Here's a Python implementation of the clustering algorithm to split the set of combinations into
clusters of effective and non-effective combinations:

def create_effective_combinations(Cn, yc, xc):
Splits the set of combinations into effective and non-effective combinations.
Parameters:
Cn (list): List of n-combinations of drugs.
yc (dict): Dictionary with combinations as keys and their effectiveness as values.

xc (dict): Dictionary with combinations as keys and their side effect scores as values.

Returns:

dict: Dictionary with effective combinations for each n.
dict: Dictionary with non-effective combinations for each n.
effective_combinations = {}

non_effective_combinations = {}

for ninrange(1, 8):
En =set()
NonEn = set()

combinations = [c for cin Cnif len(c) == n]

if not combinations:

continue

Sort combinations by effectiveness

sorted_combinations = sorted(combinations, key=lambda c: yc[c], reverse=True)

Initial selection based on the maximum yc
max_combination = sorted_combinations.pop(0)
En.add(max_combination)

ymax = yc[max_combination]

Xmin = xc[max_combination]

while sorted_combinations:
¢ = sorted_combinations.pop(0)
if yc[c] > ymax:
En.add(c)
ymax =yc[c]

elif xc[c] < xmin:

En.add(c)
Xmin = xc[c]
else:

NonEn.add(c)

effective_combinations[n] = En

non_effective_combinations[n] = NonEn

return effective_combinations, non_effective_combinations

Example usage

Cn =[('drug1’), (‘'drug2'), (‘'drug1’, 'drug2"), ('drug1’, 'drug3'), (‘drug2’, 'drug3d'), (‘drug1’, 'drug2’,
'drug3")]

yc ={('drug1}): 0.5, (‘drug2'): 0.4, ('drug1’, 'drug2'): 0.8, ('drug1’, 'drug3d'): 0.6, ('drug2’, 'drug3'): 0.7,
('drug1’, 'drug2’, 'drug3d'): 0.9}

xc ={('drug1’): 0.2, ('drug2'): 0.3, (‘drug1’, 'drug2'): 0.3, (‘drug1’, 'drug3"): 0.4, ('drug2’, 'drug3'): 0.2,
('drug1’, 'drug2’, 'drug3d'): 0.5}

effective_combinations, non_effective_combinations = create_effective_combinations(Cn, yc, xc)

print("Effective Combinations:", effective_combinations)

print("Non-Effective Combinations:", non_effective_combinations)

Input Parameters:

Cn: List of drug combinations.
yc: Dictionary where keys are combinations and values are effectiveness scores.

xc: Dictionary where keys are combinations and values are side effect scores.

Algorithm Steps:

Iterate over combination sizes from 1to 7.

For each size, initialize empty sets En and NonEn to store effective and non-effective
combinations respectively.

Sort the combinations based on their effectiveness (yc values) in descending order.
Select the combination with the highest effectiveness as the initial effective combination.
Update ymax to the effectiveness of this combination and xmin to its side effect score.

Continue adding combinations to En or NonEn based on the criteria until all combinations
are processed.

