormal traffic patterns to the other home 
routers on the network. The proposed system blocks the connection received from malicious nodes 
for a certain period of time without causing any delay for normal traffic. 

The authors in [17] evaluates the effectiveness of DDoS detection through multiple experimental 
scenarios. It analyzes traffic flow in transmission sessions, including regular and retransmission 
scenarios. The study's main contribution is its ability to predict DDoS attacks by analyzing 
transmission behavior variability. Sensor nodes can transmit signals simultaneously, and the study 
uses a tablet computer as the primary communication hub. The optimal transmission interval is 23 
milliseconds. The study highlights the correlation between transmission session saturation and DDoS 
attack success. 

Based on the previous literature review, and by analyzing a diverse range of sources, this section 
has highlighted the evolution of concepts, methodologies, and key findings for the use of predictive 
tools to analyze the behavior of a network especially in IoT domain. However, two questions arise: 
What are the impacts of a DDoS attack over M2M traffic? Are LTE-M networks resilient towards such 
type of attacks? To answer these questions, we study, hereinafter, the impact of DDoS attacks over 
LTE-M networks. 

 
1 CTU-13: The CTU-13 is a dataset of botnet traffic captured in the CTU University, Czech Republic, in 2011. 
https://www.stratosphereips.org/datasets-ctu13. 
2  Center for Applied Internet Data Analysis (CAIDA) conducts network research and builds research 
infrastructure to support large-scale data collection, curation, and data distribution to the scientific research 
community https://www.caida.org/about/ 
3  The Intrusion detection evaluation dataset (CIC-IDS2017) is provided by the Canadian Institute for 
Cybersecurity (CIC) and it can be accessed from https://www.unb.ca/cic/datasets/ids-2017.html 
4  This dataset is provided by the Canadian university of New BRUNSWICK, see 
https://www.unb.ca/cic/datasets/iotdataset-2022.html 
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3. DDoS Attack Impact over LTE-M 

LTE-M is a standardized technology launched in the 13th release by the 3GPP organization to 
enhance the performance of Low Power Wide Area Networks (LPWAN). The objective of M2M 
communication is to achieve cost-effectiveness, energy efficiency, simplicity, and broad geographical 
reach [18]. LTE-M networks are limited in terms of bandwidth network to 1.4 Mbps. In September 
2016, a spree of massive DDoS attacks temporarily crippled Krebs organization to enhance the 
performance of LPWAN. The initial attack exceeded 600 Gbps in volume and it was among the largest 
ones [19]. Additionally, In April 26, 2017 Persirai Botnet5 was discovered on 64% of the IP cameras 
Trend Micro was monitoring, which is more than twice as many as Mirai6 [20]. Now, with a LTE-M 
limited bandwidth along with a huge attack speed, can LTE-M networks scale to afford a huge 
amount of data generated by DDoS attacks? To answer this question, we study and evaluate the LTE-
M data-rate. 

In order to explore the bandwidths and constraints of Long Term Evolution- Advanced (LTE-A 
is a 4G standard) and LTE-M, we analyze the time-frequency resources and their relationship with 
data rates for M2M communication. In LTE, time-frequency resources are subdivided, as shown in 
Figure 1. 

In LTE, the most significant temporal unit is the radio frame with a duration of 10 milliseconds 
(ms). This radio frame is further divided into ten equal sub-frames. Each sub-frame consists of two 
slots, and each slot has a duration of 0.5 ms. Each time slot consists of seven Orthogonal Frequency 
Division Multiple Access (OFDMA) symbols [4]. 
• A Resource Element (RE) refers to a narrow channel with a spacing of 15 KHz in frequency 

domain and 0.5/7 ms in the time domain. 
• A Resource Block (RB) consists of 15 KHz x 12 sub-carriers = 180 KHz in frequency domain and 

0.5 ms in the time domain. 
• A Physical Resource Block (PRB) is the smallest allocation block that could be assigned to a single 

User Equipment (UE) for scheduling purposes. It consists of 15 KHz x 12 sub-carriers = 180 KHz 
in frequency domain and 0.5 ms x 2 = 1 ms in the time domain. 
By employing a basic mathematical computation: 

(6 RB x 2 x 12 Sub-carriers x 7 OFDMA symbol x 2 bits per RE)/1000 ≈ 2 Mbps. 

 

 
5  This IoT Botnet targets IP Cameras, see https://www.trendmicro.com/fr_fr/research/17/e/persirai-new-
internet-things-iot-botnet-targets-ip-cameras.html 
6  Mirai scans the web for devices protected by factory-default passwords or hard-coded credentials to 
compromise and infect them, https://securityintelligence.com/news/leaked-mirai-malware-boosts-iot-
insecurity-threat-level/ 
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Figure 1. Limited Bandwidth of LTE-M carrier in LTE-A carrier; Where Resource Element (RE) and 
Resource Block (RB). 

Since there are separate channels designated for upload and download in the LTE-M network 
due to its half-duplex nature, the bandwidth is determined to be 1 Mbps for upload stream and 1 
Mbps for download stream. 

Finally, to recall, LTE-M use a limited bandwidth (1.4 MHz) with a low data rate of 1 Mbps, and 
it is expected that DDoS attacks will flood the network with huge data (for example Krebs attack 
speed is about 600 Gbps). So, it is expected that LTE-M networks will be overloaded in a split second 
when facing a DDoS attack. 

4. Markov Detection and Prediction (MDP) Model 

In the rapidly evolving landscape of technology, IoT has emerged as a pivotal factor, 
revolutionizing the way we gather, transmit, and process data. IoT devices have become ubiquitous, 
seamlessly integrating into our lives and environments, allowing us to remotely monitor and control 
various systems. One of the fundamental aspects of IoT is the transmission of data, which is achieved 
through a diverse array of communication methods, including communication towers. 

Markov Chain is a probabilistic model that characterizes a series of potential occurrences, where 
the likelihood of each event is solely determined by the state achieved in the preceding event. One 
approach to represent a system is modelling the system, wherein the system is characterized by its 
states and transitions. These transitions are determined by the probabilities associated with 
transitioning between two states. 

4.1. Authentic, Suspicious and Malicious Requests 

With a huge data generated by IoT devices, effective classification is essential to extract 
meaningful insights and facilitate predictive analysis. To streamline this process, a classification 
framework is proposed, categorizing IoT generated data into three distinct types of requests: 
1. Authentic requests: refers to accurate, reliable, and trustworthy information that has not been 

manipulated, fabricated, or altered in any way. This type of data reflects the true state of actions 
without bias or distortion for example a sensor that sends 8 messages per day. 

2. Suspicious requests refers to the type of information that raises doubts about its accuracy, 
reliability, or legitimacy due to inconsistencies, anomalies, or unusual patterns. It may indicate 
potential errors, manipulation, or deceptive practices for example a sensor that exceeds its 
normal data-rate by sending more than 8 messages per day. 

3. Malicious requests refers to intentionally crafted or manipulated information designed with 
harmful intent, with the aim to cause damage, compromise security, or deceive individuals or 
systems (e.g., a hacker trying to delete some data or a sensor that sends massive data while 
exceeding a certain threshold). 
These three types of requests are shown in Figure 2. 
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Figure 2. Authentic, Suspicious and Malicious requests. 

The MDP flowchart depicted in Figure 3 shows the system behavior when it receives Authentic 
or Suspicious or Malicious requests. 

 

Figure 3. MDP flow chart upon the arrival of Authentic or Suspicious or Malicious requests; Where 
“𝐶ଵ” is the threshold of authentic phase, “𝐶ଶ” is the threshold of suspicious phase, “𝐷ோ” is the number 
of ongoing Malicious for Delete Request. 

4.2. MDP Model 

The MDP model is designed to proactively identify and mitigate DDoS attacks within LTE-M 
networks in an IoT environment. In an era where IoT connectivity plays an essential role, MDP model 
emerges as a vital safeguard, leveraging advanced predictive analytics to detect and preemptively 
thwart malicious activities. This model promises to enhance the security and reliability of LTE-M 
networks, ensuring uninterrupted IoT operations and safeguarding critical data and services against 
the ever-evolving security threat landscape. In this section, we introduce the MDP model, exploring 
its architecture, functionality, and real-world applications. 

The proposed MDP system delves into the intriguing realm of data transmission through IoT 
devices and communication towers, while proposing a comprehensive classification framework that 
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aids in detecting the DDoS attacks and predicting the system behavior. The MDP system involves 
three steps: 
• Defining states using Markov chains. 
• Generating equilibrium equations. 
• Solving the linear system. 

4.2.1. Defining States Using Markov Chains 

As the MDP involves three steps; therefore in the first step, we use the Markov chain to define 
the sequence of possible events for different requests (Authentic, Suspicious and Malicious requests) 
by turning any possible incident into different states and probabilities that identify this incident. 

The MDP model is designed to support M2M traffic. The MDP model is characterized by the 
following properties: 
• State Space: The set of all possible states that the system could resides in. Actually, the system 

might be in one of the following four phases: 
- Initial phase (𝑖 = 𝑗 = 0). 
- Authentic phase (0 < 𝑖 + 𝑗 ≤ 𝐶1). 
- Suspicious phase (𝐶1 < 𝑖 + 𝑗 ≤ 𝐶2). 
- Malicious phase (𝐶2 < 𝑖 + 𝑗) or (𝐷ோ ≥ 1). 

• Transition Probabilities: For each pair of states, there is a probability of transitioning from one 
state to another in one time step. 

• Balance equations, also known as the equilibrium equations or steady-state equations. These 
equations are based on the principle that the inflow of probabilities into a state is equal to the 
outflow of probabilities from that state in the steady-state. In other words, the probabilities do 
not accumulate or deplete over time in equilibrium states. 
In a MDP model, any request is classified by its nature and categorized in one of the three types: 

• Read Request (𝑅ோ) denoted by the variable (𝑖). 
• Modify Request (𝑀ோ) denoted by the variable (𝑗). 
• Delete Request (𝐷ோ) denoted by (𝐷ோ ≥ 1). 

The two traffic streams 𝑅ோ  and 𝑀ோ  are characterized by two average arrival rates (𝜆௜ ,  𝜆௝ ) 
respectively, which are assumed to conform to a Poisson distribution. While, the two service rates 
(𝜇௜,𝜇௝) are assumed to follow an exponential distribution. 

The transition between states in the system is possible upon the occurrence of an event, (increase 
or decrease of 𝑖 or 𝑗). The Initial phase represent the start of our system (𝑖 = 𝑗 = 0), while in the 
Authentic phase represents the normal cycle of our system (0 < 𝑖 + 𝑗 ≤ 𝐶ଵ) where c1 is the threshold 
of Authentic phase. As for the Suspicious phase, it represents doubtful requests where (𝐶ଵ < 𝑖 + 𝑗 ≤𝐶ଶ) where 𝐶ଶ is the threshold of Suspicious phase. Finally, in the Malicious phase, there is a clear 
evidence of harmful intents or actions (e.g., delete requests (𝐷ோ ≥ 1) or a huge and unusual traffic 
that exceeds the threshold 𝐶ଶ (𝐶ଶ < 𝑖 + 𝑗), as shown in Figure 4. 
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Figure 4. Representing MDP model as a set of generic states; Where “𝑖" represents the number of 
ongoing services for Read Request (𝑅ோ), “𝑗” is the number of ongoing services for Modify Request 
(𝑀ோ), “𝐶ଵ” is the threshold of authentic phase, “𝐶ଶ” is the threshold of suspicious phase, “𝐷ோ” is the 
number of ongoing Malicious for Delete Request. 

Assuming that 𝐶ଵ = 2 and 𝐶ଶ = 3, Figure 5 illustrates the MDP model with four phases: Initial, 
Authentic, Suspicious, and Malicious phases. 

 

Figure 5. Representing MDP model as a set of states (𝐶ଵ = 2 and 𝐶ଶ = 3); Where “S(i,j)” the state with 
certain 𝑖&𝑗 requests, “𝑖" represents the number of ongoing services for Read Request (𝑅ோ), “𝑗” is the 
number of ongoing services for Modify Request (𝑀ோ), “𝐶ଵ = 2” is the threshold of authentic phase, 
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“𝐶ଶ = 3” is the threshold of suspicious phase, “𝐷ோ” is the number of ongoing Malicious for Delete 
Request. 

4.2.2. Generating the Equilibrium Equations 

Since we have many notations in the following equations, we summarize them in Table1: 

Table 1. Symbols, values and descriptions. 

Symbol Description 𝐶ଵ The threshold of authentic phase 𝐶ଶ The threshold of suspicious phase 𝑖 number of ongoing services for Read Request (𝑅ோ) 𝑗 number of ongoing services for Modify Request (𝑀ோ) 𝜆௜ average arrival rate for 𝑅ோ (𝑖++) 𝜆௝ average arrival rate for 𝑀ோ (𝑗++) 𝜇௜ completed service rate for 𝑅ோ (𝑖--) 𝜇௝ completed service rate for 𝑀ோ (𝑗--) 
S(i,j) The state with certain 𝑖&j requests 
π(i,j) Steady-state probability Π Steady-state probability vector 𝐷ோ number of ongoing Malicious for Delete Request (𝐷ோ) 

We will generate the equilibrium equations, by considering new arrival events with an arrival 
rate “𝜆” and a service rate “𝜇”. 

In this paper, we assume that the time intervals for observation are sufficiently brief so that only 
one transition (𝑖++, 𝑖--, 𝑗++, 𝑗--) may occur during each period. 

Based on this assumption, the system might fall into one of the four following phases: 
1) Initial phase, where 𝑖 = 𝑗 = 0, includes one state S(0,0) as shown in Figure 6: 

 

Figure 6. Transitioning from S(0,0) in the “Initial phase” to different states in the “Authentic phase”; 
“S(i,j)” represents different states; where “𝑖” is the number of ongoing services for Read Request (𝑅ோ) 
and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

S(0,0) can be represented with the following equilibrium equation: 

(λi+ λj)π(0,0) = μiπ(1,0) + μjπ(0,1) (1)

2) Authentic phase: where 0 < 𝑖 + 𝑗 ≤ 𝐶1, as show in Figure 7: 
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Figure 7. Transitioning from the “Authentic phase” to the “Initial phase” or the “Suspicious phase”; 
“S(i,j)” represents different states; where “𝑖” is the number of ongoing services for Read Request (𝑅ோ) 
and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

This phase can be represented with the following equilibrium equation: 

(λi+λj+μi+μj)π(i,j) = λiπ(i-1,j) + λjπ(i,j-1) + μiπ(i+1,j) + μjπ(i,j+1) (2)

3) Suspicious phases: where 𝐶1 < 𝑖 + 𝑗 ≤ 𝐶2, as show in Figure 7. 
This phase can be represented with the equilibrium equation (2). 

4) Malicious phase: where 𝐶2 < 𝑖 + 𝑗, as show in Figure 8: 

 
Figure 8. Transitioning from the “Malicious phase” to the “Suspicious phase”; “S(i,j)” represents 
different states; where “𝑖” is the number of ongoing services for Read Request (𝑅ோ) and “𝑗” is the 
number of ongoing services for Modify Request (𝑀ோ). 

The Malicious phase can be represented with the following equilibrium equation: 

(μi+μj)π(i,j) = λiπ(i-1,j) + λjπ(i,j-1) (3)

Assuming that 𝐶ଵ = 2 and 𝐶ଶ = 3, and based on the generic balance equations (1), (2) and (3), 
we can generate ten balance equations that rules ten states: 
1- Balance equation (1) for S(0,0) in the “Initial phase”; where 𝑖 = 𝑗 = 0: 

(λi+ λj) π(0,0) = μi π(1,0) + μj π(0,1) (4)

2- Balance equation (2) for S(1,0) in the “Authentic phase”; where 0 < 𝑖 + 𝑗 ≤ 2:  

λi π(0,0) + (λi+ λj) π(1,0) = μi π(2,0) + μj π(1,1) + μi π(1,0) (5)

3- Balance equation(3) for S(0,1) in the “Authentic phase” ”; where 0 < 𝑖 + 𝑗 ≤ 2: 

λj π(0,0) + (λi+ λj) π(0,1) = μi π(1,1) + μj π(0,2) + μj π(0,1) (6)

4- Balance equation(4) for S(2,0) in the “Authentic phase”; where 0 < 𝑖 + 𝑗 ≤ 2: 

λi π(1,0) + (λi+ λj) π(2,0) = μi π(2,0) + μi π(3,0) + μj π(2,1) (7)

5- Balance equation(5) for S(0,2) in the “Authentic phase”; where 0 < 𝑖 + 𝑗 ≤ 2: 

λj π(0,1) + (λi+ λj) π(0,2) = μj π(0,2) + μi π(1,2) + μj π(0,3) (8)
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6- Balance equation(6) for S(1,1) in the “Authentic phase”; where 0 < 𝑖 + 𝑗 ≤ 2: 

μi π(1,1) + μj π(1,1) + (λi+ λj) π(1,1) = μj π(1,2) + μi π(2,1) + λj π(1,0) + λi π(0,1) (9)

7- Balance equation(7) for S(1,2) in the “Suspicious phase”; where 2 < 𝑖 + 𝑗 ≤ 3:  

λj π(1,1) + λi π(0,2) + (λi+ λj) π(1,2) = (μi+ μj) π(1,2) + μi π(2,2) + μj π(1,3) (10)

8- Balance equation(8) for S(2,1) in the “Suspicious Phase”; where 2 < 𝑖 + 𝑗 ≤ 3: 

λj π(2,0) + λi π(1,1) + (λi+ λj) π(2,1) = (μi+ μj) π(2,1) + μi π(3,1) + μj π(2,2) (11)

9- Balance equation(9) for S(0,3) in the “Suspicious Phase”; where 2 < 𝑖 + 𝑗 ≤ 3: 

λj π(0,2) + (λi+ λj) π(0,3) = μj π(0,3) + μi π(1,3) + μj π(0,4) (12)

10- Balance equation(10) for S(3,0) in the “Suspicious Phase”; where 2 < 𝑖 + 𝑗 ≤ 3: 

λi π(2,0) + (λi+ λj) π(3,0) = μi π(3,0) + μi π(4,0) + μj π(3,1) (13)

4.2.3. Solving the Linear System 

Based on the above equations with the variables 𝜋(௜,௝), we can build our linear system. 
To recall, the system moves from one state to another, when a service is accomplished or a new 

request arrives (by increasing or decreasing 𝑖 or 𝑗) with a steady-state probability 𝜋(௜,௝) that should 
respect the following two constraints:  ∑ ∑ 𝜋(௜,௝) = 1 ௖ି௜௝ୀ଴௖௜ୀ଴   (14)0 ≤  𝜋(௜,௝) ≤ 1 (15)

The ten equilibrium equations can be written in a matrix form: AΠ = 0. Where the square matrix 
A represents the coefficients of a linear system, and Π represents the steady-state probability vector: 𝛱 = (𝜋(଴,଴) 𝜋(ଵ,଴)  𝜋(଴,ଵ) 𝜋(ଵ,ଵ) 𝜋(଴,ଶ) 𝜋(ଶ,଴) 𝜋(ଵ,ଶ) 𝜋(ଶ,ଵ)  𝜋(ଷ,଴)  𝜋(଴,ଷ))T (16)

A 𝛱 = (0 0 0 0 0 0 0 0 0 0)T (17)

Where A is a (10 × 10) rank-deficient matrix. By replacing the first row of the matrix A by the 
coefficients of (14), we obtain the following modified system: 

BΠ = (1 0 0 0 0 0 0 0 0 0)T (18)

Where B becomes a full-rank (10 × 10) matrix 

5. Simulations, Results and Result Discussions 

In this section, we develop a simulation model that has been constructed using MATrix 
LABoratory (MATLAB) [30] to solve the linear system. The model is capable of generating several 
types of traffic, including 𝑅ோ and 𝑀ோ, with a high degree of flexibility. The obtained findings from 
the simulation are thoroughly examined and analyzed. 

5.1. Normal-Cycle Scenario: 

This scenario represents the normal cycle (no attack is detected) in which the system receives 
low requests such as in rural areas. 

We consider the following parameters: 
• A LTE system with 3 PRB (𝐶 = 3). 
• An average arrival rate of 𝑅ோ (𝜆1= 1). 
• An average arrival rate of 𝑀ோ (𝜆2= 1). 
• A service rate of 𝑅ோ (μ1 = 3). 
• A service rate of 𝑀ோ (μ2 = 3). 

The results of the Normal-cycle scenario are shown in Table 2: 
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Table 2. The probability values for each state S(i,j) in the Normal-cycle; Where “S(i,j)” represents 
different states, π(i,j) is the Steady-state probability, “𝑖” is the number of ongoing services for Read 
Request (𝑅ோ) and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

State Steady-state probability Probability Value Phase 
S(0,0) π(0,0) 162/314 = 51.6% Initial 
S(0,1) π(0,1) 54/314 =17.2% Authentic 
S(0,2) π(0,2) 9/314 = 2.86% Authentic 
S(0,3) π(0,3) 1/314 = 0.3% Suspicious 
S(1,0) π(1,0) 54/314 = 17.2% Authentic 
S(1,1) π(1,1) 18/314 = 5.73% Authentic 
S(1,2) π(1,2) 3/314 = 0.95% Suspicious 
S(2,0) π(2,0) 9/314 = 2.86% Authentic 
S(2,1) π(2,1) 3/314 = 0.95% Suspicious 
S(3,0) π(3,0) 1/314 = 0.3% Suspicious 

In Figure 9, the results and percentages of different phases for the Normal-cycle scenario: 
• Initial phase probability = π(0,0) = 52% 
• Authentic phase probability = π(0,1) + π(1,0) + π(0,2) + π(1,1) + π(2,0) = 45 % 
• Suspicious phase probability = π(0,3) + π(1,2) + π(2,1) + π(3,0) = 3% 

 
Figure 9. The probability values for each state S(i,j) in the Normal-cycle; Where “S(i,j)” represents 
different states, π(i,j) is the Steady-state probability, “𝑖” is the number of ongoing services for Read 
Request (𝑅ோ) and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

5.2. Suspicious Scenario: 

This scenario represents a high average arrival rate the might be either normal (e.g., dense areas) 
or suspicious (e.g., the launching of an attack). 

In this scenario: 
• We keep using the same resources for the LTE system (𝐶 = 3). 
• We increase the average arrival rate of 𝑅ோ to be (𝜆1= 2). 
• We also increase the average arrival rate of 𝑀ோ to be (𝜆2= 2). 
• We decrease the service rate of 𝑅ோ to be (μ1 = 2). 
• We also decrease the service rate of 𝑀ோ to be (μ2 = 2). 

The results of the Suspicious scenario are shown in Table 3: 
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Table 3. The probability values for each state S(i,j) in the Suspicious scenario; Where “S(i,j)” represents 
different states, π(i,j) is the Steady-state probability, “𝑖” is the number of ongoing services for Read 
Request (𝑅ோ) and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

State Steady-state probability Probability Value Phase 
S(0,0) π(0,0) 6/38 = 15.78% Initial 
S(0,1) π(0,1) 6/38 = 15.78% Authentic 
S(0,2) π(0,2) 3/38 = 7.9% Authentic 
S(0,3) π(0,3) 1/38 = 2.63% Suspicious 
S(1,0) π(1,0) 6/38 = 15.78% Authentic 
S(1,1) π(1,1) 6/38 = 15.78% Authentic 
S(1,2) π(1,2) 3/38 = 7.9% Suspicious 
S(2,0) π(2,0) 3/38 = 7.9% Authentic 
S(2,1) π(2,1) 3/38 = 7.9% Suspicious 
S(3,0) π(3,0) 1/38 = 2.63% Suspicious 

Figure 10 shows the results and percentages of different phases in the Suspicious scenario: 
• Initial phase probability = π(0,0) = 16%. 
• Authentic phase probability = π(0,1) + π(1,0) + π(0,2) + π(1,1) + π(2,0) = 63 % 
• Suspicious phase probability = π(0,3) + π(1,2) + π(2,1) + π(3,0) = 21% 

 

Figure 10. The probability values for each state S(i,j) in the Suspicious scenario; Where “S(i,j)” 
represents different states, π(i,j) is the Steady-state probability, “𝑖” is the number of ongoing services 
for Read Request (𝑅ோ) and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

5.3. Attack Scenario: 

In this scenario, we assume receiving an excessive data rate as a result of an attack. 
In this scenario: 

• We fixed the resources used in the LTE system with 3 PRB (𝐶 = 3). 
• We increase the average arrival rate of 𝑅ோ to be (𝜆1= 3). 
• We keep using the same average arrival rate of 𝑀ோ (𝜆2= 2). 
• We decrease the service rate of 𝑅ோ to be (μ1=1). 
• In addition, we decrease the service rate of 𝑀ோ to be (μ2=1). 

The results of the Attack scenario are shown in Table 4: 
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Table 4. The probability values for each state S(i,j) in the Attack scenario; Where “S(i,j)” represents 
different states, π(i,j) is the Steady-state probability, “𝑖” is the number of ongoing services for Read 
Request (𝑅ோ) and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

State Steady-state probability Probability Value Phase 
S(0,0) π(0,0) 6/236 = 2.54% Initial 
S(0,1) π(0,1) 12/236 = 5.08% Authentic 
S(0,2) π(0,2) 12/236 = 5.08% Authentic 
S(0,3) π(0,3) 8/236 = 3.4% Suspicious 
S(1,0) π(1,0) 18/236 = 7.62% Authentic 
S(1,1) π(1,1) 36/236 = 15.25% Authentic 
S(1,2) π(1,2) 36/236 = 15.25% Suspicious 
S(2,0) π(2,0) 27/236 = 11.44% Authentic 
S(2,1) π(2,1) 54/236 = 22.88% Suspicious 
S(3,0) π(3,0) 27/236 = 11.44% Suspicious 

Figure 11 shows the results and percentages of different phases the Attack scenario: 
• Initial phase probability = π(0,0) = 3% 
• Authentic phase probability = π(0,1) + π(1,0) + π(0,2) + π(1,1) + π(2,0) = 44 % 
• Suspicious phase probability = π(0,3) + π(1,2) + π(2,1) + π(3,0) = 53% 

 

Figure 11. The probability values for each state S(i,j) in the Attack scenario; Where “S(i,j)” represents 
different states, π(i,j) is the Steady-state probability, “𝑖” is the number of ongoing services for Read 
Request (𝑅ோ) and “𝑗” is the number of ongoing services for Modify Request (𝑀ோ). 

6. Conclusions 

Our study starts with an approach analysis for the impact of DDoS attacks on LTE-M networks 
named MDP model. A first congestion is expected on LTE-M network due to the huge number of 
requests attempting to concurrently link to the network as a result of a DDoS attack, which eventually 
cause an overload issue. In this paper, a survey was provided for the main literature approaches to 
address this issue. In our work, we begin to research LTE-M network infrastructure and IoT devices 
technological features in order to differentiate among Authentic, Suspicious or Malicious requests. 
By modelling the system, we end up with promising results regarding the effect of DDoS attacks on 
M2M and the bottlenecks that occur due to these attacks on LTE-M networks. We realize that LTE-M 
networks can be affected by the increase number of Read, Modify or Delete Requests. Under different 
scenarios, we analyze the data traffic and predict the system state to determine the behavior of the 
system and its probability to be under attack. 
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Abbreviations 

Abbreviation Description 
3GPP 3rd Generation Partnership Project 
4G Fourth Generation  
CAIDA Center for Applied Internet Data Analysis 
CC Command Control 
CIC Canadian Institute for Cybersecurity 
DDoS Distributed Denial of Service  
H2H Human-to-Human 
ICS Industrial Control Systems  
IoT Internet of Things  
LPWAN Low Power Wide Area Networks  
LR Logistic Regression 
LTE-A Long Term Evolution- Advanced 
LTE-M Long Term Evolution for Machines  
M2M Machine-to-Machine 
MDP Markov Detection and Prediction 
MTC Machine Type Communications  
OFDMA Orthogonal Frequency Division Multiple Access  
PCA Principal Component Analysis  
PRB Physical Resource Block  
RB Resource Block  
RE Resource Element  
RF Random Forest  
RFE Recursive Feature Elimination  
SVM Support Vector Machine  
UE User Equipment 
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