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Abstract: The results of shaking table tests from previous studies on a one-story, two-bay reinforced concrete 

frame—exhibiting both shear and axial failures—were compared with nonlinear dynamic analyses using 

simplified models intended to evaluate the collapse potential of older reinforced concrete structures. To 

replicate the nonlinear behavior of columns, whether shear-critical or primarily flexure-dominant, a one-

component beam model was applied. This model features a linear elastic element connected in series to a rigid-

plastic, linearly hardening spring at each end, representing a concentrated plasticity component. To account 

for strength degradation through path-dependent plasticity, a negative slope model as degradation was 

implemented, linking points at both shear and axial failure. The shear failure points were determined through 

pushover analysis of shear-critical columns using the Phaethon software. Although the simplified model 

provided a reasonable approximation of the overall frame response and lateral strength degradation especially 

in terms of drift, its reduced computational demands led to some discrepancies between the calculated and 

measured shear forces and drifts during certain segments of the time-history response. 

Keywords: nonlinear dynamic analysis; collapse; axial and shear failures; reinforced concrete 

columns; one-component beam model 

 

1. Introduction 

Reinforced concrete buildings constructed before the implementation of modern seismic design 

standards present a major global risk for earthquake safety. These older structures are highly 

vulnerable to severe damage or even collapse during strong earthquakes, which has historically 

resulted in considerable loss of life. Many fatalities in past earthquakes are directly linked to the 

collapse of such buildings. Since the introduction of the capacity design concept in seismic codes in 

the 1980s, the safety disparity between earthquake-resistant buildings and those built before 1980 has 

widened, heightening concerns worldwide. Earthquakes such as those in Athens (1999), Turkey 

(1999), L’Aquila (2009)—which the author personally witnessed while residing there—and the 2023 

Turkey-Syria earthquakes underscore the critical need for improved assessment and retrofitting of 

older reinforced concrete structures. Over the past 20 years, extensive research and code 

advancements have targeted this issue, as the detailing in these older buildings often falls 

significantly short of current standards for earthquake-resistant design. 

Reinforced concrete (RC) columns are crucial to a building’s overall performance, as their failure 

can lead to extensive, disproportionate damage throughout the structure. The behavior of RC 

columns under the combined effects of axial load, shear, and flexure has been widely studied. For 

columns primarily exhibiting flexural behavior, sectional analysis or a fiber model in a one-

dimensional stress field can reasonably estimate both ultimate strength and yielding deformation. 

However, when a column’s behavior is driven by shear or shear and flexure, sectional analysis alone 

falls short, as shear forces generate stress fields that extend through the member to its supports [1,2]. 

Recently, researchers have shown increased interest in the lateral load behavior of columns, 

particularly regarding axial failure that can lead to building collapse [3,4]. Before specific design 

requirements were introduced in the 1970s, reinforced concrete building frames in high-seismicity 

areas were built with detailing and proportions similar to those designed mainly for gravity loads. 
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In these structures, columns were not typically designed to be stronger than beams, so column failure 

mechanisms are common in buildings from that period, especially in areas without infill walls, such 

as soft-story structures like the Imperial County Hospital or buildings with window-framing 

columns, as seen in the Van Nuys Holiday Inn [5,6]. Columns often featured widely spaced transverse 

reinforcement, which contributed to failure modes involving shear or combined flexure-shear failure. 

As shear failure advances, the degradation of the concrete core can reduce the column's capacity to 

carry axial loads. When this capacity declines, gravity loads must be redistributed to adjacent 

structural elements. A sudden loss of axial capacity can trigger a rapid, dynamic redistribution of 

internal forces within the frame, potentially leading to progressive collapse. This type of structural 

response has been observed in numerous strong earthquakes worldwide, including the Perachora 

Earthquake in Greece (1982), the L’Aquila Earthquake in Italy (2009), and others [7]. 

One example of a member-based approach to modeling shear effects is the strut-and-tie 

mechanism, which is used in the D-regions of beams and columns. Here, a 45° diagonal strut extends 

through the concrete member, covering a distance at least equal to the member's depth. Despite this, 

many design codes treat shear strength as a cross-sectional property [8], though alternative 

approaches like strut-and-tie models [8–11] are available, albeit less commonly used and often 

unfamiliar to many practitioners. 

More advanced approaches, such as variable-angle strut-and-tie models, adjust the angle of the 

strut based on the level of transverse reinforcement. For instance, Eurocode 2 (2004) [13] permits a 

strut angle between 22.5° and 45°, with the specific angle varying according to the required transverse 

reinforcement. A more detailed approach, as outlined in AASHTO 2013 [10] and Model Code 2010 

[9], is based on the Modified Compression Field Theory (MCFT), developed by Vecchio & Collins 

(1986) [14], which is widely regarded as the most comprehensive framework for understanding the 

shear behavior of reinforced concrete members. 

The most advanced seismic design and assessment techniques available today still rely on some 

form of nonlinear analysis, whether static or dynamic. These analyses are typically carried out using 

frame elements with differing degrees of approximation. The two primary approaches used are 

lumped-plasticity models and distributed-inelasticity models. 

Distributed-inelasticity elements allow for the direct integration of section response [15,16]. In 

this approach, fiber beam elements are especially effective for studying the behavior of RC structures 

under reversed cyclic loading, as they accurately capture moment-axial force (M-N) coupling and the 

interaction between concrete and steel within the section. While many fiber beam-column elements 

have been developed to reliably represent axial force and flexural effects, the interaction between 

normal and shear forces is more complex, and only a limited number of modeling strategies have 

been fully implemented to address this [17]. 

In contrast, lumped-plasticity elements require parameter calibration based on the response of 

an actual or ideal frame element under simplified loading conditions. This calibration is crucial 

because the behavior of concentrated plasticity elements depends on the moment–rotation 

relationship of their components. For an actual frame element, the end moment–rotation relationship 

is determined by integrating the section response, similar to the process used in a fiber beam element 

[19]. 

To model the behavior of prismatic members, where normal stresses and strains vary across a 

cross-section depth in response to flexural moment demands (maintaining plane sections), Vecchio 

and Collins (1988) [18] introduced the MCFT within a layered analysis framework, commonly known 

as a fiber model [19]. In this method, kinematic assumptions for flexure and shear (represented by 

sectional curvature and shear strain) drive the algorithm, while principal stress and strain 

orientations are calculated at multiple layers across the member’s depth. Nonlinear constitutive 

material laws, defining uniaxial stress-strain behavior in the principal directions, are used to 

determine the stress state and ensure equilibrium of the stress resultants. Here, concrete fibers are 

treated as biaxially stressed elements within the cross-section, with their in-plane stresses analyzed 

through MCFT. This approach was later refined to enhance the accuracy of shear stress distribution 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 November 2024 doi:10.20944/preprints202410.1069.v2

https://doi.org/10.20944/preprints202410.1069.v2


 3 

 

across the section. These advanced formulations were implemented in Response 2000 [20], a 

nonlinear analysis program for structural members. 

When applying the MCFT to seismic assessments, several modifications are required to address 

the unique demands of cyclic loading. One challenge is that most experimental data supporting the 

MCFT is based on tests with monotonic loading, offering limited understanding of the model's 

behavior under cyclic displacement reversals and related degradation mechanisms. Additionally, the 

method assumes uniformly distributed reinforcement, which does not adequately represent older 

structures with sparse reinforcement. Another limitation is the absence of explicit modeling for bond-

slip degradation effects on the shear behavior of RC members. 

This limitation, along with the distinctive behavior of lightly reinforced concrete columns where 

shear and flexure interact, was recently investigated by developing a fiber beam model grounded in 

the MCFT [21]. This theory was applied using an exact Timoshenko fiber element that also accounts 

for the substantial effect of tensile reinforcement pullout due to anchorage or short lap splices on the 

column’s overall lateral drift. These capabilities were incorporated into a standalone Windows 

program named "Phaethon" [21], with a user interface developed in C++. The program aids engineers 

in analyzing substandard reinforced concrete columns with both rectangular and circular cross-

sections. 

Utilizing the moment-rotation envelope results from a cantilever shear-critical column analyzed 

using Phaethon software, one can model an inelastic frame structure subjected to shear, axial, or pull-

out failures by placing a rigid plastic spring at the expected shear failure location. This approach also 

accounts for the impact of anchorage or lap-splice pullout slip on total drift and incorporates a 

negative degradation slope effect. The slope of the degradation links the moment-rotation envelope 

point where shear failure occurs to the axial failure point, beyond which the column cannot sustain 

its gravity loads. The section of the member between the two rigid plastic springs remains perfectly 

elastic. Giberson [22,23] generalized the original one-component model. A significant benefit of this 

method is that inelastic deformation at the ends of the member is determined solely by the moment 

applied there, allowing for any moment-rotation hysteretic model to be assigned to the spring. While 

this straightforward model has received some reasonable criticism, it is anticipated to perform 

effectively for relatively low-rise frame structures, particularly where the inflection point of a 

reinforced concrete column is situated near mid-height.  

The main objective of Performance-Based Earthquake Engineering is to determine an 

"acceptable" probability of collapse. Collapse should be assessed as accurately as possible using 

nonlinear dynamic analysis. A thorough set of guidelines will provide a framework for tackling the 

complexities associated with nonlinear softening responses during significant displacements and 

deformations, thereby facilitating the acceptance of nonlinear response analyses in professional 

practice [24–31]. The introduction of straightforward yet effective column models, such as those 

presented in this study, which incorporate localized effects like shear and anchorage or lap splice slip 

within a coherent element formulation, will help mitigate issues of non-convergence and reduce 

computational time.  

This paper contributes to the field of seismic assessment of older RC frames through nonlinear 

dynamic analyses in the following ways as also Figure 1 depicts: 
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Figure 1. Graphical research framework of this study (Δshear cantilever lateral displacement due to 

shear mechanism, Δslip cantilever lateral displacement due to pull-out slip of anchorage or lap-splice, 

Δflex cantilever lateral displacement due to flexure, Δtot total lateral displacement, lr yield penetration 

length in the anchorage, fby local bond strength of the anchorage, lp plastic hinge length, γe elastic shear 

strain, γp plastic shear strain. θ cantilever lateral rotation, θslip cantilever lateral rotation due to pull-

out slip, VR shear strength, Ls shear span, d column section effective depth, V seismic shear force, Δ 

lateral displacement, Δs lateral displacement at shear failure, Δa lateral displacement at axial failure) . 

• The formulation of path-dependent one-component element response with strength 

degradation due to shear and axial failures is described in detail. 

• A self-developed MATLAB [32] code is created in order to run a nonlinear dynamic analysis on 

one-story, two-bay reinforced concrete frame experiencing both shear and axial failures and was 

simulated with the above formulated beam element. 

• The proposed analytical model can also address the stress state of a column under full cyclic 

load reversals, accounting for both flexure- and shear-dominated response conditions in RC 

columns, while also considering the contribution of anchorage or lap-splice pullout slip to the 

total drift. 

• A reduced computational model for prediction of dynamic response of old reinforced concrete 

structures under seismic loads is developed based on the moment-rotation envelope results from 

cantilever shear-critical columns analyzed by Phaethon Windows software.  

• Inelastic frame structure experiencing shear, axial or pull-out failures are modeled in this study 

by placing a rigid plastic spring at the location where shear failure is predicted considering the 

contribution of anchorage and pullout slip in the total drift and applying a degradation slope. 

The negative slope connects the point on the moment-rotation envelope where shear failure 

occurs to the point of axial failure.  
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• The proposed approach advantage is the inelastic deformation at the member ends depends 

solely on the moment applied at the end, allowing any moment-rotation hysteretic model to be 

assigned to the spring hence simplifying the analytical and numerical modeling. 

This study is organized as follows: Following the introduction, which outlines the objectives of 

this research paper, Section 2 details the formulation of a path-dependent, one-component element 

response with strength degradation. Section 3 provides a comprehensive comparison of the proposed 

analytical model with experimental results found in the literature. Lastly, Section 4 discusses the 

output results, while Section 5 presents the conclusions and suggestions for future work. 

2. Materials and Methods 

It is valuable to examine one-component beam model formulation in greater detail, as it 

exemplifies a category of elements that rely on assumptions about internal force distribution. These 

elements are crucial in contemporary earthquake engineering analysis, as they accurately represent 

the force distribution within a member and lead to a reliable numerical implementation. 

2.1. Path-Dependent Element Response with Strength Degradation 

For a linear elastic, perfectly plastic beam with non-smooth multi-surface plasticity, the 

equilibrium, compatibility, and constitutive relations of the elastic component, along with the yield 

function, are provided in the following equations as illustrated in Figure 2 (p denotes plastic and e 

denotes elastic, Mp is the plastic moment and k is the stiffness) [15,33–35]: 

 

Figure 2. Beam (a) displacements and (b) forces in global, local and basic reference systems and c) 

one-component beam model. 

Equilibrium: q = 𝑞𝑒 =𝑞𝑝 (1) 

Compatibility: v = 𝑣𝑒 + 𝑣𝑝 with    𝑣𝑝 = (

0
𝑣𝑝2

𝑣𝑝3

) (2) 

Constitutive relation of elastic component: 

q = 𝑘𝑒 ∙ 𝑣𝑒 = 𝑘𝑒 ∙ (𝑣 − 𝑣𝑝) 
(3) 

Yield function: 𝑓1(𝑞2, 𝑞3) = |𝑞2| − 𝑀𝑝𝑖 ≤ 0 for node i (4) 

Yield function: 𝑓2(𝑞2, 𝑞3) = |𝑞3| − 𝑀𝑝𝑗 ≤ 0 for node j (5) 
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There are now two independent yield surfaces, one for node i and one for node j. These can be 

expressed more concisely by using the relationship |x| = sign(x)x: 

𝑓1(𝑞2, 𝑞3) = 𝑠𝑖𝑔𝑛(𝑞2)(𝑞2) − 𝑀𝑝𝑖 ≤ 0 (6) 

𝑓2(𝑞2, 𝑞3) = 𝑠𝑖𝑔𝑛(𝑞3)(𝑞3) − 𝑀𝑝𝑗 ≤ 0 (7) 

Introducing the derivative: 

𝜕𝑓1

𝜕𝒒
= (

0
𝑠𝑖𝑔𝑛(𝑞2)

0
) = 𝑛2 (8) 

𝜕𝑓2

𝜕𝒒
= (

0
0

𝑠𝑖𝑔𝑛(𝑞3)
) = 𝑛3  (9) 

Using the definition 𝑛 = [𝑛2 𝑛3] and 
𝜕𝑓

𝜕𝒒
= 𝑛𝑇 the yield conditions can be reformulated: 

𝑓(𝑞2, 𝑞3) = 𝑛𝑇𝑞 − 𝑞𝑝𝑙 ≤ 0  with 𝑞𝑝𝑙 = (

0
𝑀𝑝𝑖

𝑀𝑝𝑗

) (10) 

The flow rule for non-smooth plasticity is provided below: 

Flow rule: 𝑣̇𝑝 = 𝑛2𝛽2 + 𝑛3𝛽3 = 𝑛𝛽  iff  𝑓(𝑞2, 𝑞3) = 𝑛𝑇𝑞 − 𝑞𝑝𝑙 = 0 (11) 

Kuhn-Tucker conditions:  𝛽𝑘 ≥ 0 and 𝑓𝑘 ≤ 0  and  𝛽𝑘𝑓𝑘 = 0 for k=2,3 (12) 

Consistency condition:      𝛽𝑘𝑓𝑘̇ = 0 for k=2,3 (13) 

The plastic flow 𝛽𝑘 can be defined from the consistency condition 𝛽𝑘𝑓𝑘̇ = 0 for k=2,3 

𝑓̇ = 𝑛 ∙ 𝑞 = 𝑛 ∙ 𝑘𝑒(𝑣̇ − 𝑣𝑝̇)̇  (14) 

Substituting the flow rule with 𝑣𝑝̇ = 𝑛𝛽: 

𝑓̇ = 𝑛 ∙ 𝑘𝑒(𝑣̇ − 𝑛𝛽)̇  (15) 

According to the consistency condition 𝛽𝑘 > 0 only if 𝑓𝑘̇ = 0 for k=2,3 (α stands for active node, 

i.e., for a node with 𝑓𝑎̇ = 0: 

𝛽𝑎 =
(𝑛𝑎

𝑇𝑘𝑒𝑣̇)

(𝑛𝑎
𝑇𝑘𝑒𝑛𝑎)

 (16) 

The tangent modulus during plastic flow is expressed as: 

𝑘 = 𝑘𝑒 −
𝑘𝑒𝑛𝑎𝑛𝑎

𝑇𝑘𝑒

(𝑛𝑎
𝑇𝑘𝑒𝑛𝑎)

 (17) 

The summary of multi-surface plasticity for a linear elastic, perfectly plastic beam is presented 

below (cyclic rules similar to bilinear model): 

1. Additive deformation decomposition v = 𝑣𝑒 + 𝑣𝑝 

2. Force-deformation relation q = 𝑘𝑒 ∙ 𝑣𝑒 = 𝑘𝑒 ∙ (𝑣 − 𝑣𝑝) 

3. Yield condition 𝑓(𝑞2, 𝑞3) = 𝑛𝑇𝑞 − 𝑞𝑝𝑙 ≤ 0  with 𝑛 = [𝑛2 𝑛3] 

4. Flow rule 𝑣̇𝑝 = 𝑛2𝛽2 + 𝑛3𝛽3 = 𝑛𝛽  iff    𝑓(𝑞2, 𝑞3) = 𝑛𝑇𝑞 − 𝑞𝑝𝑙 = 0 

5. Kuhn – Tucker conditions 𝛽𝑘 ≥ 0 and 𝑓𝑘 ≤ 0  and  𝛽𝑘𝑓𝑘 = 0 for k=2,3 

6. Consistency condition 𝛽𝑘𝑓𝑘̇ = 0 for k=2,3 

In order for the kinematic hardening Hk to be included, the Equations 16 and 17 are rewritten as 

follows: 

𝛽𝑎 =
(𝑛𝑎

𝑇𝑘𝑒𝑣̇)

(𝑛𝑎
𝑇(𝑘𝑒 + 𝐻𝑘) 𝑛𝑎)

  (18) 
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𝑘 = 𝑘𝑒 −
𝑘𝑒𝑛𝑎𝑛𝑎

𝑇𝑘𝑒

𝑛𝑎
𝑇(𝑘𝑒 + 𝐻𝑘) 𝑛𝑎

 (19) 

The degradation slope Hk equals to the negative slope connecting the point of the response at 

shear failure to the point at axial failure of a shear-critical RC column. For flexure-dominant elements 

the kinematic hardening can have a positive value or could be omitted. 

To identify the shear failure point of a shear-critical column, a pushover analysis of a single 

cantilever column is conducted using Phaethon software. For this analysis, the sectional model in 

Phaethon, which can be either rectangular or circular based on the MCFT, is employed alongside the 

footing anchorage model developed by Tastani and Pantazopoulou (2013) [36] or the lap-splice model 

proposed by Megalooikonomou (2024) [21], all integrated within Phaethon Windows software. A 

lateral point load that increases progressively is applied at the tip of the cantilever. The entire height 

of the cantilever column is represented by a single exact Timoshenko force-based fiber element, which 

accounts for shear effects in adjusting the principal directions throughout the fiber section depth, 

with the number of Gauss-Lobatto integration points determined by the user. Additionally, the user 

specifies the analysis step size for the lateral load and the total number of steps leading up to the 

maximum load, which indicates shear failure. Since the fiber approach utilizing MCFT [20] does not 

accurately depict the descending behavior of shear-critical columns, Phaethon implements a load-

controlled procedure that maintains a constant load-step size while updating only the stiffness. The 

shear failure point is indicated by the last converged step of the incremental algorithm. It is important 

to recognize that, in practice, the response of a shear-critical column exhibits a descending branch 

after reaching peak strength, indicating brittle behavior. However, the embedded algorithm 

simulates only up to the strength attainment and shear failure point. Beyond the maximum load, the 

descending part of the capacity curve is illustrated by a line connecting the peak load point (shear 

failure) to the point of axial failure, which is defined in terms of drift according to Elwood and Moehle 

(2005) [4], with 20% of the peak load regarded as the residual load at axial failure. This also establishes 

the negative degradation slope, Hk, of the moment-rotation envelope for the shear-critical column, 

which will be utilized in the subsequent section of the nonlinear time-history analysis. 

The following section of the results of this study will present a comparison between the results 

of shaking table tests conducted on a one-story reinforced concrete frame (height: 1628 mm) with two 

bays (each bay measuring 1830 mm), which experienced both shear and axial failures [37,38], and 

nonlinear dynamic analyses performed with simplified models aimed at evaluating the collapse of 

older reinforced concrete structures. To replicate the nonlinear behavior of the columns—both those 

susceptible to shear failure and those more prone to flexural failure—the one-component beam model 

discussed in this section will be employed. Before however present the correlation with the 

experimental results a short description of the experimental setup from the literature is necessary. 

2.2. Experimental Test Setup 

Shake table tests were conducted [37,38] to examine the dynamics of shear and axial load failures 

in reinforced concrete columns when an alternative load path is available for redistributing loads. 

The test setup included three columns fixed at their bases and connected by a beam at the top. The 

central column, which had a square cross-section and widely spaced transverse reinforcement, was 

prone to shear failure, leading to subsequent axial load failure during the tests. As the central column 

failed, shear and axial loads were redistributed to the adjacent ductile circular columns. Two test 

specimens were built and assessed. The first specimen supported a mass that induced axial load 

stresses in the column comparable to those expected in a seven-story building. In the second 

specimen, hydraulic jacks were used to increase the axial load on the central column, thereby 

increasing the demand for axial load redistribution as the column began to fail. Both specimens were 

subjected to one horizontal component of a scaled ground motion recorded during the 1985 

earthquake in Chile. A comparison of the results from both specimens indicated that the behavior of 

the frame was influenced by the initial axial stress of the center column. The specimen with the lower 

axial load experienced shear failure while retaining most of its initial axial load. Conversely, the 

specimen with the higher axial load showed shear failure of the central column at lower drift levels 
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and earlier in the ground motion record, resulting in axial failure of the central column. Displacement 

data recorded just after the onset of axial failure indicate two mechanisms contributing to the 

shortening of the center column during axial failure: first, large pulses that cause a sudden increase 

in vertical displacement after reaching a critical drift, and second, smaller oscillations that appear to 

"grind down" the shear failure plane. Additionally, dynamic amplification of axial loads transferred 

from the center column to the outer columns was observed during the axial failure of the central 

column.  

A total mass of 31.000 kg at each planar-frame specimen was supported at the top by a beam that 

was 1.5 meters wide. The columns were based on footings connected to multi-axis load cells (Figure 

3 (a)). The center column was constructed with minimal transverse reinforcement (Ash/bs = 0.18%, 

where Ash is the area of transverse reinforcement parallel to the applied shear, b is the width of the 

column—230 mm by 230 mm—with 4 #4 corner bars and 4 #5 center bars with a yield strength of 

479.18 MPa, and s is the spacing of the transverse reinforcement, which consisted of W2.9 wire spaced 

at 152 mm with a tensile strength of 717 MPa, featuring 90° hooks). The outer columns had a circular 

cross-section with a diameter of 255 mm and were reinforced with closely spaced spirals (#3 spirals 

at 50 mm). The acceleration values recorded on the shake table during testing will be utilized in the 

numerical simulation in the following section. The only distinction between the two specimens was 

the initial axial load applied to the center column. For Specimen 1, the axial load on the center column 

was 0.10Agfc, whereas for Specimen 2, it was 0.24Agfc (where Ag represents the gross cross-sectional 

area and fc is the measured concrete strength, which was 24.27 MPa). The axial load in Specimen 2 

was increased to investigate the effect of axial load on shear and axial failures. This higher load was 

achieved by post-tensioning the specimen to the shaking table with pneumatic jacks, which helped 

prevent undesired changes in the vibration period due to the added reactive mass. 

During testing, the center column of Specimen 1 exhibited a decrease in lateral-load capacity, 

likely due to shear failure, but did not experience axial failure. In contrast, Specimen 2's center column 

underwent both shear and axial-load failures. Consequently, Specimen 2 will be used in the 

numerical simulation to correlate with the experimental results. For more information about the 

specimens, test setup, and experimental outcomes, please refer to [37,38]. 

 

Figure 3. (a) Specimen 2 of shake table test [37,38] (b) Simplified numerical model implemented in 

MATLAB 2024b. 

3. Results 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 November 2024 doi:10.20944/preprints202410.1069.v2

https://doi.org/10.20944/preprints202410.1069.v2


 9 

 

3.1. Pushover Analysis of Center Shear-Critical RC Cantilever Column. 

In this section, the center column of Specimen 2 from the previously described shake table test 

will be analyzed using pushover analysis with Phaethon software [21]. Table 1 provides detailed 

information about the properties of the column under investigation. 

For each point load applied at the tip of the cantilever, the corresponding shear force at specified 

sections of the column (integration points) aligns with the applied load, creating a constant shear 

force diagram. The flexural moment at the base of the column, along with the moment distribution, 

is derived from the lateral load, resulting in a steady shear force. The concentric axial load (whether 

tensile or compressive) applied at the tip of the cantilever remains constant throughout the pushover 

analysis and along the length of the cantilever, ensuring that every section of the column experiences 

the same axial force as that at the tip. 

By employing this method, the resisting section forces should converge to the previously 

determined section forces based on the moment, shear, and axial load diagrams of the cantilever 

column under a constant axial load and progressively increasing lateral point loads at the tip. Once 

the section forces converge (using the Newton-Raphson iteration algorithm) along the cantilever 

column to match the correct values from the force diagrams resulting from the applied horizontal 

and axial loads at the tip, the axial deformation, curvature, and shear strain for each section can be 

calculated. 

By integrating the curvatures along the shear span of the cantilever column, the rotation due to 

flexure is determined, which can be easily converted into lateral displacement due to flexure by 

multiplying it by the shear span length. Similarly, integrating the shear strains across multiple 

sections (with positions determined using Gauss-Lobatto integration scheme) along the cantilever 

column’s length (integration points) provides the lateral displacement caused by the shear distortion 

mechanism of the column. Finally, the rotation and displacement resulting from the pull-out of the 

tensile reinforcement are determined using the theoretical framework outlined in [36]. These 

contributions from flexure, shear, and anchorage are then combined to determine the total lateral 

displacement, of the cantilever column at each lateral load increment. This process continues until 

reaching the maximum lateral load (point of shear failure), establishing the column's capacity curve. 

As already described, beyond the maximum load, the descending part of the capacity curve is 

depicted by a line connecting the peak load point (corresponding to shear failure) to the point of axial 

failure, as described by Elwood and Moehle (2005) [4]. At this point, 20% of the peak load is 

considered as the residual load during axial failure. This also defines the negative degradation slope 

behavior of the moment-rotation envelope for the shear-critical column, which will be used in the 

next section for nonlinear time-history analysis. Figures 4 and 5 present the results of the shear-critical 

center column of Figure 3 under study. According to Figure 4 the point of shear failure defined by 

Phaethon software for the cantilever center shear-critical column of Specimen 2 is Vsh = 80 kN and Δsh 

= 7.27 mm. The axial failure event is depicted also in the same Figure. Thus, the negative degradation 

slope in terms of moment-rotation can be defined. 

Table 1. Details of central shear-critical RC columns of Specimen 2 (units: mm, MPa, kN). 

Case  
Axial Load 

(kN)   

Width 

(mm) – 

Depth 

(mm)  

Shear Span 

(mm) – 

StraightAn

chorage 

Length 

(mm) 

Clear 

Cover 

(mm) 

Concrete 

Strength 

(MPa) 

Number - 

Diameter 

(mm) – 

Reinforcing 

ratio of 

Longitudinal 

Bars 

Yielding 

Strength of 

Long. Bars 

(MPa)  

Ultimate Strength 

(MPa) – Spacing 

(mm) – Diameter 

(mm) –Ratio of 

Transv.  Reinf. 

Elwood and 

Moehle 

[37,38] – 

(Spec. 2 – 

308.132 
230 

230 

814 

298 
25.4 24.27 

4 and 4 

12.7 and 

15.875 

0.0245 

479.18  

717 

152 

4.9 

0.00236 
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Center 

Column)   

 

Figure 4. Capacity curve of center shear-critical column of Specimen 2 and lateral displacement 

contributions for each step of the pushover analysis (16 total pushover steps of 5 kN)[This is a 

screenshot from Phaethon Windows software user’s interface]. 

 

Figure 5. Strain, Slip and Bond distributions along the straight anchorage length of center shear-

critical column of Specimen 2 for pushover step 15 of Phaethon Windows software. See also Figure 1 

and 4. . 

3.2. Nonlinear Time-History Analysis of Specimen 2 

A MATLAB code [32] was developed for the nonlinear time-history analysis of the already 

introduced Specimen 2 by Elwood and Moehle [37, 38]. The model of the 2D shear-critical RC frame 
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fixed at the base can be seen in Figure 3b. All columns were modeled by employing the one-

component beam model of Section 2. To the center column was applied, as already described, the 

negative degradation slope defined in the previous Section along with its secant stiffness’ elastic 

properties until the point of shear failure. To the side columns the experimental reported yielding 

moment was employed along with its elastic stiffness. Since the side columns sustain fluctuating axial 

load during testing a mean yielding moment value was introduced. The horizontal beams (Figure 3b) 

were modeled as 2D linear elastic beam elements with elastic properties. 

In the case of earthquake excitation, the support degrees of freedom (DOFs) are assumed to 

move together following a specified ground acceleration history in the global coordinate system. The 

key step is to express the total acceleration relative to a fixed reference frame as the sum of the 

acceleration of the support DOFs and the additional acceleration of the free DOFs relative to the 

supports [39]. 

Central difference time integration method algorithm is used to solve the equations of motion. 

The advantage of the central difference method is that the stiffness matrix does not rely on the static 

stiffness matrix, which may change at each time step under nonlinear material behavior, requiring 

re-assembly and re-triangularization. In contrast, with the central difference method, the effective 

stiffness remains constant, provided the damping stiffness matrix is constant, as is commonly 

assumed with Rayleigh damping adopted also in this study (mass and stiffness proportional 

damping) [39]. Additionally, this method does not require iterations within each time step, unlike the 

implicit time integration method. However, the central difference method is only conditionally stable, 

meaning it requires a small-time step for accurate integration. The introduced ground motion is the 

recorded acceleration values on the shake table during testing of Specimen 2. The equivalent viscous 

damping was set at 2% of critical damping for the fundamental mode of the shear-critical RC frame. 

The masses were lumped equally at the horizontal beams’ nodes and an additional vertical load was 

applied at the top node of the center column [0.24Agfc (where Ag (230x230 mm2) is the gross cross-

sectional area and fc is the measured concrete strength (24.27 MPa)]. 

Figure 6 depicts the numerical and experimental nonlinear time-history response. It can be seen 

that there are similar value-ranges in the response however the reduced computational cost of the 

modeling approach led to some deviations between the calculated and measured shear forces and 

drifts during portions of the time-history response. Regarding drift, the permanent damage drift at 

35s-time history has almost the same value. Base shear and center column shear forces are comparable 

but once the rigid plastic hardening springs of one-component model are triggered then there is no 

fluctuation in the sustained envelope shear forces apart from the negative degradation slope response 

as it would happen by employing distributed inelasticity beam elements. 

In order to clarify the level of accuracy of this simplified approach, the absolute error of the 

model’s response compared to the experimental for Specimen 2 was defined in Figure 7 and also the 

same error definition was included for the detailed and more advanced numerical modeling with 

limit state models combined with distributed inelasticity beam models by Elwood and Moehle [38]. 

The absolute error is defined as the subtraction from the absolute value of the numerical response, of 

the absolute value of the experimental response, since for the overall practical seismic assessment 

purposes monotonic conditions’ rules are usually applied. It can be seen that albeit the reduced 

computational effort the simplified approach in terms of drifts is comparable and especially for the 

permanent drift damage (which is of special interest) better than the detailed approach. In terms of 

shear forces the detailed approach is better since as it is already mentioned once the rigid plastic 

hardening springs of one-component model are triggered then there is no fluctuation in the sustained 

envelope shear forces apart from the degradation slope response as it would happen by employing 

distributed inelasticity beam elements. Moreover, the fluctuation of the axial load and its interaction 

with moment at the side circular columns is not taken into account as it happens with the detailed 

approach.  
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Figure 6. Time-history responses in terms of drift, base shear, and center column shear of Specimen 

2. 

 

Figure 7. Absolute Error Time-history responses in terms of drift, base shear, and center column shear 

of Specimen 2. 

The above remarks are confirmed also by Figure 8. The corresponding time responses between 

numerical model and experimental test do not coincide at every time step. The effective stiffness and 

strength degradation in the central shear-critical column is well captured. Moreover, it can be seen 

that this simplified numerical model cannot represent the degradation of loading and unloading 

stiffnesses with increasing displacement amplitude reversals. The employed moment-rotation 

envelopes below horizontal beams of the columns of Specimen 2 both shear-critical but also flexure-

dominant can be seen in Figures 9 and 10. Considering the brittle specimen response and the low 
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computational cost for this simplified model approach for collapse modeling, the results are 

acceptable. 

 

Figure 8. Shear hysteretic response of Specimen 2. 

 

Figure 9. Below beam moment-rotation hysteretic response of center column of Specimen 2. 
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Figure 10. Below beam moment-rotation hysteretic response of outside column of Specimen 2. 

4. Discussion 

During an earthquake, columns can experience a wide range of loading histories, which may 

include a single large pulse or several smaller-amplitude cycles. These cycles can sometimes result in 

shear failure or even collapse, where the column loses its ability to support gravity loads. Previous 

research [1,2] has shown that such collapse cannot be explained by a simple combination of shear 

force and axial load. Instead, it is governed by an interaction envelope that depends on both the 

loading history and the peak deformation exerted on the column (maximum drift demand). 

To understand how the loading history affects a column's response, it is important to note that 

structural members undergoing lateral displacement reversals tend to lengthen due to the 

accumulation of permanent tensile strains in the longitudinal reinforcement crossing diagonal shear 

cracks. As displacement cycles increase in amplitude, the cracks widen. This is depicted in the axial 

stress-strain diagram of the reinforcement after yielding, where permanent strains are biased in 

tension due to the neutral axis shifting towards the compression side of the member's cross-section 

after cracking. Axial load plays a key role in this process, as it helps keep the cracks partially closed, 

thereby delaying the elongation and ratcheting of the column. 

Additionally, research [1,2] shows that increasing the number of cycles beyond the yield 

displacement can reduce a column’s drift capacity at shear failure. One of the goals of this research 

is to better understand these effects and develop simplified tools to identify the failure characteristics 

at the loss of axial load-bearing capacity, as well as the impact of drift demand on the column’s 

deformation capacity. 

As already mentioned, collapse should be quantified as accurately as possible through nonlinear 

dynamic analysis. A comprehensive set of guidelines will serve as a foundation for addressing the 

complexities of nonlinear softening responses under large displacements and deformations, helping 

to promote the acceptance of nonlinear response analyses in professional practice. The introduction 

of simple but effective column models, like those presented in this study, which account for localized 

effects such as shear and anchorage or lap splice slip within a consistent element formulation, will 

reduce non-convergence issues and computational time. The correlation of the proposed model with 

the experimental results produces acceptable results especially in terms of drifts and permanent 

damage and the model succeeds in reducing the computational effort.  
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Finally, it should be noted that the goal of this study is to simplify the assessment of collapse of 

RC frame structures so the presented methodology could be used in large-area-scale seismic 

assessment. It is not intended to substitute the introduced in the literature review advanced methods 

and, in a way, as for example with MCFT it is based also on its estimates through Phaethon Windows 

software. The intended improvement lies upon its simplifications without losing reasonability in its 

results. 

5. Conclusions 

One-component beam model formulation exemplifies a category of elements that rely on 

assumptions about internal force distribution. These elements are crucial in contemporary 

earthquake engineering analysis, as they accurately represent the force distribution within a member 

and lead to a reliable numerical implementation. Using the moment-rotation envelope results from 

cantilever shear-critical columns analyzed by Phaethon software, an inelastic frame structure 

experiencing shear, axial or pull-out failures can be modeled by placing a rigid plastic spring at the 

location where shear failure is anticipated considering also the contribution of anchorage or lap-splice 

pullout slip in the total drift and applying a negative degradation slope. The slope of the degradation 

connects the point on the moment-rotation envelope where shear failure occurs to the point of axial 

failure, beyond which the column can no longer support its gravity loads. The part of the member 

between the two rigid plastic springs remains perfectly elastic. A key advantage of this approach is 

that inelastic deformation at the member ends depends solely on the moment applied at the end, 

allowing any moment-rotation hysteretic model to be assigned to the spring. The results of shaking 

table tests on a one-story, two-bay reinforced concrete frame experiencing both shear and axial 

failures were compared after creating a self-developed MATLAB code [32] running nonlinear 

dynamic analyses and implementing this one-component beam model for columns prone to shear 

failure but also including those with more flexure-dominant behavior under cyclic reversals. While 

the simplified model yielded reasonable predictions of the overall frame response and lateral strength 

degradation, the reduced computational cost of the modeling approach led to some deviations 

between the calculated and measured shear forces and drifts during portions of the time-history 

response. It can be seen that albeit the reduced computational effort the simplified approach in terms 

of drifts is comparable to a more detailed approach from the literature and especially for the 

permanent drift damage (which is of special interest) better than the detailed approach. In terms of 

shear forces the detailed approach is better since once the rigid plastic hardening springs of one-

component model are triggered then there is no fluctuation in the sustained envelope shear forces 

apart from the degradation slope response as it would happen by employing distributed inelasticity 

beam elements. Moreover, the fluctuation of the axial load and its interaction with moment at the 

side circular columns is not taken into account as it happens with this detailed approach. Based on 

the research included in this paper, a future goal is to implement the proposed element into a 

commercial software for larger scale nonlinear dynamic analyses of real RC structures. To this 

direction possible improvements are inclusion of the aspects of smooth and/or corroded steel bars for 

seismic assessment of old-type RC frames. Finally, a further validation of the proposed model with 

larger shake table experiments would confirm its acceptance and robustness.  

Data Availability Statement: All included data in this study is available upon request from the corresponding 

author. 
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