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Abstract: A possible solution to address the enormous increase in traffic demands faced by network 

operators is to rely on multi-fiber optical backbone networks. These networks use multiple optical 

fibers between adjacent nodes, and, when properly designed, they are capable of handling petabits 

of data per second (Pbit/s). In this paper, an artificial neural network (ANN) model is investigated 

to estimate both the capacity and cost of a multi-fiber optical network. Furthermore, a fiber 

assignment algorithm is also proposed to complement the network design, enabling the generation 

of datasets for training and testing the developed ANN model. The model consists of three layers, 

including one hidden layer with 50 hidden units. The results show that for a large network, such as 

one with 100 nodes, the model can estimate performance metrics with an average relative error of 

less than 0.4% for capacity and 4% for cost, while achieving a computation time nearly 800 times 

faster than the heuristic approach used in network simulation. Additionally, the network capacity 

is around 5 Pbit/s. 

Keywords: multi-fiber optical networks; artificial neural networks; machine learning; network 

capacity and cost; fiber assignment 

 

1. Introduction 

In recent years, data traffic has increased significantly, a trend expected to continue due to the 

growth of applications and services that require high bandwidth and generate large amounts of data. 

Examples include video streaming services, cloud computing, machine-to-machine applications, on-

line gaming and the adoption of emerging technologies like 5G and beyond and advanced artificial 

intelligence applications [1]. This evolving scenario places special requirements on the backbones of 

network operators, which could experience traffic flows between their nodes reaching tens of Tb/s in 

the medium term, and even up to hundreds of Tb/s in the long term [1]. This situation presents a 

significant challenge for the design of future optical networks, particularly their backbone segments. 

Optical networks are communication infrastructures, owned by telecommunication operators 

(telcos) or internet companies (e.g., Google, Microsoft, Meta), that utilize light for transmission, 

processing, and routing information and rely on optical fibers as their transmission medium. A 

fundamental technology in the field of optical networking is Wavelength Division Multiplexing 

(WDM). WDM allows the simultaneous transmission of multiple optical signals (also designated as 

optical channels) on the same optical fiber, with each channel using a different wavelength. The 

number of optical channels that can be transmit over an optical fiber is limited to about 100 when 

using the traditional C-band, restricting the maximum WDM transmission capacity to well below 100 

Tb/s for significant distances [2]. To greatly increase the number of optical channels to cope with the 
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enormous growth in bandwidth demand, one can rely on space division multiplexing (SDM) 

techniques. This approach can be implemented using a multi-fiber (MF) solution, i.e., multiple 

standard single-mode fiber pairs per link instead of just one, as it is typical or, alternatively, advanced 

fibers such as multicore fibers or few mode fibers, with both solutions still operating in the C-band 

[2]. By relying on these solutions, it is feasible to design petabit-class optical networks, which are 

networks capable of handling data at speeds reaching or exceeding one petabit per second (Pb/s) [3]. 

For designing MF networks, it is crucial to define, in addition to the traditional routing and 

wavelength assignment solutions, a strategy for allocating fibers to the network, specifically a fiber 

assignment strategy. In [4], two approaches were proposed to optimize the networks capacity by 

adding extra fibers. In the first approach, fibers were added to links supporting the maximum 

number of traffic demands, while in the second, fibers were added to links exhibiting the highest 

number of adjacent demands. Furthermore, in [5], the idea is to add extra fibers to links that are 

responsible for blocking traffic demands due to spectrum exhaustion, with the goal of minimizing 

the number of fibers added.  

Network capacity is a key performance metric in optical networks. This capacity can be defined 

as the maximum amount of data that the entire network can handle per unit of time, and it is closely 

related to the concept of channel capacity introduced by Claude Shannon in 1948 [6].The estimation 

of network capacity is a challenging task because it depends not only on physical layer aspects related 

to optical fibers and other optical devices but also on networking aspects such as physical and logical 

topology, routing, as well as wavelength and modulation assignment. Consequently, it suffers from 

the hurdle of long computation times, especially when dealing with large-scale networks. Although 

the problem of predicting optical network capacity has been the focus of many studies, (see [7–10]), 

to the best of the authors' knowledge, none of the published research has relied on machine learning 

(ML) techniques for this purpose, despite these techniques being widely used in the context of optical 

networks to address other problems [11–13]. The closest study is reported in [14], where a routing 

and wavelengths assignment (RWA) problem is treated using ML techniques by transforming it into 

a multi-classification problem, which is then solved using logistic regression and deep neural 

network techniques. However, the network capacity estimation problem although also involving 

RWA calculations, is more general than this. Furthermore, the complexity of the problem for MF-

networks is even higher due to the necessity of using fiber assignment techniques. 

In this paper, we investigate the utilization of a ML solution, specifically an artificial neural 

network (ANN) model [12], to estimate both the capacity and cost metrics of an MF-based optical 

network capable of handling Pb/s of data, with the cost being defined as the total length of optical 

fiber required in the network. The goal is to determine whether it is possible to significantly speed 

up the computations of these two metrics in comparison with heuristic methods, while still achieving 

accurate results. 

To generate the large sets of synthetic data needed to train and test the model, we used a tool 

previously developed by the authors [10].This tool not only generates random networks topologies 

that aim to mimic real optical backbone networks but also performs routing and fiber assignment 

operations on these networks using heuristics developed specifically for this purpose, including the 

fiber assignment algorithm that is described in this work, which is a crucial component of our 

methodology. 

The rest of the paper is organized as follows: Section 2 reviews important aspects of network 

modeling and random network generation and explains how both network capacity and cost can be 

computed. It describes also the fiber assignment algorithm proposed here for allocating fibers in MF-

networks. Section 3 details the ANN model introduce in this work. Section 4 presents some 

simulation results and, finally, Section 5 summarizes and concludes the paper. 

2. Network Aspects and Data Set Generation 

2.1. Network Modelling 

In an abstract way, an optical network can be described as an undirected weighted graph 

�(�, �), with � = {��, … , �� } denoting a set of nodes and � = {��, … , �� } denoting a set of links, 
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where � = |�| is the number of nodes and � = |�| is the number of links. In transparent optical 

networks, all node functionalities take place in the optical domain, and the nodes are built using 

reconfigurable optical add-drop multiplexers (ROADMs), which are responsible for switching optical 

channels between different fibers, among other functions. Meanwhile, an optical link represents a 

physical interconnection between two nodes, implemented using a pair of optical fibers, or in the 

case of MF networks multiple pairs of fibers. Furthermore, each optical fiber supports WDM signals, 

meaning it carries a specific number of optical channels. Each link ���, ��� ∈ � is characterized by 

three attributes: ��,�, the link length in kilometers between the nodes �� and ��; ���,�, the number of 

optical fiber pairs in the link; ��,� , the link capacity measured in terms of the number of optical 

channels denoted as ���. In this work, we assume that fiber transmission takes place in the extended 

C band, which has a bandwidth of 4800 GHz, enabling the support of ���,���=75 channels, with a 

channel spacing of 64 GHz corresponding to a baud rate of 64 Gbaud. 

Besides � and �, other important parameters of the graph � are the node degree �(�), the 

network diameter �(�) , and the algebraic connectivity �(�) . �(�)defines the number of links 

connected to a given node, �(�) is the length of the longest shortest path between any two nodes, 

while �(�) is the second smallest eigenvalue of the graph's Laplacian matrix [15]. 

In the context of ANNs, it is necessary to have very large datasets for training and testing 

purposes. To achieve this, it is useful to be able to generate numerous network topologies, which can 

be done through random graphs designed to adequately describe the characteristics of real-world 

optical networks. In [10], we described a tool that we developed to generate random networks 

appropriate for describing optical backbone networks. The tool is based on a modified Waxman 

model and can generate networks that are resilient to single-link failures. In a simplified way, this 

model works by dividing a two-dimensional (2D) square plane with area � = �� (L is the side length 

of the plane) into a set of regions. In these regions, N nodes are randomly placed, and then the nodes 

are interconnected with links according to the Waxman probability, which is characterized by the � 

and � parameters, both in the range [0,1]. 

2.2. Routing, Fibre Assignment, Capacity and Cost 

Network capacity refers to the maximum amount of data that the network can theoretically 

handle per unit of time, typically measured in bits per second (bit/s). This metric depends on many 

network parameters, including the physical topology defined by the graph �(�, �) and the logical 

topology, which describes the way how the information flows between all the networks nodes. The 

logical topology is defined by the traffic matrix � = [��,�], where each entry ��,� represents a traffic 

demand, or in other terms, the volume of traffic flowing from a source node � to a destination node 

�, with �, � ∈ �. For each traffic demand ��,� , it is necessary to find a path in the graph �(�, �), 

between node � and node �. This is the role of the routing process. The routing process can be 

implemented using rigorous mathematical techniques, such as integer linear programing (ILP), or 

heuristic, as an alternative [16]. As ILPs become computationally infeasible for large-scale networks, 

we have to rely on heuristics in this work, as the analysis of such networks is paramount. 

When the number of channels ��� per fiber is limited, as in this work, the routing process is 

known as constrained routing and can lead to traffic demand blocking whenever no channels 

(wavelengths) are available on one or more links of the path. To overcome such a limitation, one can 

add more pairs of optical fiber per link as needed, as it is the case of MF-networks. This leads to a 

new process referred to as unconstrained routing plus fiber assignment. This process can be 

implemented using the heuristics proposed in [10].  

To generate the datasets required to train and test the ANN we have applied the referred 

heuristics to the randomly generated networks using the modified Waxman model assuming a 

uniform traffic demand between all the network node pairs, which can be defined as 

��,� = �
1 � ≠ �
0 � = �

. (1)

Taking into account the traffic matrix � = [��,�] of size � × �, and assuming that ��,� = ∞, we 

can apply unconstrained routing to each network graph �(�, �) to compute the list of established 
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paths Ρ = [��,�], with the path ��,� having the length ����,�� = ∑ ��,��,� . Additionally, we compute 

the link wavelength matrix, � = ���,��,which is also a � × � matrix, where ��,� is the list of all the 

wavelengths ��  present in the link (�, �), �. �. , ��,� = [��]. As referred before, fiber assignment is 

central process in MF networks. To implement this process, we propose Algorithm 1, which allows 

us to obtain the fiber matrix �� = ����,��, representing the number of fibers per link, taking into 

account that the maximum number of wavelengths per link is ��,���=���,��� . 

Algorithm 1: Fiber Assignment 

 Input: graph �(�, �); wavelength matrix � = ���,��, number of wavelengths ��,���. 

 Output: fiber matrix �� = ����,��. 

1: Initialize ��,with ���,� = 0, ∀(�, �) ∈ �. 

2: for each pair of nodes (�, �) in � do 

3:  if G has an egde (�, �) then 

4:   if there are no wavelengths used in(�, �), i.e. ��,� = 0 then 

5:    ���,� ← 1                                        :At least one fiber is required 

6:   else 

7:    

normalized wavelengths ← ��,� mapped into the range 1 to ��,��� 

num_fibres ←maximum number of wavelengths repetitions in normalized wavelengths 

���,� ←  num_fibres 

8:   end if 

9:  else 

10:   ���,� ← 0                                                       ∶ Case there is no edge (i,j)  

11:  end if 

12: end for 

13: return �� 

Note that with the unconstrained routing, the number of wavelengths in each link is not limited, 

so the value assigned to a given �� can be any natural number, in contrast to constraint routing, 

where it is bounded by ��,��� . In the algorithm, to determine the number of fibers needed in each 

link, the maximum number of “repeated wavelengths” in that link must be determined. A 

wavelength is considered a “repeated wavelength” when its value modulo ��,��� (where the modulo 

operation returns the remainder after division) is equal to that of another wavelength also present in 

that link. For instance, if  ��,���is 75, then wavelengths 1 and 76 are “repeated” because 76 modulo 

75 equals 1. This implies that both wavelengths would occupy the same channel in a link, hence they 

are “repeated”. This concept is crucial in determining the number of fibers needed for a link, ensuring 

that each “repeated” wavelength has its own fiber. Finding the maximum count of “repeated 

wavelengths” will ensure that there are enough fibers to accommodate all the wavelengths, thus 

assuring that there are no channels with the same wavelength on the same fiber. 

By knowing the length of the path ��,�, �(��,�), it is possible to compute its maximum capacity 

value, ����,��, also denoted as Shannon capacity, measured in bits per second. This calculation uses 

the optical reach values of the path (see Table 2 of [10]), where optical reach is defined as the 

maximum length of the path for which a certain value of the capacity can be achieved assuming a 

baud rate of 64 Gbaud. Furthermore, after obtaining the capacity of all the established paths one 

arrives at the network capacity, which is given by 

���� = � �(

�,�

��,�). (2)

Another important metric is the network's cost. For simplification purposes, we assume that the 

transponder cost can be neglected in comparison with the fiber cost, which seems to be a reasonable 

assumption for optical backbone networks [17]. In this case, the network cost is given by 
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Λ��� = � ��,�

�,�

× ���,�.∙ (3)

3. Neural Network Design 

An artificial neural network is a network of units, also called neurons, which are organized in 

multiple layers, including an input layer, a variable number of hidden layers and an output layer. 

These layers operate in a fully connected way, meaning that each neuron of a given layer is connected 

to all the neurons of the next layer. Each neuron has a variable weight per input, denoted as ��,� 

,with � defining the neuron position in a layer and  � its input, which are summed together along 

with a bias term ��. The result of this operation is then passed through an activation function to 

obtain the output of that neuron. The activation function used in this study for the hidden layers is 

the ReLU (Rectified Linear Unit) function which is given by 

�(�) = max(0, �) (4)

while for the output layer we have the linear activation function, that is 

�(�) = �. (5)

Note that, both activation functions are commonly used in regression problems, such as the one we 

are considering here [18]. 

The training of neural networks consists of determining the values for all Ω = ���,�� matrices 

and bias vectors � = [��]  that minimize a given loss function with a given iterative method 

(optimizer algorithm). For the training process, it is necessary to randomly generate a large number 

of datasets, using the procedures described previously. Each dataset includes an array of inputs � =

[��, �� … . . ��], called features, and an array of outputs � = [��, ��], obtained by network simulation, 

called labels. The features include the number of nodes, the number of links, the network diameter, 

the algebraic connectivity, and quantities such as the maximum, minimum, average and variance of 

both link length and node degree. Furthermore, the labels include the network capacity �� = ����, 

given by (2), and the network cost �� = Λ���, given by (3). 

In the training process each dataset is split into a training set (the data used to determine the 

model’s parameters), a validation set (used to make an unbiased evaluation of the model’s 

performance during training) and a test set (used to assess the model’s performance after the training 

is complete). Before the data is split into these three sets, it needs to be pre-processed and shuffled. 

Data pre-processing consists in preparing the data to make it more suitable for the training process. 

The loss function is used to measure the difference between the value predicted by the ANN and 

the actual value obtained by simulation. In other words, it measures the error associated to the 

model’s predictions. For regression problems, the mean squared error (MSE) is commonly used as 

the loss function [18]. MSE can be expressed as follows: 

��� =
1

�
� (��� − ��)� 

�

���
 (6)

where � is the number of data values being considered, ��� are the estimated values, and �� are the 

actual values. 

The optimizer algorithm is the method that determines how the weight matrices and bias vectors 

are updated during the training process. Common optimizers include the Stochastic Gradient 

Descent (SGD) or the Adaptive Momentum Estimation (Adam), with the former being used in this 

work. The update of the network parameters requires the computation of the gradient of the loss 

function, a task performed by the backpropagation algorithm [19]. An important parameter related 

to the optimizer is the learning rate. This parameter determines the magnitude of the updates applied 

to the weights and biases during each iteration. Another important parameter is the batch size, which 

refers to the size of subsets into which the training data is divided. The dropout regularization can 
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also be used to prevent overfitting which occurs when a model learns the training data too closely 

but fails to make accurate predictions on the testing data. 

A key aspect of training an ANN is optimizing the hyperparameters. Hyperparameters are the 

variables that configure how the model learns from the data. This includes the number of hidden 

layers, the number of units in each hidden layer, the learning rate, the batch size, and dropout 

regularization. During training, various hyperparameters combinations are tested to achieve the best 

performance on the validation set. This operation is called hyperparameter tuning. 

In this work, the tuning operation is performed using the ��score metric, which is defined as 

�� = 1 −
∑ (�� − ���)� �

���

∑ (�� − ���)� �
���

 (7)

where ��  is the actual value, ���is the predicted value, �� is the mean of the actual values, and � is 

the number of data values being considered. The �� score will take values between 0 and 1, where a 

value of 1 indicates that the model fits the data perfectly and 0 that it does not fit the data at all. That 

means that the closer the values are to 1, the better the model is performing [20]. 

From the hyperparameter tuning process the ANN’s structure was defined (see Figure 1). The 

model that achieved the best performance on the validation set has 1 hidden layer with 50 hidden 

units (� = 50), considering the number of features equal to 12 (� = 12). The learning rate was 

optimized to 0.1, the batch size was set to 64, and no dropout regularization was needed. 

 

Figure 1. Model of the ANN network with 1 hidden layer. 

This model structure and learning rate resulted in a relatively high �� scores: 0.9994 for �� and 

0.9962 for ��. Additionally, it has a relatively low number of trained parameters (the total number of 

weights and biases), with 752 parameters, which represents a good balance between model 

complexity and performance. To build and optimized the ANN model we used the PyTorch 

framework [21]. 

4. Simulation Results and Discussion 

To train the ANN model, a set of 8480 networks was used. These networks were generated with 

the tool described in [10] considering a 2D square plane with side lengths varying from 1000 km to 

5000 km in increments of 1000 km, number of regions in the plane set to 4, number of nodes varying 

from 5 to 100, number of links varying from 5 to 231 and an average node degree varying from 2 to 

around 5. The Waxman parameters chosen were α = β = 0.4. Furthermore, the maximum number of 

channels per links is set to ���,���= 75. 

Once the model is trained, the final step is to evaluate its performance through testing. For this 

purpose, a dataset of 1440 random networks was generated under the same conditions as those used 

to train the model. The network simulation took around 1 hour and 16 minutes for the entire dataset, 

while the prediction time for the ANN model was just 11 milliseconds. 

The mean relative errors for this test dataset, as defined by (8), are: 2.47% for the network 

capacity (��) and 5.29% for the total fibre cost (network cost) (��) predictions. Figure 2 shows the 

scatter plot of the relative errors against the number of nodes for both outputs. Each dot represents 

the relative error (RE) for each individual network in the set, given by: 
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�� =
�� −  ���

��

 (8)

with ��  being the value determined from the simulation solution and ���  the prediction made with 

the ANN model.  

(a) (b) 

Figure 2. Relative errors as a function of the number of nodes for both outputs of the ANN model (N 

ranging from 5 to 100) (a) Total network capacity; (b) Total fiber cost. 

It was also shown that for the total network capacity (Figure 2(a)) 89.45% of the examples have 

a relative error below 5%, and 96.67% of the examples have a relative error below 10%. In the case of 

the total fiber cost (Figure 2 (b)) 87.02% of the examples have a relative error below 10%, and 94.24% 

of the examples have a relative error below 15%. It can be seen that the model tends to perform better 

on networks with a higher number of nodes, while its performance is more irregular on networks 

with fewer nodes. A possible explanation for this behavior is that smaller networks might exhibit 

more variability in their features as well as in the relationships between features and labels, which 

makes it more challenging for the model to make predictions accurately. On the other hand, larger 

networks could be more homogeneous, exhibiting more uniform and consistent patterns that the 

model can learn and predict more effectively. 

In order to analyse how the ANN model behaves with testing datasets that have a number of 

nodes outside the training range, we generated 3920 additional networks under the same conditions 

as the previous sets, but with the number of nodes ranging from 5 to 200. Generating this set took 55 

hours and 31 minutes, while the ANN model predicted the corresponding set in only 79 milliseconds. 

Figure 3 shows a scatter plot comparing the relative errors as a function of the number of nodes for 

this set of networks. The plots in Figure 3 show that the results are identical to those of Figure 2 when 

the number of nodes ranges from 5 to 100. However, outside this range, the model's performance 

become unreliable, although it still performs quite well for up to about 115 nodes. This behaviour is 

expected, as the model was trained on a specific range of data (number of nodes ranging from 5 to 

100) and extrapolating beyond this range can lead to less reliable predictions. 

(a) (b) 
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Figure 3. Relative errors as a function of the number of nodes for both outputs of the ANN model (N 

ranging from 5 to 200) (a) Total network capacity; (b) Total fiber cost. 

The capability of a model to perform well in the presence of unseen data, which it was not trained 

on, is known as Out-of-Distribution (OOD) generalization [22]. This is a challenge that conventional 

supervised learning methods (such as ANNs) often find difficult to handle effectively as these types 

of models fundamentally assume that the training and test datasets originate from the same 

distribution. Note that addressing the OOD generalization problem is an active area of research in 

the field of ML [22]. 

Table 1 compares the results predicted by the ANN model for the total network capacity (���) 

and total fibre cost (���) with the corresponding results obtained by applying a  heuristic approach 

to different random networks, using the tool described in [10], as well as Algorithm 1 for the fiber 

assignment task. These results show that the ANN models tend to have a good performance in the 

generated networks within this range of nodes, with the relative errors generally being low. 

Furthermore, the prediction times with the ANN are always significantly faster than the computation 

times obtained with the network simulation tool. For example, for a network with 100 nodes the 

prediction time is about 17.1 milliseconds, whereas the computation time is about 13.5 seconds. This 

means that the ANN model is roughly 800 times faster than the heuristics approach, while achieving 

low relative errors of about 0.4% for network capacity and about 4% for network cost. 

Table 1. Accuracy of ANN prediction: ��: capacity; ��: cost. 

N �� [Tb/s] ���[Tb/s] RE(%)  �� [103 km] ��� [103 km] RE(%) 

10 48.0 45.4 5.44 24.47 24.08 1.59 

20 303.2 317.9 4.86 14.71 14.00 4.85 

30 708.0 705.2 0.39 27.05 26.62 1.57 

40 803.0 820.1 2.13 122.27 123.21 0.77 

50 1244.2 1214.4 2.40 231.63 257.36 11.1 

60 1837.2 1937.3 5.45 267.02 247.97 7.14 

70 3432.8 3393.9 1.13 128.44 131.79 2.61 

80 3185.0 3197.8 0.40 626.00 597.00 4.63 

90 5898.6 5864.0 0.59 189.51 194.54 2.66 

100 5394.6 5376.5 0.34 718.09 690.02 3.91 

Remarkably, the network capacity for a number of nodes greater than or equal to 50 nodes 

exceeds 1 Pb/s, reaching about 5 Pb/s for 100 nodes. However, this comes at the cost of significantly 

increasing the required optical fiber length in the network, as this work is based on the MF paradigm, 

where additional fibers are added whenever a link reaches its maximum supported number of optical 

wavelengths. 

A key point in the analysis is understanding how the ANN model performs on real optical 

network topologies, despite being trained on synthetic data generated from random networks. To 

address this point, Table 2 provides results for four real reference networks: COST239 (� = 11, � =

26, � ̅ = 462.6 km)  [23], DTAG ( � = 14, � = 23, � ̅ = 236.5 km)  [9], NSFNET ( � = 14, � = 21, � ̅ =

1211.3 km)  [23], and UBN ( � = 24, � = 43, � ̅ = 993.2 km)  [23], with � ̅  being the average link 

length. 

Table 2. Accuracy of DNN predictions in reference networks. ��: capacity; ��: cost. 

Network �� [Tb/s] ���[Tb/s] RE(%)  �� [103 km] ��� [103 km] RE(%) 

COST239 81.2 82.8 2.01 24.06 23.07 4.11 

DTAG 147.4 145.9 1.01 10.88 10.95 0.69 

NSFNET 98.0 104.1 6.18 45.39 38.63 14.87 

UBN 272.8 269.9 1.10 85.42 101.42 18.73 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 October 2024 doi:10.20944/preprints202410.1299.v1

https://doi.org/10.20944/preprints202410.1299.v1


 9 

 

The results show that the ANN model predicts both outputs with low relative errors in the 

majority of cases and achieves computation times approximately 10 times faster than the heuristic 

method. However, there are instances where higher relative errors have been observed, with two 

cases exceeding a 10% relative error for the network cost: the NSFNET and UBN cases. Interestingly, 

these two cases correspond to the networks with larger average link lengths. An explanatory 

hypothesis for this behavior is that these networks exhibit significant variability in their features, 

making it more difficult for the ANN model to accurately capture the relationships between features 

and labels, a trend similar to the one shown in Figure 2(b) for networks with fewer than 40 nodes. 

5. Conclusions 

In this paper, the problem of estimating the capacity and cost of multi-fiber optical networks 

was addressed using for this purpose an ANN model. These networks, by using multiple fiber pairs 

per link, can achieve very high network capacities, even on the order of petabits per second. 

To generate the datasets required to train and test the ANN, we applied an appropriate heuristic 

that relies on a fiber assignment algorithm, which was also proposed in the context of this work. 

The implemented model was an ANN with 12 inputs (parameters related to the physical 

topology of the optical network), 2 outputs, and 1 hidden layer. The outputs correspond to two 

metrics: the network capacity, measured in Tbit/s, and the network cost, quantified by the total length 

of optical fiber deployed in the network, measured in km. 

The ANN was trained with a number of nodes varying between 5 and 100, and it was extensively 

tested within the same range. The results showed good performance with a mean relative error of 

2.47% and 5.29% for the first and second metric, respectively. The ANN model also showed 

significantly faster performance compared to a heuristic method, with the ANN predictions never 

taking more than a few tens of milliseconds, while the network simulation could take up to tens of 

seconds to reach the results in larger networks. 

Remarkably, the network capacity for 50 or more nodes exceeds 1 Pb/s, reaching about 5 Pb/s 

for 100 nodes. However, this comes at the cost of a significant increase in the length of the total optical 

fiber required in the network.  
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