
Here's a Python implementation of the clustering algorithm to split the set of combinations into
clusters of effective and non-effective combinations:

def create_effective_combinations(Cn, yc, xc):

 """

 Splits the set of combinations into effective and non-effective combinations.

 Parameters:

 Cn (list): List of n-combinations of drugs.

 yc (dict): Dictionary with combinations as keys and their effectiveness as values.

 xc (dict): Dictionary with combinations as keys and their side effect scores as values.

 Returns:

 dict: Dictionary with effective combinations for each n.

 dict: Dictionary with non-effective combinations for each n.

 """

 effective_combinations = {}

 non_effective_combinations = {}

 for n in range(1, 8):

 En = set()

 NonEn = set()

 combinations = [c for c in Cn if len(c) == n]

 if not combinations:

 continue

 # Sort combinations by effectiveness

 sorted_combinations = sorted(combinations, key=lambda c: yc[c], reverse=True)

 # Initial selection based on the maximum yc

 max_combination = sorted_combinations.pop(0)

 En.add(max_combination)

 ymax = yc[max_combination]

 xmin = xc[max_combination]

 while sorted_combinations:

 c = sorted_combinations.pop(0)

 if yc[c] > ymax:

 En.add(c)

 ymax = yc[c]

 elif xc[c] < xmin:

 En.add(c)

 xmin = xc[c]

 else:

 NonEn.add(c)

 effective_combinations[n] = En

 non_effective_combinations[n] = NonEn

 return effective_combinations, non_effective_combinations

Example usage

Cn = [('drug1',), ('drug2',), ('drug1', 'drug2'), ('drug1', 'drug3'), ('drug2', 'drug3'), ('drug1', 'drug2',
'drug3')]

yc = {('drug1',): 0.5, ('drug2',): 0.4, ('drug1', 'drug2'): 0.8, ('drug1', 'drug3'): 0.6, ('drug2', 'drug3'): 0.7,
('drug1', 'drug2', 'drug3'): 0.9}

xc = {('drug1',): 0.2, ('drug2',): 0.3, ('drug1', 'drug2'): 0.3, ('drug1', 'drug3'): 0.4, ('drug2', 'drug3'): 0.2,
('drug1', 'drug2', 'drug3'): 0.5}

effective_combinations, non_effective_combinations = create_effective_combinations(Cn, yc, xc)

print("Effective Combinations:", effective_combinations)

print("Non-Effective Combinations:", non_effective_combinations)

 Input Parameters:

• Cn: List of drug combinations.

• yc: Dictionary where keys are combinations and values are effectiveness scores.

• xc: Dictionary where keys are combinations and values are side effect scores.

 Algorithm Steps:

• Iterate over combination sizes from 1 to 7.

• For each size, initialize empty sets En and NonEn to store effective and non-effective
combinations respectively.

• Sort the combinations based on their effectiveness (yc values) in descending order.

• Select the combination with the highest effectiveness as the initial effective combination.

• Update ymax to the effectiveness of this combination and xmin to its side effect score.

• Continue adding combinations to En or NonEn based on the criteria until all combinations
are processed.

