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Abstract: The results of shaking table tests from the literature on a one-story, two-bay reinforced
concrete frame experiencing both shear and axial failures are compared with nonlinear dynamic
analyses using simplified models designed for assessing the collapse of older reinforced concrete
structures. To simulate the nonlinear behavior of columns—both those prone to shear failure and
those more flexure-dominant—the one-component beam model was utilized. This model consists
of a linear elastic element linked in series to a rigid-plastic linear hardening spring at each end,
representing a concentrated plasticity element. To capture strength degradation through path-
dependent plasticity, a negative kinematic hardening model was used, connecting points at shear
and axial failure, respectively. Shear failure points were determined via pushover analysis of the
shear-critical columns using Phaethon software. While the simplified model yielded reasonable
predictions of the overall frame response and lateral strength degradation, the reduced
computational cost of the modeling approach led to some deviations between the calculated and
measured shear forces and drifts during portions of the time-history response.

Keywords: nonlinear dynamic analysis; collapse; axial and shear failures; reinforced concrete
columns; one-component beam model

1. Introduction

Reinforced concrete buildings constructed before modern seismic design provisions were
established are a major global concern for seismic safety. These structures are highly susceptible to
severe damage or even collapse during strong earthquakes, which has historically led to significant
loss of life. Many earthquake-related fatalities in the past can be attributed to the collapse of these
buildings. Since the 1980s, when the capacity design concept was introduced into seismic codes, the
safety gap between newly designed, earthquake-resistant buildings and those built before 1980 has
widened, raising alarm worldwide. The earthquakes in Athens (1999), Turkey (1999), L’Aquila
(2009) —which the author personally experienced while living there—and the 2023 Turkey-Syria
earthquakes have highlighted the urgent need to improve the assessment and retrofitting of older
reinforced concrete structures. Over the past two decades, intensive research and code development
have focused on addressing this issue, as the detailing of these older buildings often falls short of
today’s standards for earthquake-resistant construction.

Reinforced concrete (RC) columns are critical to a structure’s overall performance, as their failure
can result in disproportionate damage to the entire building. The behavior of RC columns under
combined axial load, shear, and flexure has been extensively studied over the years. For flexural
behavior, sectional analysis or a fiber model in a one-dimensional stress field can provide reasonable
estimates of ultimate strength and yielding deformation. However, when a column’s performance is
dominated by shear or a combination of shear and flexure, sectional analysis alone is insufficient, as
shear forces create stress fields that run through the member to its supports [1,2].

One example of a member-based approach to modeling shear effects is the strut-and-tie
mechanism, which is used in the D-regions of beams and columns. Here, a 45° diagonal strut extends
through the concrete member, covering a distance at least equal to the member's depth. Despite this,
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many design codes treat shear strength as a cross-sectional property [3], though alternative
approaches like strut-and-tie models [4-7] are available, albeit less commonly used and often
unfamiliar to many practitioners.

More advanced methods, such as variable-angle strut-and-tie models, account for different
angles of the strut depending on the amount of transverse reinforcement. For example, Eurocode 2
(2004) [8] allows for a strut angle between 22.5° and 45°, with the angle varying based on the required
amount of transverse reinforcement. A more detailed method, seen in AASHTO 2013 [5] and Model
Code 2010 [4], is based on the Modified Compression Field Theory (MCFT), developed by Vecchio &
Collins (1986) [9], which is considered the most comprehensive theory for the shear behavior of
reinforced concrete members.

Even the most advanced seismic design and assessment techniques currently available require
some form of nonlinear analysis, whether static or dynamic. These analyses are primarily conducted
using frame elements that incorporate varying levels of approximation. The two main approaches
employed are lumped-plasticity and distributed-inelasticity models.

Distributed-inelasticity elements can directly achieve the integration of the section response
[10,11]. For this latter approach, fiber beam elements yield results particularly well-suited for
examining the behavior of RC structures under reversed cyclic loads, as they effectively account for
moment-axial force (M-N) coupling and the interaction between concrete and steel within the section.
While several fiber beam-column elements have been developed that accurately reproduce axial force
and flexural effects, the coupling of normal and shear force effects remains complex, and thus only a
few modeling strategies have been fully implemented to date [12].

On the other hand, lumped-plasticity elements necessitate calibration of their parameters based
on the response of an actual or ideal frame element under simplified loading conditions. This
calibration is essential because the response of concentrated plasticity elements is derived from the
moment-rotation relationship of their components. In a real frame element, the end moment-rotation
relationship is obtained through the integration of the section response as it happens with a fiber
beam element [10].

To address the behavior of prismatic members, where normal stresses and strains across the
depth of a cross-section vary according to flexural moment demands (i.e., plane sections remain
plane), Vecchio and Collins (1988) [13] introduced the Modified Compression Field Theory (MCFT)
within a layered analysis model, commonly referred to as a fiber model [14]. In this method, the
kinematic assumptions for flexure and shear (represented by sectional curvature and shear strain)
guide the algorithm, while the orientations of principal stresses and strains are calculated across the
depth of the member at various layers. Nonlinear material constitutive laws, describing uniaxial
stress and strain in the principal directions, are employed to determine the stress state and establish
equilibrium of the stress resultants. In this approach, concrete fibers are treated as biaxially stressed
elements within the cross-section, and their in-plane stresses are analyzed using the MCFT. This
methodology was later refined to improve the determination of shear stress distribution across the
cross-section. These advanced formulations were implemented in Response 2000 [15], a nonlinear
member analysis computer program.

However, when applying the MCFT to seismic assessments, several adaptations are needed due
to the unique characteristics of cyclic loading. One limitation is that most experimental data
supporting the MCFT comes from tests using monotonic loads, providing limited insight into how
the model performs under cyclic displacement reversals and the associated degradation mechanisms.
Additionally, the method assumes uniformly distributed reinforcement, which is not suitable for
older, sparsely reinforced structures. A third limitation is the lack of explicit consideration of the role
of bond-slip degradation in the shear behavior of RC members.

The latter limitation along with the unique characteristics of lightly reinforced concrete columns
that arise from the interaction between shear and flexure were recently studied by developing a fiber
beam model based on the Modified Compression Field Theory (MCFT) [16]. This theory was applied
in an exact Timoshenko fiber element, which also incorporates the significant impact of tensile
reinforcement pullout from its anchorage or short lap splice on the column's overall lateral drift.
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These features were integrated into a stand-alone Windows program called "Phaethon" [16] with a
user interface developed in C++ programming language. The program is designed to assist engineers
in analyzing both rectangular and circular substandard reinforced concrete columns.

Using the moment-rotation envelope results from a cantilever shear-critical column analyzed by
the Phaethon software, an inelastic frame structure experiencing shear, axial or pull-out failures can
be modeled by placing a rigid plastic spring at the location where shear failure is anticipated
considering also the contribution of anchorage or lap-splice pullout slip in the total drift and applying
a negative kinematic hardening. The slope of the kinematic hardening connects the point on the
moment-rotation envelope where shear failure occurs to the point of axial failure, beyond which the
column can no longer support its gravity loads. The part of the member between the two rigid plastic
springs remains perfectly elastic. The original version of this one-component model was generalized
by Giberson [17,18]. A key advantage of this approach is that inelastic deformation at the member
ends depends solely on the moment applied at the end, allowing any moment-rotation hysteretic
model to be assigned to the spring. Although this simple model has faced some rational criticism, its
performance is expected to be reasonably effective for relatively low-rise frame structures, where the
inflection point of a reinforced concrete column is located near mid-height.

The primary goal of Performance-Based Earthquake Engineering is to establish an "acceptable”
probability of collapse. Collapse should be quantified as accurately as possible through nonlinear
dynamic analysis. A comprehensive set of guidelines will serve as a foundation for addressing the
complexities of nonlinear softening responses under large displacements and deformations, helping
to promote the acceptance of nonlinear response analyses in professional practice [19-21]. The
introduction of simple but effective column models, like those presented in this study, which account
for localized effects such as shear and anchorage or lap splice slip within a consistent element
formulation, will reduce non-convergence issues and computational time. This paper has the
following contributions in the research area of seismic assessment of old-type RC frames through
nonlinear dynamic analyses:

e The formulation of path-dependent one-component element response with strength degradation
due to shear and axial failures is described in detail.

e A MATLAB [22] code is developed in order to run a nonlinear dynamic analysis on one-story,
two-bay reinforced concrete frame experiencing both shear and axial failures and was simulated
with the above formulated beam element.

e The proposed analytical model can also address the stress state of a column under full cyclic load
reversals, accounting for both flexure- and shear-dominated response conditions in RC columns,
while also considering the contribution of anchorage or lap-splice pullout slip to the total drift.

The structure of this study is the following: after the introduction that describes the initiatives
of this research paper, the formulation of path-dependent one-component element response with
strength degradation is described in Section 2. In Section 3 the correlation of the proposed analytical
model to the experimental results from the literature is thoroughly described. Finally, the discussion
of the output results is presented in Section 4 while the conclusions and future work are presented in
Section 5.

2. Materials and Methods

It is valuable to examine one-component beam model formulation in greater detail, as it
exemplifies a category of elements that rely on assumptions about internal force distribution. These
elements are crucial in contemporary earthquake engineering analysis, as they accurately represent
the force distribution within a member and lead to a reliable numerical implementation.

2.1. Path-Dependent Element Response with Strength Degradation

For a linear elastic, perfectly plastic beam with non-smooth multi-surface plasticity, the
equilibrium, compatibility, and constitutive relations of the elastic component, along with the yield
function, are provided in the following equations as illustrated in Figure 1 (p denotes plastic and e
denotes elastic, My is the plastic moment and k is the stiffness) [10,23-25]:
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Figure 1. Beam (a) displacements and (b) forces in global, local and basic reference systems and c)
one-component beam model.
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There are now two independent yield surfaces, one for node i and one for node j. These can be
expressed more concisely by using the relationship Ix| = sign(x)x:

f1(q2,q3) = sign(q,)(qz) — M,; <0 (6)
f2(42,q3) = sign(qs)(qs) — Mp; < 0 7)
Introducing the derivative:
0
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Using the definition n = [Nz 73] and % =n" the yield conditions can be reformulated:

0
f(@2,45) =n"q —qpu <0 with g, = | Mpi (10)
Mp;
The flow rule for non-smooth plasticity is provided below:
Flow rule: v, = n,B, + n3fs =np iff f(q2,93) =n"q—q, =0 (11)

Kuhn-Tucker conditions: f; =20 and f;, <0 and Bifi =0 fork=2,3 (12)
Consistency condition: Bifi =0 fork=2,3 (13)

The plastic flow f; can be defined from the consistency condition S fi =0 fork=2,3
f'=n-q=n-k;(1'7—v'p) (14)
Substituting the flow rule with 1, = np:

f=n ke —np) (15)

According to the consistency condition f, > 0 only if fi =0 fork=2,3 (a stands for active node,
i.e., for anode with f, = 0:

(ngkev)
= 16
Pe = Gaeeny) 1o
The tangent modulus during plastic flow is expressed as:
k= k, — Keltaltake (17)

¢ (nTkeny)

The summary of multi-surface plasticity for a linear elastic, perfectly plastic beam is presented
below (cyclic rules similar to bilinear model):

1. Additive deformation decomposition v =v, + v,
2. Force-deformation relation q=k, v, =k, - (v - vp)
3. Yield condition f(qy,q3) =n"q—qy, <0 with n=[n2 ns]
4. Flowrule v, = nyf, + 3Bz =np iff  f(q2,q3) =n"q—qp =0
5.  Kuhn - Tucker conditions B =0 and f, <0 and Byfi; =0 fork=2,3
6. Consistency condition f fi =0 fork=2,3
In order for the kinematic hardening Hx to be included, the Equations 16 and 17 are rewritten as
follows:
_ (nTkev)
ﬁa - (ng(ke + Hy) na) (18)
k Tk
k=k eNaNale (19)

¢ nl(k, + Hy)ng

The kinematic hardening Hx equals to the negative slope connecting the point of the response at
shear failure to the point at axial failure of a shear-critical RC column. For flexure-dominant elements
the kinematic hardening can have a positive value or could be omitted.

In order to determine the point of shear failure of a shear-critical column, pushover analysis of
a single cantilever column is applied using Phaethon software. For the pushover analysis, the
sectional model of Phaethon (either rectangular or circular) based of MCFT is used, along with the
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footing anchorage model from Tastani and Pantazopoulou (2013) [26] or the lap-splice model of
Megalooikonomou (2024) [16], all embedded in Phaethon Windows software. A progressively
increasing lateral point load is applied at the tip of the cantilever. A single exact Timoshenko force-
based fiber element considering the effect of shear in modifying the principal directions along the
fiber section depth is assigned to represent the entire height of the cantilever column, with the
number of Gauss-Lobatto integration points chosen by the user. The user also selects the analysis step
size for the lateral load and the total number of steps up to the maximum load (shear failure). Since
the Modified Compression Field Theory in the fiber approach [15] cannot capture the descending
behavior of shear-critical columns, a load-controlled procedure without adjusting the load-step size
and only updating the stiffness is implemented in Phaethon. The point at shear failure corresponds
to the last converged step of the incremental algorithm. It's important to note that in reality, the
response of a shear-critical column features a descending branch following peak strength (brittle
response). However, the embedded algorithm only simulates up to the point of strength attainment
and shear failure. Beyond the maximum load, the descending portion of the capacity curve is
represented by a line connecting the peak load point (shear failure) with the point of axial failure, as
defined in terms of drift by Elwood and Moehle (2005) [27], with 20% of the peak load considered as
the residual load at axial failure. This defines also the negative kinematic hardening Hk of the
moment-rotation envelope of the shear-critical column to be applied in the following Section in the
nonlinear time-history analysis.

3. Results

In this Section the results of shaking table tests on a one-story (height: 1628 mm), two-bay (length
of each bay 1830 mm) reinforced concrete frame experiencing both shear and axial failures [28,29] are
compared with nonlinear dynamic analyses using simplified models designed for assessing the
collapse of older reinforced concrete structures. To simulate the nonlinear behavior of columns —both
those prone to shear failure and those more flexural in nature—the one-component beam model of
the previous Section was utilized.

3.1. Experimental Test Setup

Shake table tests were performed [28,29] to investigate the dynamics of shear and axial load
failures in reinforced concrete columns when an alternative load path is available for load
redistribution. The test specimens consisted of three columns fixed at their bases and connected by a
beam at the top. The central square-section column had a wide spacing of transverse reinforcement,
making it susceptible to shear failure and subsequent axial load failure during the tests. As the central
column failed, shear and axial loads were redistributed to the neighboring ductile circular columns.
Two test specimens were constructed and evaluated. The first specimen supported a mass that
generated axial load stresses in the column similar to those expected in a seven-story building. In the
second specimen, hydraulic jacks were incorporated to increase the axial load on the central column,
thereby heightening the demand for axial load redistribution as the central column began to fail. Both
specimens underwent one horizontal component of a scaled ground motion recorded during the 1985
earthquake in Chile. A comparison of the results from both specimens revealed that the behavior of
the frame depended on the initial axial stress of the center column. The specimen with lower axial
load experienced shear failure but retained most of its initial axial load. In contrast, the specimen with
the higher axial load exhibited shear failure of the central column at lower drift levels and earlier in
the ground motion record, leading to axial failure of the central column. Displacement data captured
just after the onset of axial failure suggest two mechanisms for the shortening of the center column
during axial failure: first, large pulses that lead to a sudden increase in vertical displacement after a
critical drift is reached, and second, smaller oscillations that seem to ‘grind down’ the shear-failure
plane. Additionally, dynamic amplification of axial loads transferred from the center column to the
outer columns was observed during the axial failure of the center column.

Two half-scale specimens, nominally identical, were built and tested on the shaking table at the
University of California, Berkeley [28,29]. Each planar-frame specimen consisted of three columns
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connected at the top by a 1.5m-wide beam and supported at the bottom by footings attached to multi-
axis load cells (Figure 2 (a)). The columns supported a total mass of 31,000 kg. To simulate reinforced
concrete columns typical of 1960s construction in the western United States, the center column was
built with light transverse reinforcement (As/bs = 0.18%, where A« is the area of transverse
reinforcement parallel to the applied shear, b is the width of the column (230x230 mm with 4 #4 corner
bars and 4 #5 corner bars with fy = 479.18 MPa), and s is the spacing of the transverse reinforcement
(W2.9 wire @152 mm with fu = 717 MPa) and 90° hooks. The outer columns (circular section with
diameter 255 mm — 8 #4 longitudinal steel bars) were reinforced with closely spaced spirals (#3 spiral@
50 mm) to ensure a ductile response and to maintain gravity load support in the event of shear and
axial-load failure in the center column.

Both specimens were subjected to one horizontal component of the ground motion recorded in
Vina del Mar during the 1985 Chile earthquake. However, the recorded acceleration values on the
shake table during testing will be applied on the numerical simulation of the next Section. The only
difference between the two specimens was the initial axial load applied to the center column. For
Specimen 1, the center column's axial load was 0.10Asf, while for Specimen 2, it was 0.24Afc (Where
Ag1is the gross cross-sectional area and f: is the measured concrete strength (24.27 MPa). The axial load
in Specimen 2 was increased to examine the impact of axial load on shear and axial failures. This
higher load was achieved by post-tensioning the specimen to the shaking table using pneumaticjacks,
preventing unwanted changes in the vibration period due to added reactive mass.

During testing, Specimen 1's center column experienced a reduction in lateral-load capacity,
apparently due to shear failure, but did not suffer axial failure. In contrast, Specimen 2's center
column experienced both shear and axial-load failures. Therefore, the latter specimen will be
employed in the numerical simulation for correlation with experimental results. Additional details
regarding the specimens, test setup, and experimental results can be found in [28,29].

a)

Center Column

.}_—-<

Qutside Column

b) 6

Figure 2. (a) Specimen 2 of shake table test [28,29] (b) Simplified numerical model implemented in
MATLAB 2024b.
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3.2. Pushover Analysis of Center Shear-Critical RC Cantilever Column.

The center column of the Specimen 2 of the above-described shake table test will be analyzed in
this Section through pushover analysis using Phaethon software [16]. In Table 1 the properties of the
column under study are given in detail.

For each point load applied at the tip of the cantilever, the corresponding shear force at the
specified sections of the column (integration points) matches the applied load, producing a constant
shear force diagram. The flexural moment at the column's base along with the moment distribution,
is derived from the lateral load, resulting in a consistent shear force. The concentric axial load
(whether tensile or compressive) applied at the cantilever's tip remains unchanged throughout the
pushover analysis and along the cantilever's length, ensuring that each section of the column
experiences the same axial force as at the tip. Using this approach, the resisting section forces should
converge to the previously determined section forces, which are based on the moment, shear, and
axial load diagrams of the cantilever column under a constant axial load and progressively increasing
lateral tip point loads. Once the section forces converge (via the Newton-Raphson iteration algorithm)
along the cantilever column to match the correct values from the force diagrams resulting from the
applied horizontal and axial loads at the tip, the axial deformation, curvature and shear strain for
each section can be calculated.

Table 1. Details of central shear-critical RC columns of Specimen 2 (units: mm, MPa, kN).

Shear Number - Ultimate
Span Diameter Strength
. P Yielding  (MPa) -
) Width (mm) - - .
Axial . Clear Concrete . Strength  Spacing
(mm) - Straight Reinforci
Case Load Debth Anchora Cover Strength ne ratio of Long.  (mm) -
(kN) (mII)n) . (mm (MPa) & of Bars Diameter
8 . .. (MPa) (mm)-Ratio
Length Longitudi
of Transv.
(mm) nal Bars .
Reinf.
Elwood
and 4and 4 717
Moehle 230 814 12.7 and 152
([528;2C9]2— 308.132 230 208 25.4 24.27 15.875 479.18 49
pe¢. 0.0245 0.00236
Center

Column)
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Figure 3. Capacity curve of center shear-critical column of Specimen 2 and lateral displacement
contributions for each step of the pushover analysis (16 total pushover steps of 5 kN).

By integrating the curvatures along the shear span of the cantilever column, the rotation due to
flexure is determined, which can be easily converted into lateral displacement due to flexure by
multiplying it by the shear span length. Similarly, integrating the shear strains across multiple
sections (with positions determined using Gauss-Lobatto integration scheme) along the cantilever
column’s length (integration points) provides the lateral displacement caused by the shear distortion
mechanism of the column. Finally, the rotation and displacement resulting from the pull-out of the
tensile reinforcement are determined using the theoretical framework outlined in [26]. These
contributions from flexure, shear, and anchorage are then combined to determine the total lateral
displacement, of the cantilever column at each lateral load increment. This process continues until
reaching the maximum lateral load (point of shear failure), establishing the column's capacity curve.
As already described, beyond the maximum load, the descending part of the capacity curve is
depicted by a line connecting the peak load point (corresponding to shear failure) to the point of axial
failure, as described by Elwood and Moehle (2005) [27]. At this point, 20% of the peak load is
considered as the residual load during axial failure. This also defines the negative kinematic
hardening behavior of the moment-rotation envelope for the shear-critical column, which will be
used in the next section for nonlinear time-history analysis. Figures 3 and 4 present the results of the
shear-critical center column of Figure 2 under study. According to Figure 3 the point of shear failure
defined by Phaethon software for the cantilever center shear-critical column of Specimen 2 is V. = 80
kN and As =7.27 mm. The axial failure event is depicted also in the same Figure. Thus, the negative
kinematic hardening in terms of moment-rotation can be defined.
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Figure 4. Strain, Slip and Bond distributions along the straight anchorage length of center shear-
critical column of Specimen 2.

3.3. Nonlinear Time-History Analysis of Specimen 2

A MATLAB code [22] was developed for the nonlinear time-history analysis of the already
introduced Specimen 2 by Elwood and Moehle [28,29]. The model of the 2D shear-critical RC frame
fixed at the base can be seen in Figure 2b. All columns were modeled by employing the one-
component beam model of Section 2. To the center column was applied, as already described, the
negative kinematic hardening defined in the previous Section along with its secant stiffness’ elastic
properties until the point of shear failure. To the side columns the experimental reported yielding
moment was employed along with its elastic stiffness. Since the side columns sustain fluctuating axial
load during testing a mean yielding moment value was introduced. The horizontal beams (Figure 2b)
were modeled as 2D linear elastic beam elements with elastic properties.

In the case of earthquake excitation, the support degrees of freedom (DOFs) are assumed to
move together following a specified ground acceleration history in the global coordinate system. The
key step is to express the total acceleration relative to a fixed reference frame as the sum of the
acceleration of the support DOFs and the additional acceleration of the free DOFs relative to the
supports [30].

Central difference time integration method algorithm is used to solve the equations of motion.
The advantage of the central difference method is that the stiffness matrix does not rely on the static
stiffness matrix, which may change at each time step under nonlinear material behavior, requiring
re-assembly and re-triangularization. In contrast, with the central difference method, the effective
stiffness remains constant, provided the damping stiffness matrix is constant, as is commonly
assumed with Rayleigh damping [30]. Additionally, this method does not require iterations within
each time step, unlike the implicit time integration method. However, the central difference method
is only conditionally stable, meaning it requires a small-time step for accurate integration. The
introduced ground motion is the recorded acceleration values on the shake table during testing of
Specimen 2. The equivalent viscous damping was set at 2% of critical damping for the fundamental
mode of the shear-critical RC frame. The masses were lumped equally at the horizontal beams’ nodes
and an additional vertical load was applied at the top node of the center column [0.24Agfc (Where A
(230x230 mm?) is the gross cross-sectional area and f: is the measured concrete strength (24.27 MPa)].

Figure 5 depicts the numerical and experimental nonlinear time-history response. It can be seen
that there are similar value-ranges in the response however the reduced computational cost of the


https://doi.org/10.20944/preprints202410.1069.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 October 2024

doi:10.20944/,

reprints202410.1069.v1

11

modeling approach led to some deviations between the calculated and measured shear forces and
drifts during portions of the time-history response. Regarding drift, the permanent damage drift at
35s-time history has almost the same value. Base shear and center column shear forces are comparable
but once the rigid plastic hardening springs of one-component model are triggered then there is no
fluctuation in the sustained envelope shear forces apart from the negative kinematic hardening
response as it would happen by employing distributed inelasticity beam elements.
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Figure 5. Time-history responses in terms of drift, base shear, and center column shear of Specimen

2.

The above remarks are confirmed also by Figure 6. The corresponding time responses between
numerical model and experimental test do not coincide at every time step. The effective stiffness and
strength degradation in the central shear-critical column is well captured. The employed moment-
rotation envelopes below horizontal beams of the columns of Specimen 2 both shear-critical but also
flexure-dominant can be seen in Figures 7 and 8. Considering the brittle specimen response and the
low computational cost for this simplified model approach for collapse modeling, the results are

acceptable.
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Figure 6. Shear hysteretic response of Specimen 2.
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Figure 8. Below beam moment-rotation hysteretic response of outside column of Specimen 2.

4. Discussion
During an earthquake, columns can experience a wide range of loading histories, which may

include a single large pulse or several smaller-amplitude cycles. These cycles can sometimes result in
shear failure or even collapse, where the column loses its ability to support gravity loads. Previous
research [1,2] has shown that such collapse cannot be explained by a simple combination of shear
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force and axial load. Instead, it is governed by an interaction envelope that depends on both the
loading history and the peak deformation exerted on the column (maximum drift demand).

To understand how the loading history affects a column's response, it is important to note that
structural members undergoing lateral displacement reversals tend to lengthen due to the
accumulation of permanent tensile strains in the longitudinal reinforcement crossing diagonal shear
cracks. As displacement cycles increase in amplitude, the cracks widen. This is depicted in the axial
stress-strain diagram of the reinforcement after yielding, where permanent strains are biased in
tension due to the neutral axis shifting towards the compression side of the member's cross-section
after cracking. Axial load plays a key role in this process, as it helps keep the cracks partially closed,
thereby delaying the elongation and ratcheting of the column.

Additionally, research [1,2] shows that increasing the number of cycles beyond the yield
displacement can reduce a column’s drift capacity at shear failure. One of the goals of this research
is to better understand these effects and develop simplified tools to identify the failure characteristics
at the loss of axial load-bearing capacity, as well as the impact of drift demand on the column’s
deformation capacity.

As already mentioned, collapse should be quantified as accurately as possible through nonlinear
dynamic analysis. A comprehensive set of guidelines will serve as a foundation for addressing the
complexities of nonlinear softening responses under large displacements and deformations, helping
to promote the acceptance of nonlinear response analyses in professional practice. The introduction
of simple but effective column models, like those presented in this study, which account for localized
effects such as shear and anchorage or lap splice slip within a consistent element formulation, will
reduce non-convergence issues and computational time. The correlation of the proposed model with
the experimental results produces acceptable results and the model succeeds in reducing the
computational effort.

5. Conclusions

One-component beam model formulation exemplifies a category of elements that rely on
assumptions about internal force distribution. These elements are crucial in contemporary
earthquake engineering analysis, as they accurately represent the force distribution within a member
and lead to a reliable numerical implementation. Using the moment-rotation envelope results from
cantilever shear-critical columns analyzed by Phaethon software, an inelastic frame structure
experiencing shear, axial or pull-out failures can be modeled by placing a rigid plastic spring at the
location where shear failure is anticipated considering also the contribution of anchorage or lap-splice
pullout slip in the total drift and applying a negative kinematic hardening. The slope of the kinematic
hardening connects the point on the moment-rotation envelope where shear failure occurs to the
point of axial failure, beyond which the column can no longer support its gravity loads. The part of
the member between the two rigid plastic springs remains perfectly elastic. A key advantage of this
approach is that inelastic deformation at the member ends depends solely on the moment applied at
the end, allowing any moment-rotation hysteretic model to be assigned to the spring. The results of
shaking table tests on a one-story, two-bay reinforced concrete frame experiencing both shear and
axial failures were compared after developing a MATLAB code [22] with nonlinear dynamic analyses
implementing this one-component beam model for columns prone to shear failure but also including
those with more flexure-dominant behavior under cyclic reversals. While the simplified model
yielded reasonable predictions of the overall frame response and lateral strength degradation, the
reduced computational cost of the modeling approach led to some deviations between the calculated
and measured shear forces and drifts during portions of the time-history response. Based on the
research included in this paper, a future goal is to implement the proposed element into a commercial
software for larger scale nonlinear dynamic analyses of real RC structures.

Data Availability Statement: All included data in this study is available upon request from the corresponding
author.
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