Preprint Review Version 1 This version is not peer-reviewed

Thermodynamic Models of Solid Oxide Fuel Cell (SOFC): A Review

Version 1 : Received: 12 October 2024 / Approved: 13 October 2024 / Online: 14 October 2024 (11:27:59 CEST)

How to cite: Marcantonio, V.; Scopel, L. Thermodynamic Models of Solid Oxide Fuel Cell (SOFC): A Review. Preprints 2024, 2024100999. https://doi.org/10.20944/preprints202410.0999.v1 Marcantonio, V.; Scopel, L. Thermodynamic Models of Solid Oxide Fuel Cell (SOFC): A Review. Preprints 2024, 2024100999. https://doi.org/10.20944/preprints202410.0999.v1

Abstract

In the delicate context of climate change and global warming new technologies are being investigated in order to reduce pollution. The solid oxide fuel cell (SOFC) stands out as one of the most promising fuel cell technologies for directly converting chemical energy into electrical energy, with the added benefit of potential integration into co-generation systems due to its high-temperature waste heat. They also offer multi-fuel flexibility, being able to operate on hydrogen, carbon monoxide, methane, and more. Additionally, they could contribute to carbon sequestration efforts and, when paired with a gas turbine, achieve the highest efficiency in electricity generation for power plants. However, their development is still challenged by issues related to high-temperature materials, the design of cost-effective materials and manufacturing processes, and the optimization of efficient plant designs.To better understand SOFC operation, numerous mathematical models have been developed to solve transport equations coupled with electrochemical processes for three primary configurations: tubular, planar, and monolithic. These models capture reaction kinetics, including internal reforming chemistry. Recent advancements in modeling have significantly improved the design and performance of SOFCs, leading to a sharp rise in research contributions. This paper aims to provide a comprehensive review of the current state of SOFC modeling, highlighting key challenges that remain unresolved for further investigation by researchers.

Keywords

SOFC; Aspen plus; renewable energy; hydrogen; energy system; fuel cell

Subject

Engineering, Chemical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.