Altmetrics
Downloads
71
Views
34
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
14 October 2024
Posted:
15 October 2024
You are already at the latest version
Algorithm 1: Weighted ensemble |
Input: Test_set T, Models and Weight_set where k is the number of models |
Output: |
Ensemble_model |
For do |
Predict, |
Confusion_matrix () |
Classification_matrices () |
End |
References | Model Used | Dataset | Number of Images | Number of Classes | Transfer learning | Ensemble Learning | Data augmentation | Accuracy |
---|---|---|---|---|---|---|---|---|
[12] | SVM | Multi-plant (Folio) | 637 | 32 | No | No | No | 92.91% |
[16] | CNN(FGIA) | Peach,Tomato (PlantVillage) | 2657,18162 | 2,10 | No | No | No | 95.48% |
[17] | CNN, MLP | Rice(own) | 3200 | 4 | No | Yes | No | 95.31% |
[18] | MobileNetV2 | Bean(ibean) | 1296 | 3 | Yes | No | No | 92.97% |
[19] | ResNet50, VGG16,VGG19 DenseNet201, InceptionV3 | Sugarcane (Mendeley) | 2511 | 5 | Yes | No | No | 95.69% |
[20] | EfficientNetB0, CSPDarknet53 | Sugarcane (Mendeley) | 2522 | 5 | Yes | Yes | Yes | 96.80% |
[21] | ANN | Mango(own) | 450 | 4 | No | No | No | 89.41% |
[22] | SE-VIT | Multi-plant (PlantVillage), Sugarcane(own) | 60343,1877 | 38,5 | Yes | No | Yes | 89.57% |
[23] | CNN,VGG19, ResNet50, Xception, MobileNetV2, EfficientNetB7 | Sugarcane(own) | 2569 | 5 | Yes | Yes | No | 86.53% |
Serial No. | Augmentation Technique | Parameter with Value |
---|---|---|
1 | Rotation | rotation_range=20 |
2 | Width shift | width_shift_range=0.2 |
3 | Height shift | height_shift_range=0.2 |
4 | Shear | shear_range=0.2 |
5 | Zoom | zoom_range=0.2 |
6 | Horizontal flip | horizontal_flip=True |
7 | Brightness | brightness_range=[0.5, 1.5] |
Classes | Original dataset | Data augmentation | ||||||
---|---|---|---|---|---|---|---|---|
Total | Training | Validation | Testing | Total | Training | Validation | Testing | |
Healthy | 522 | 420 | 54 | 48 | 800 | 631 | 75 | 94 |
Mosaic | 462 | 366 | 49 | 47 | 800 | 658 | 68 | 74 |
RedRot | 518 | 413 | 49 | 56 | 800 | 653 | 77 | 70 |
Rust | 514 | 416 | 45 | 53 | 800 | 644 | 83 | 73 |
Yellow | 505 | 400 | 56 | 49 | 800 | 618 | 96 | 86 |
BacterialBlight | 125 | 101 | 12 | 12 | 800 | 636 | 81 | 83 |
Total | 2646 | 2116 | 265 | 265 | 4800 | 3840 | 480 | 480 |
Method | Test Classification Accuracy |
---|---|
NULL | 96.39 |
L1 | 97.92 |
L1+Dropout | 98.12 |
L2 | 97.50 |
L2+Dropout | 98.12 |
ELN-Reg | 98.12 |
ELN-Reg+Dropout | 98.54 |
Model | Total Parameter | Trainable Parameters | Non-Trainable Parameters |
---|---|---|---|
EfficientNetB0 | 5,330,571 | 5,288,548 | 42,023 |
MobileNetV2 | 3,538,984 | 3,504,872 | 34,112 |
DenseNet121 | 8,062,504 | 7,978,856 | 83,648 |
NASNetMobile | 5,326,716 | 5,289,978 | 36,738 |
EfficientNetV2B0 | 7,200,312 | 7,139,704 | 60,608 |
Layer (Type) | Output Shape | Parameters |
---|---|---|
Input Layer | [(None,224,224,3)] | 0 |
efficientnet-b0 | (None, 1280) | 4049564 |
Dense | (None, 128) | 163968 |
BatchNormalization | (None, 128) | 896 |
Dropout | (None, 128) | 0 |
Dense | (None, 64) | 8256 |
BatchNormalization | (None, 64) | 448 |
Dropout | (None, 64) | 0 |
Dense | (None, 32) | 2080 |
BatchNormalization | (None, 32) | 224 |
Dropout | (None, 32) | 0 |
Dense | (None, 6) | 198 |
Model | Original | Modified | Improvement |
---|---|---|---|
NASNetMobile | 85.00 | 92.71 | +%7.71 |
EfficientNetV2B0 | 90.21 | 94.17 | +%3.96 |
MobileNetV2 | 92.50 | 96.67 | +%4.17 |
DenseNet121 | 95.83 | 98.12 | +%2.29 |
EfficientNetB0 | 97.08 | 98.54 | +%1.46 |
Model (Modified) | Macro Average | Weighted Average | Accuracy | ||||
---|---|---|---|---|---|---|---|
Precision | Recall | F1 score | Precision | Recall | F1 score | ||
NASNetMobile | 93.24 | 92.78 | 92.80 | 93.31 | 92.71 | 92.78 | 92.71 |
EfficientNetV2B0 | 94.47 | 94.40 | 94.27 | 94.57 | 94.17 | 94.20 | 94.17 |
MobileNetV2 | 96.60 | 96.76 | 96.64 | 96.75 | 96.67 | 96.67 | 96.67 |
DenseNet121 | 98.22 | 98.11 | 98.16 | 98.14 | 98.12 | 98.12 | 98.12 |
EfficientNetB0 | 98.59 | 98.50 | 98.53 | 98.58 | 98.54 | 98.54 | 98.54 |
Proposed DECNN | 99.23 | 99.13 | 99.18 | 99.17 | 99.17 | 99.17 | 99.17 |
Model (Modified) | Weight Values |
---|---|
EfficientNetB0 | 0.58 |
MobileNetV2 | 0.17 |
DenseNet121 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated