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Abstract: A possible solution to address the enormous increase in traffic demands faced by network
operators is to rely on multi-fiber optical backbone networks. These networks use multiple optical
fibers between adjacent nodes, and, when properly designed, they are capable of handling petabits
of data per second (Pbit/s). In this paper, an artificial neural network (ANN) model is investigated
to estimate both the capacity and cost of a multi-fiber optical network. Furthermore, a fiber
assignment algorithm is also proposed to complement the network design, enabling the generation
of datasets for training and testing the developed ANN model. The model consists of three layers,
including one hidden layer with 50 hidden units. The results show that for a large network, such as
one with 100 nodes, the model can estimate performance metrics with an average relative error of
less than 0.4% for capacity and 4% for cost, while achieving a computation time nearly 800 times
faster than the heuristic approach used in network simulation. Additionally, the network capacity
is around 5 Pbit/s.

Keywords: multi-fiber optical networks; artificial neural networks; machine learning; network
capacity and cost; fiber assignment

1. Introduction

In recent years, data traffic has increased significantly, a trend expected to continue due to the
growth of applications and services that require high bandwidth and generate large amounts of data.
Examples include video streaming services, cloud computing, machine-to-machine applications, on-
line gaming and the adoption of emerging technologies like 5G and beyond and advanced artificial
intelligence applications [1]. This evolving scenario places special requirements on the backbones of
network operators, which could experience traffic flows between their nodes reaching tens of Tb/s in
the medium term, and even up to hundreds of Tb/s in the long term [1]. This situation presents a
significant challenge for the design of future optical networks, particularly their backbone segments.

Optical networks are communication infrastructures, owned by telecommunication operators
(telcos) or internet companies (e.g., Google, Microsoft, Meta), that utilize light for transmission,
processing, and routing information and rely on optical fibers as their transmission medium. A
fundamental technology in the field of optical networking is Wavelength Division Multiplexing
(WDM). WDM allows the simultaneous transmission of multiple optical signals (also designated as
optical channels) on the same optical fiber, with each channel using a different wavelength. The
number of optical channels that can be transmit over an optical fiber is limited to about 100 when
using the traditional C-band, restricting the maximum WDM transmission capacity to well below 100
Tb/s for significant distances [2]. To greatly increase the number of optical channels to cope with the
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enormous growth in bandwidth demand, one can rely on space division multiplexing (SDM)
techniques. This approach can be implemented using a multi-fiber (MF) solution, i.e., multiple
standard single-mode fiber pairs per link instead of just one, as it is typical or, alternatively, advanced
fibers such as multicore fibers or few mode fibers, with both solutions still operating in the C-band
[2]. By relying on these solutions, it is feasible to design petabit-class optical networks, which are
networks capable of handling data at speeds reaching or exceeding one petabit per second (Pb/s) [3].

For designing MF networks, it is crucial to define, in addition to the traditional routing and
wavelength assignment solutions, a strategy for allocating fibers to the network, specifically a fiber
assignment strategy. In [4], two approaches were proposed to optimize the networks capacity by
adding extra fibers. In the first approach, fibers were added to links supporting the maximum
number of traffic demands, while in the second, fibers were added to links exhibiting the highest
number of adjacent demands. Furthermore, in [5], the idea is to add extra fibers to links that are
responsible for blocking traffic demands due to spectrum exhaustion, with the goal of minimizing
the number of fibers added.

Network capacity is a key performance metric in optical networks. This capacity can be defined
as the maximum amount of data that the entire network can handle per unit of time, and it is closely
related to the concept of channel capacity introduced by Claude Shannon in 1948 [6].The estimation
of network capacity is a challenging task because it depends not only on physical layer aspects related
to optical fibers and other optical devices but also on networking aspects such as physical and logical
topology, routing, as well as wavelength and modulation assignment. Consequently, it suffers from
the hurdle of long computation times, especially when dealing with large-scale networks. Although
the problem of predicting optical network capacity has been the focus of many studies, (see [7-10]),
to the best of the authors' knowledge, none of the published research has relied on machine learning
(ML) techniques for this purpose, despite these techniques being widely used in the context of optical
networks to address other problems [11-13]. The closest study is reported in [14], where a routing
and wavelengths assignment (RWA) problem is treated using ML techniques by transforming it into
a multi-classification problem, which is then solved using logistic regression and deep neural
network techniques. However, the network capacity estimation problem although also involving
RWA calculations, is more general than this. Furthermore, the complexity of the problem for MEF-
networks is even higher due to the necessity of using fiber assignment techniques.

In this paper, we investigate the utilization of a ML solution, specifically an artificial neural
network (ANN) model [12], to estimate both the capacity and cost metrics of an MF-based optical
network capable of handling Pb/s of data, with the cost being defined as the total length of optical
fiber required in the network. The goal is to determine whether it is possible to significantly speed
up the computations of these two metrics in comparison with heuristic methods, while still achieving
accurate results.

To generate the large sets of synthetic data needed to train and test the model, we used a tool
previously developed by the authors [10].This tool not only generates random networks topologies
that aim to mimic real optical backbone networks but also performs routing and fiber assignment
operations on these networks using heuristics developed specifically for this purpose, including the
fiber assignment algorithm that is described in this work, which is a crucial component of our
methodology.

The rest of the paper is organized as follows: Section 2 reviews important aspects of network
modeling and random network generation and explains how both network capacity and cost can be
computed. It describes also the fiber assignment algorithm proposed here for allocating fibers in MF-
networks. Section 3 details the ANN model introduce in this work. Section 4 presents some
simulation results and, finally, Section 5 summarizes and concludes the paper.

2. Network Aspects and Data Set Generation
2.1. Network Modelling

In an abstract way, an optical network can be described as an undirected weighted graph
G(V,E), with V = {vy,...,vy} denoting a set of nodes and E = {ey, ..., ex} denoting a set of links,
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where N = |V| is the number of nodes and K = |E| is the number of links. In transparent optical
networks, all node functionalities take place in the optical domain, and the nodes are built using
reconfigurable optical add-drop multiplexers (ROADMs), which are responsible for switching optical
channels between different fibers, among other functions. Meanwhile, an optical link represents a
physical interconnection between two nodes, implemented using a pair of optical fibers, or in the
case of MF networks multiple pairs of fibers. Furthermore, each optical fiber supports WDM signals,
meaning it carries a specific number of optical channels. Each link (v;,v;) € E is characterized by

three attributes: [; ;, the link length in kilometers between the nodes v; and vj; nf;;, the number of

g
optical fiber pairs in the link; u; ;, the link capacity measured in terms of the number of optical
channels denoted as N,,. In this work, we assume that fiber transmission takes place in the extended
C band, which has a bandwidth of 4800 GHz, enabling the support of N.p, mqx=75 channels, with a
channel spacing of 64 GHz corresponding to a baud rate of 64 Gbaud.

Besides N and K, other important parameters of the graph G are the node degree §(G), the
network diameter d(G), and the algebraic connectivity a(G). §(G)defines the number of links
connected to a given node, d(G) is the length of the longest shortest path between any two nodes,
while a(G) is the second smallest eigenvalue of the graph's Laplacian matrix [15].

In the context of ANNS, it is necessary to have very large datasets for training and testing
purposes. To achieve this, it is useful to be able to generate numerous network topologies, which can
be done through random graphs designed to adequately describe the characteristics of real-world
optical networks. In [10], we described a tool that we developed to generate random networks
appropriate for describing optical backbone networks. The tool is based on a modified Waxman
model and can generate networks that are resilient to single-link failures. In a simplified way, this
model works by dividing a two-dimensional (2D) square plane with area 4 = L? (L is the side length
of the plane) into a set of regions. In these regions, N nodes are randomly placed, and then the nodes
are interconnected with links according to the Waxman probability, which is characterized by the «
and f parameters, both in the range [0,1].

2.2. Routing, Fibre Assignment, Capacity and Cost

Network capacity refers to the maximum amount of data that the network can theoretically
handle per unit of time, typically measured in bits per second (bit/s). This metric depends on many
network parameters, including the physical topology defined by the graph G(V,E) and the logical
topology, which describes the way how the information flows between all the networks nodes. The
logical topology is defined by the traffic matrix T = [t; 4], where each entry t;, represents a traffic
demand, or in other terms, the volume of traffic flowing from a source node s to a destination node
d, with s,d € V. For each traffic demand ¢4, it is necessary to find a path in the graph G(V,E),
between node s and node d. This is the role of the routing process. The routing process can be
implemented using rigorous mathematical techniques, such as integer linear programing (ILP), or
heuristic, as an alternative [16]. As ILPs become computationally infeasible for large-scale networks,
we have to rely on heuristics in this work, as the analysis of such networks is paramount.

When the number of channels N, per fiber is limited, as in this work, the routing process is
known as constrained routing and can lead to traffic demand blocking whenever no channels
(wavelengths) are available on one or more links of the path. To overcome such a limitation, one can
add more pairs of optical fiber per link as needed, as it is the case of MF-networks. This leads to a
new process referred to as unconstrained routing plus fiber assignment. This process can be
implemented using the heuristics proposed in [10].

To generate the datasets required to train and test the ANN we have applied the referred
heuristics to the randomly generated networks using the modified Waxman model assuming a
uniform traffic demand between all the network node pairs, which can be defined as

ta={y 524 M

Taking into account the traffic matrix T = [t;4] of size N X N, and assuming that u; ; = oo, we

can apply unconstrained routing to each network graph G(V,E) to compute the list of established
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paths P = [m 4], with the path mg, having the length l(nsyd) = Y;jlij. Additionally, we compute
the link wavelength matrix, W = [w; ;|,which is also a N x N matrix, where w;; is the list of all the
wavelengths 4, present in the link (i,j), i.e.,w;; = [A;]. As referred before, fiber assignment is
central process in MF networks. To implement this process, we propose Algorithm 1, which allows
us to obtain the fiber matrix NF = [nf; ]|, representing the number of fibers per link, taking into
account that the maximum number of wavelengths per link is Nj 1nqx=Nchmax-

Algorithm 1: Fiber Assignment

Input: graph G(V,E); wavelength matrix W = [w; ;], number of wavelengths Nj -
Output: fiber matrix NF = [nf;].

1: Initialize NF,with nf;; =0,V (i,j) € E.

2: for each pair of nodes (i,j) in W do

3: if G has an egde (i,)) then

4: if there are no wavelengths used in(i, j), i.e. w;; = 0 then

5: nfij < 1 :At least one fiber is required

6: else
normalized wavelengths < w; ; mapped into the range 1 to Nj pax

7: num_fibres «<maximum number of wavelengths repetitions in normalized wavelengths
nf; ; « num_fibres

8: end if

9: else

10: nfij < 0 : Case there is no edge (i )

11: end if

12: end for

13: return NF

Note that with the unconstrained routing, the number of wavelengths in each link is not limited,
so the value assigned to a given 4, can be any natural number, in contrast to constraint routing,
where it is bounded by N, ;4. In the algorithm, to determine the number of fibers needed in each
link, the maximum number of “repeated wavelengths” in that link must be determined. A
wavelength is considered a “repeated wavelength” when its value modulo N; ;,,4, (Where the modulo
operation returns the remainder after division) is equal to that of another wavelength also present in
that link. For instance, if Nj j,q,is 75, then wavelengths 1 and 76 are “repeated” because 76 modulo
75 equals 1. This implies that both wavelengths would occupy the same channel in a link, hence they
are “repeated”. This concept is crucial in determining the number of fibers needed for a link, ensuring
that each “repeated” wavelength has its own fiber. Finding the maximum count of “repeated
wavelengths” will ensure that there are enough fibers to accommodate all the wavelengths, thus
assuring that there are no channels with the same wavelength on the same fiber.

By knowing the length of the path 74, [(7,4), it is possible to compute its maximum capacity
value, C(my,), also denoted as Shannon capacity, measured in bits per second. This calculation uses
the optical reach values of the path (see Table 2 of [10]), where optical reach is defined as the
maximum length of the path for which a certain value of the capacity can be achieved assuming a
baud rate of 64 Gbaud. Furthermore, after obtaining the capacity of all the established paths one
arrives at the network capacity, which is given by

Chet = ; C(T[s,d)- (2)

Another important metric is the network's cost. For simplification purposes, we assume that the
transponder cost can be neglected in comparison with the fiber cost, which seems to be a reasonable
assumption for optical backbone networks [17]. In this case, the network cost is given by
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3. Neural Network Design

An artificial neural network is a network of units, also called neurons, which are organized in
multiple layers, including an input layer, a variable number of hidden layers and an output layer.
These layers operate in a fully connected way, meaning that each neuron of a given layer is connected
to all the neurons of the next layer. Each neuron has a variable weight per input, denoted as w,,;
,with m defining the neuron position in a layer and i its input, which are summed together along
with a bias term b,,. The result of this operation is then passed through an activation function to
obtain the output of that neuron. The activation function used in this study for the hidden layers is
the ReLU (Rectified Linear Unit) function which is given by

g(x) = max(0, x) 4)
while for the output layer we have the linear activation function, that is
gx) = x. ®)

Note that, both activation functions are commonly used in regression problems, such as the one we
are considering here [18].

The training of neural networks consists of determining the values for all Q = [w,,;] matrices
and bias vectors B = [b,,] that minimize a given loss function with a given iterative method
(optimizer algorithm). For the training process, it is necessary to randomly generate a large number
of datasets, using the procedures described previously. Each dataset includes an array of inputs X =
[x1, X3 .....x,], called features, and an array of outputs Y = [y, ¥,], obtained by network simulation,
called labels. The features include the number of nodes, the number of links, the network diameter,
the algebraic connectivity, and quantities such as the maximum, minimum, average and variance of
both link length and node degree. Furthermore, the labels include the network capacity y; = Cpet,
given by (2), and the network cost y, = A, given by (3).

In the training process each dataset is split into a training set (the data used to determine the
model’s parameters), a validation set (used to make an unbiased evaluation of the model’s
performance during training) and a test set (used to assess the model’s performance after the training
is complete). Before the data is split into these three sets, it needs to be pre-processed and shuffled.
Data pre-processing consists in preparing the data to make it more suitable for the training process.

The loss function is used to measure the difference between the value predicted by the ANN and
the actual value obtained by simulation. In other words, it measures the error associated to the
model’s predictions. For regression problems, the mean squared error (MSE) is commonly used as
the loss function [18]. MSE can be expressed as follows:

1 M
MSE =" G-y ©)
=1

where M is the number of data values being considered, J; are the estimated values, and y; are the
actual values.

The optimizer algorithm is the method that determines how the weight matrices and bias vectors
are updated during the training process. Common optimizers include the Stochastic Gradient
Descent (SGD) or the Adaptive Momentum Estimation (Adam), with the former being used in this
work. The update of the network parameters requires the computation of the gradient of the loss
function, a task performed by the backpropagation algorithm [19]. An important parameter related
to the optimizer is the learning rate. This parameter determines the magnitude of the updates applied
to the weights and biases during each iteration. Another important parameter is the batch size, which
refers to the size of subsets into which the training data is divided. The dropout regularization can
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also be used to prevent overfitting which occurs when a model learns the training data too closely
but fails to make accurate predictions on the testing data.

A key aspect of training an ANN is optimizing the hyperparameters. Hyperparameters are the
variables that configure how the model learns from the data. This includes the number of hidden
layers, the number of units in each hidden layer, the learning rate, the batch size, and dropout
regularization. During training, various hyperparameters combinations are tested to achieve the best
performance on the validation set. This operation is called hyperparameter tuning.

In this work, the tuning operation is performed using the R%score metric, which is defined as

_ Tilo(i — 9)?

T —¥)?
where y; is the actual value, J;is the predicted value, ¥ is the mean of the actual values, and M is
the number of data values being considered. The R? score will take values between 0 and 1, where a
value of 1 indicates that the model fits the data perfectly and O that it does not fit the data at all. That
means that the closer the values are to 1, the better the model is performing [20].

From the hyperparameter tuning process the ANN’s structure was defined (see Figure 1). The
model that achieved the best performance on the validation set has 1 hidden layer with 50 hidden
units (m = 50), considering the number of features equal to 12 (n = 12). The learning rate was
optimized to 0.1, the batch size was set to 64, and no dropout regularization was needed.

R2=1 )

Xy

Xa

Input layer Hidden layer Output layer

Figure 1. Model of the ANN network with 1 hidden layer.

This model structure and learning rate resulted in a relatively high R? scores: 0.9994 for y; and
0.9962 for y,. Additionally, it has a relatively low number of trained parameters (the total number of
weights and biases), with 752 parameters, which represents a good balance between model
complexity and performance. To build and optimized the ANN model we used the PyTorch
framework [21].

4. Simulation Results and Discussion

To train the ANN model, a set of 8480 networks was used. These networks were generated with
the tool described in [10] considering a 2D square plane with side lengths varying from 1000 km to
5000 km in increments of 1000 km, number of regions in the plane set to 4, number of nodes varying
from 5 to 100, number of links varying from 5 to 231 and an average node degree varying from 2 to
around 5. The Waxman parameters chosen were o = § = 0.4. Furthermore, the maximum number of
channels per links is set to Ngp, 1mqx=75.

Once the model is trained, the final step is to evaluate its performance through testing. For this
purpose, a dataset of 1440 random networks was generated under the same conditions as those used
to train the model. The network simulation took around 1 hour and 16 minutes for the entire dataset,
while the prediction time for the ANN model was just 11 milliseconds.

The mean relative errors for this test dataset, as defined by (8), are: 2.47% for the network
capacity (y;) and 5.29% for the total fibre cost (network cost) (y,) predictions. Figure 2 shows the
scatter plot of the relative errors against the number of nodes for both outputs. Each dot represents
the relative error (RE) for each individual network in the set, given by:
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Yi— Wi
RE = — (8)
Yi
with y; being the value determined from the simulation solution and J; the prediction made with
the ANN model.
Relative Error vs. Number of Nodes Relative Error vs. Number of Nodes
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Figure 2. Relative errors as a function of the number of nodes for both outputs of the ANN model (N
ranging from 5 to 100) (a) Total network capacity; (b) Total fiber cost.

It was also shown that for the total network capacity (Figure 2(a)) 89.45% of the examples have
a relative error below 5%, and 96.67% of the examples have a relative error below 10%. In the case of
the total fiber cost (Figure 2 (b)) 87.02% of the examples have a relative error below 10%, and 94.24%
of the examples have a relative error below 15%. It can be seen that the model tends to perform better
on networks with a higher number of nodes, while its performance is more irregular on networks
with fewer nodes. A possible explanation for this behavior is that smaller networks might exhibit
more variability in their features as well as in the relationships between features and labels, which
makes it more challenging for the model to make predictions accurately. On the other hand, larger
networks could be more homogeneous, exhibiting more uniform and consistent patterns that the
model can learn and predict more effectively.

In order to analyse how the ANN model behaves with testing datasets that have a number of
nodes outside the training range, we generated 3920 additional networks under the same conditions
as the previous sets, but with the number of nodes ranging from 5 to 200. Generating this set took 55
hours and 31 minutes, while the ANN model predicted the corresponding set in only 79 milliseconds.
Figure 3 shows a scatter plot comparing the relative errors as a function of the number of nodes for
this set of networks. The plots in Figure 3 show that the results are identical to those of Figure 2 when
the number of nodes ranges from 5 to 100. However, outside this range, the model's performance
become unreliable, although it still performs quite well for up to about 115 nodes. This behaviour is
expected, as the model was trained on a specific range of data (number of nodes ranging from 5 to
100) and extrapolating beyond this range can lead to less reliable predictions.

Relative Error vs. Number of Nodes Relative Error vs. Number of Nodes

Relative Error
Relative Error

0 25 50 75 00 125 150 175 200 0 25 50 75 100 125 150 175 200
Number of Nodes Number of Nodes

(a) (b)
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Figure 3. Relative errors as a function of the number of nodes for both outputs of the ANN model (N
ranging from 5 to 200) (a) Total network capacity; (b) Total fiber cost.

The capability of a model to perform well in the presence of unseen data, which it was not trained
on, is known as Out-of-Distribution (OOD) generalization [22]. This is a challenge that conventional
supervised learning methods (such as ANNSs) often find difficult to handle effectively as these types
of models fundamentally assume that the training and test datasets originate from the same
distribution. Note that addressing the OOD generalization problem is an active area of research in
the field of ML [22].

Table 1 compares the results predicted by the ANN model for the total network capacity (7;)
and total fibre cost (§,) with the corresponding results obtained by applying a heuristic approach
to different random networks, using the tool described in [10], as well as Algorithm 1 for the fiber
assignment task. These results show that the ANN models tend to have a good performance in the
generated networks within this range of nodes, with the relative errors generally being low.
Furthermore, the prediction times with the ANN are always significantly faster than the computation
times obtained with the network simulation tool. For example, for a network with 100 nodes the
prediction time is about 17.1 milliseconds, whereas the computation time is about 13.5 seconds. This
means that the ANN model is roughly 800 times faster than the heuristics approach, while achieving
low relative errors of about 0.4% for network capacity and about 4% for network cost.

Table 1. Accuracy of ANN prediction: y,: capacity; y,: cost.

N y, [This] 9,[Th/s] RE(%) y, [103 km] ¥, [103 km] RE(%)
10 48.0 454 5.44 24.47 24.08 1.59
20 303.2 317.9 4.86 14.71 14.00 4.85
30 708.0 705.2 0.39 27.05 26.62 1.57
40 803.0 820.1 2.13 122.27 123.21 0.77
50 1244.2 1214.4 2.40 231.63 257.36 11.1
60 1837.2 1937.3 5.45 267.02 247.97 7.14
70 3432.8 3393.9 1.13 128.44 131.79 2.61
80 3185.0 3197.8 0.40 626.00 597.00 4.63
90 5898.6 5864.0 0.59 189.51 194.54 2.66
100 5394.6 5376.5 0.34 718.09 690.02 3.91

Remarkably, the network capacity for a number of nodes greater than or equal to 50 nodes
exceeds 1 Pb/s, reaching about 5 Pb/s for 100 nodes. However, this comes at the cost of significantly
increasing the required optical fiber length in the network, as this work is based on the MF paradigm,
where additional fibers are added whenever a link reaches its maximum supported number of optical
wavelengths.

A key point in the analysis is understanding how the ANN model performs on real optical
network topologies, despite being trained on synthetic data generated from random networks. To
address this point, Table 2 provides results for four real reference networks: COST239 (N = 11,K =
26,1 = 462.6 km) [23], DTAG (N = 14,K = 23,1 = 236.5km) [9], NSFNET (N = 14,K = 21,] =
1211.3km) [23], and UBN (N = 24,K =43, [ =993.2km) [23], with [ being the average link
length.

Table 2. Accuracy of DNN predictions in reference networks. y;: capacity; y,: cost.

Network y1 [Th/s] $1[Th/s] RE(%) y, [10° km] 9, [10°km] RE(%)
COST239 81.2 82.8 2.01 24.06 23.07 411
DTAG 1474 145.9 1.01 10.88 10.95 0.69
NSFNET 98.0 104.1 6.18 45.39 38.63 14.87

UBN 272.8 269.9 1.10 85.42 101.42 18.73
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The results show that the ANN model predicts both outputs with low relative errors in the
majority of cases and achieves computation times approximately 10 times faster than the heuristic
method. However, there are instances where higher relative errors have been observed, with two
cases exceeding a 10% relative error for the network cost: the NSFNET and UBN cases. Interestingly,
these two cases correspond to the networks with larger average link lengths. An explanatory
hypothesis for this behavior is that these networks exhibit significant variability in their features,
making it more difficult for the ANN model to accurately capture the relationships between features
and labels, a trend similar to the one shown in Figure 2(b) for networks with fewer than 40 nodes.

5. Conclusions

In this paper, the problem of estimating the capacity and cost of multi-fiber optical networks
was addressed using for this purpose an ANN model. These networks, by using multiple fiber pairs
per link, can achieve very high network capacities, even on the order of petabits per second.

To generate the datasets required to train and test the ANN, we applied an appropriate heuristic
that relies on a fiber assignment algorithm, which was also proposed in the context of this work.

The implemented model was an ANN with 12 inputs (parameters related to the physical
topology of the optical network), 2 outputs, and 1 hidden layer. The outputs correspond to two
metrics: the network capacity, measured in Tbit/s, and the network cost, quantified by the total length
of optical fiber deployed in the network, measured in km.

The ANN was trained with a number of nodes varying between 5 and 100, and it was extensively
tested within the same range. The results showed good performance with a mean relative error of
2.47% and 5.29% for the first and second metric, respectively. The ANN model also showed
significantly faster performance compared to a heuristic method, with the ANN predictions never
taking more than a few tens of milliseconds, while the network simulation could take up to tens of
seconds to reach the results in larger networks.

Remarkably, the network capacity for 50 or more nodes exceeds 1 Pb/s, reaching about 5 Pb/s
for 100 nodes. However, this comes at the cost of a significant increase in the length of the total optical
fiber required in the network.

Author Contributions: Conceptualization, A.F. and J.P.; methodology, A.F. and J. P.; software, A.F.; validation,
AF.; formal analysis, A.F and J. P.; investigation, A.F. and J. P.; writing—original draft preparation, J.P.;
writing—review and editing, ].P.; visualization, A.F.; supervision, ].P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Ruiz , M. et al. Network traffic analysis under emerging beyond-5G scenarios for multi-band optical
technology adoption. J. Opt. Commun. Netw. 2023, 15, F36-F47, doi: 10.1364/JOCN.492128.

2. Winzer, P. J. The future of communications is massively parallel. ]. Opt. Commun. Netw. 2023, 15, 783-787,
doi: 10.1364/JOCN.496992.

3. Furukawa, H.; Luis, R. S. Petabit-class optical networks based on spatial-division multiplexing
technologies. In Proceedings of the 2020 International Conference on Optical Network Design and
Modelling (ONDM), Barcelona, 18-21 May 2020, doi: 10.23919/ONDM48393.2020.9132998.

4. Parker, M. C,; Wright, P.; Lord, A. Multiple fiber, flexgrid elastic optical network design using MaxEnt
optimization. J. Opt. Commun. Netw. 2015, 7, B194-B201, doi: 10.1364/JOCN.7.00B194.

5. Lopez, V.etal. Optimized design and challenges for C&L band optical line systems. J. Lightw. Technol. 2020,
38, 1080-1091, doi: 10.1109/ JLT.2020.2968225.

6.  Shannon, C. E. A mathematical theory of communication. The Bell System Technical |. 1948, 27, 379-423, doi:
10.1002/j.1538-7305.1948.tb01338 x.


https://doi.org/10.20944/preprints202410.1299.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2024 d0i:10.20944/preprints202410.1299.v1

10

7. Vincent, R. J; Ives, D. J.; Savory S. ]J. Scalable capacity estimation for nonlinear elastic all-optical core
networks. J. Lightw. Technol. 2019, 37, 5380-5391, doi: 10.1109/JLT.2019.2942710.

8.  Matzner, R.; Semrau, D.; Luo R; Zervas, G.; Bayvel, P. Making intelligent topology design choices:
understanding structural and physical property performance implications in optical networks. J. Opt.
Commun. Netw. 2021, 13, D53-D67, doi: 10.1364/JOCN.423490.

9. Ives, D. J.; Bayvel, P.; Savory, S. J. Routing, modulation, spectrum and launch power assignment to
maximize the traffic throughput of a nonlinear optical mesh network. Photon. Netw. Commun. 2015, 29, 244-
256, doi: 10.1007/s11107-015-0488-0.

10. Freitas, A.; Pires, ]J. Investigating the impact of topology and physical impairments on the capacity of an
optical backbone network. Photonics, 2024, 11, 342, doi: 10.3390/photonics11040342.

11. Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I; Zibar, D.; Ruffini, M.; Tornatore, M. An overview on
application of machine learning techniques in optical networks. IEEE Commun. Surveys Tuts., 2019, 1383-
1408, doi: 10.1109/COMST.2018.2880039.

12. Gu, R; Yang Z.; Ji Y. Machine learning for intelligent optical networks: a comprehensive survey.
arXiv:2003.05290v1, 2020, doi:10.1016/j.jnca.2020.102576.

13. Morais, R. M.; Pedro, J. Machine learning models for estimating quality of transmission in DWDM
Networks. J. Opt. Commun. Netw., 2018, 10, D84-D99, doi: 10.1364/JOCN.10.000D84.

14. Martin, I, et al. Machine learning-based routing and wavelength assignment in software-defined optical
networks. IEEE Trans. Netw. Service Manag. 2019, 16, 871-883, doi: 10.1109/TNSM.2019.2927867.

15. Chatelain, B.; Bélanger, M. P.; Tremblay, C.; Gagnon, F.; Plant, D. V. Topological wavelength usage
estimation in transparent wide area networks. J. Opt. Commun. Netw. 2009, 1, 196-203, doi:
10.1364/JOCN.1.000196.

16. Santos, J.; Pedro, J.; Monteiro, P.; Pires, J. Optimized routing and buffer design for optical transport
networks based on virtual concatenation. J. Opt. Commun. Netw. 2011, 3, 725-738, doi:
10.1364/JOCN.3.000725.

17.  Cetinkaya, E. K.; Alenazi, M. J. F,; Cheng, Y; Peck, A. M.; Sterbenz, P. G. A comparative analysis of
geometric graph models for modelling backbone networks. Optical Switch. and Networ. 2014, 14, 95-106, doi:
10.1016/j.0sn.2014.05.001.

18. Chugh, S.; Ghosh, S.; Gulistan, A.; Rahman, B. Machine learning regression approach to the nanophotonic
waveguide analyses. J. Lightw.Technol. 2019, 37, 6080-6089, doi: 10.1109/JLT.2019.2946572.

19. Le Cun, Y. Theoretical framework for back-propagation. In Proceedings of the 1988 Connectionist Models
Summer School, Pittsburg, USA (pp. 21-28), Morgan Kaufman.

20. Coefficient of determination, r-squared. Available online: https://www.ncl.ac.uk/ webtemplate/ask-
assets/external/maths-resources/statistics/regression-and-correlation/ coefficient-of-determination-r-
squared.html (accessed on 7 July 2024).

21. Pytorch. Available online: PyTorch | About (archive.org) (accessed on 20 April 2024).

22. Liu, J.; Shen, Z,; He, Z. Y.; Zhang, X.; Xu, R; Yu, H; Cui, P. Towards out-of-distribution generalization: a
survey. arXiv:2108.13624, 2023. Available online: https://arxiv.org/abs/2108.13624,
d0i:10.48550/arXiv.2108.13624 (accessed on 3 October 2024).

23. Pires, ]J. J. O. On the capacity of optical backbone networks. Network 2024, 4(1), 114-132,
do0i:10.3390/network4010006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202410.1299.v1

