Submitted:
18 October 2024
Posted:
18 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Current Drugs for DR-TB
3. Current Diagnostic and Susceptibility Testing Methods
4. The Gaps and Challenges in the DST Implementation
5. Strategies for Achieving Equitable DST Access and Gap Closure
5.1. Strengthening the Health System
5.2. Sharing Infrastructure and Human Resources
5.3. Providing DST Machine and Reagents at Subsidized or Reduced Prices
5.4. Involvement of Drug Developers in the Development of DST Methods
5.5. Capacity-Building Initiatives
5.6. Maximizing the Utilization Efficiency of Sequencing Facilities
5.7. Encouraging Public-Private Partnerships
5.8. Recognizing Successful Case Studies or Initiatives
5.9. Promoting Research and Developments
5.10. Initiatives for technology transfer
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Global tuberculosis report 2023. Geneva; 2023.
- World Health Organization. Global Tuberculosis Report 2022 [Internet]. Geneva; 2022. Available from: https://www.who.int/publications/i/item/9789240061729.
- Dean, A.S.; Zignol, M.; Cabibbe, A.M.; Falzon, D.; Glaziou, P.; Cirillo, D.M.; Köser, C.U.; Gonzalez-Angulo, L.Y.; Tosas-Auget, O.; Ismail, N.; et al. Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: A multicountry analysis of cross-sectional data. PLOS Med. 2020, 17, e1003008. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. Geneva World Health Organization. 2022.
- Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Bedaquiline, pretomanid and linezolid for treatment of extensively drug resistant, intolerant or non-responsive multidrug resistant pulmonary tuberculosis. N Engl J Med. 2020.
- Ahmad, N.; Ahuja, S.D.; Akkerman, O.W.; Alffenaar, J.C.; Anderson, L.F.; Baghaei, P.; Bang, D.; Barry, P.M.; Bastos, M.L.; Behera, D.; et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet 2018, 392, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. New Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef]
- Conradie F, Bagdasaryan TR, Borisov S, Howell P, Mikiashvili L, Ngubane N, et al. Bedaquiline–Pretomanid–Linezolid Regimens for Drug-Resistant Tuberculosis. N Engl J Med. 2022.
- Van Rie, A.; Walker, T.; de Jong, B.; Rupasinghe, P.; Rivière, E.; Dartois, V.; Sonnenkalb, L.; Machado, D.; Gagneux, S.; Supply, P.; et al. Balancing access to BPaLM regimens and risk of resistance. Lancet Infect. Dis. 2022, 22, 1411–1412. [Google Scholar] [CrossRef] [PubMed]
- Kontsevaya, I.; Cabibbe, A.M.; Cirillo, D.M.; DiNardo, A.R.; Frahm, N.; Gillespie, S.H.; Holtzman, D.; Meiwes, L.; Petruccioli, E.; Reimann, M.; et al. Update on the diagnosis of tuberculosis. Clin. Microbiol. Infect. 2023, 30, 1115–1122. [Google Scholar] [CrossRef]
- European Medicines Agency. Summary of product characteristics (last update July 2022). Dovprela. 2022.
- Georghiou, S.B.; Penn-Nicholson, A.; de Vos, M.; Macé, A.; Syrmis, M.W.; Jacob, K.; Mape, A.; Parmar, H.; Cao, Y.; Coulter, C.; et al. Analytical performance of the Xpert MTB/XDR® assay for tuberculosis and expanded resistance detection. Diagn. Microbiol. Infect. Dis. 2021, 101, 115397. [Google Scholar] [CrossRef]
- Vasiliu, A.; Saktiawati, A.M.I.; Duarte, R.; Lange, C.; Cirillo, D.M. Implementing molecular tuberculosis diagnostic methods in limited-resource and high-burden countries. Breathe 2022, 18, 220226. [Google Scholar] [CrossRef] [PubMed]
- Vogel, M.; Utpatel, C.; Corbett, C.; Kohl, T.A.; Iskakova, A.; Ahmedov, S.; Antonenka, U.; Dreyer, V.; Ibrahimova, A.; Kamarli, C.; et al. Implementation of whole genome sequencing for tuberculosis diagnostics in a low-middle income, high MDR-TB burden country. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. Geneva; 2016.
- Bastos, M.L.; Lan, Z.; Menzies, D. An updated systematic review and meta-analysis for treatment of multidrug-resistant tuberculosis. Eur. Respir. J. 2017, 49, 1600803. [Google Scholar] [CrossRef]
- Diacon, A.H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G.; et al. The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis. New Engl. J. Med. 2009, 360, 2397–2405. [Google Scholar] [CrossRef]
- Diacon, A.H.; Donald, P.R.; Pym, A.; Grobusch, M.; Patientia, R.F.; Mahanyele, R.; Bantubani, N.; Narasimooloo, R.; De Marez, T.; van Heeswijk, R.; et al. Randomized Pilot Trial of Eight Weeks of Bedaquiline (TMC207) Treatment for Multidrug-Resistant Tuberculosis: Long-Term Outcome, Tolerability, and Effect on Emergence of Drug Resistance. Antimicrob. Agents Chemother. 2012, 56, 3271–3276. [Google Scholar] [CrossRef] [PubMed]
- Pym, A.S.; Diacon, A.H.; Tang, S.-J.; Conradie, F.; Danilovits, M.; Chuchottaworn, C.; Vasilyeva, I.; Andries, K.; Bakare, N.; De Marez, T.; et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur. Respir. J. 2016, 47, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Borisov, S.E.; Dheda, K.; Enwerem, M.; Leyet, R.R.; D'Ambrosio, L.; Centis, R.; Sotgiu, G.; Tiberi, S.; Alffenaar, J.-W.; Maryandyshev, A.; et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur. Respir. J. 2017, 49, 1700387. [Google Scholar] [CrossRef] [PubMed]
- Ndjeka, N.; Schnippel, K.; Master, I.; Meintjes, G.; Maartens, G.; Romero, R.; Padanilam, X.; Enwerem, M.; Chotoo, S.; Singh, N.; et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur. Respir. J. 2018, 52, 1801528. [Google Scholar] [CrossRef] [PubMed]
- Skripconoka, V.; Danilovits, M.; Pehme, L.; Tomson, T.; Skenders, G.; Kummik, T.; Cirule, A.; Leimane, V.; Kurve, A.; Levina, K.; et al. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur. Respir. J. 2013, 41, 1393–1400. [Google Scholar] [CrossRef]
- Maryandyshev, A.; Pontali, E.; Tiberi, S.; Akkerman, O.; Ganatra, S.; Sadutshang, T.D.; Alffenaar, J.-W.; Amale, R.; Mullerpattan, J.; Topgyal, S.; et al. Bedaquiline and Delamanid Combination Treatment of 5 Patients with Pulmonary Extensively Drug-Resistant Tuberculosis. Emerg. Infect. Dis. 2017, 23, 1718–1721. [Google Scholar] [CrossRef]
- Ferlazzo, G.; Mohr, E.; Laxmeshwar, C.; Hewison, C.; Hughes, J.; Jonckheere, S.; Khachatryan, N.; De Avezedo, V.; Egazaryan, L.; Shroufi, A.; et al. Early safety and efficacy of the combination of bedaquiline and delamanid for the treatment of patients with drug-resistant tuberculosis in Armenia, India, and South Africa: a retrospective cohort study. Lancet Infect. Dis. 2018, 18, 536–544. [Google Scholar] [CrossRef]
- WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2019. Geneva. 2019.
- Gils, T.; Lynen, L.; de Jong, B.C.; Van Deun, A.; Decroo, T. Pretomanid for tuberculosis: a systematic review. Clin. Microbiol. Infect. 2022, 28, 31–42. [Google Scholar] [CrossRef]
- Nyang’wa, B.-T.; Berry, C.; Kazounis, E.; Motta, I.; Parpieva, N.; Tigay, Z.; Solodovnikova, V.; Liverko, I.; Moodliar, R.; Dodd, M.; et al. A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis. New Engl. J. Med. 2022, 387, 2331–2343. [Google Scholar] [CrossRef]
- Vanino, E.; Granozzi, B.; Akkerman, O.W.; Munoz-Torrico, M.; Palmieri, F.; Seaworth, B.; Tiberi, S.; Tadolini, M. Update of drug-resistant tuberculosis treatment guidelines: A turning point. Int. J. Infect. Dis. 2023, 130, S12–S15. [Google Scholar] [CrossRef]
- Derendinger, B.; Dippenaar, A.; de Vos, M.; Alberts, R.; Sirgel, F.; Dolby, T.; Spies, C.; Rigouts, L.; Metcalfe, J.; Engelthaler, D.; et al. High frequency of bedaquiline resistance in programmatically treated drug-resistant TB patients with sustained culture-positivity in Cape Town, South Africa. Int. J. Mycobacteriology 2022, 10, S9. [Google Scholar] [CrossRef]
- Alffenaar JWC, Akkerman OW, Tiberi S, Sotgiu G, Migliori GB, Montaner PG, et al. European Respiratory Journal. 2020.
- van Zyl-Smit, R.N.; Binder, A.; Meldau, R.; Mishra, H.; Semple, P.L.; Theron, G.; Peter, J.; Whitelaw, A.; Sharma, S.K.; Warren, R.; et al. Comparison of Quantitative Techniques including Xpert MTB/RIF to Evaluate Mycobacterial Burden. PLOS ONE 2011, 6, e28815. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 3 : Diagnosis -Rapid diagnostics for tuberculosis detection. WHO. 2021.
- Hobby, G.L.; Holman, A.P.; Iseman, M.D.; Jones, J.M. Enumeration of Tubercle Bacilli in Sputum of Patients with Pulmonary Tuberculosis. Antimicrob. Agents Chemother. 1973, 4, 94–104. [Google Scholar] [CrossRef]
- Ngangue, Y.R.; Mbuli, C.; Neh, A.; Nshom, E.; Koudjou, A.; Palmer, D.; Ndi, N.N.; Qin, Z.Z.; Creswell, J.; Mbassa, V.; et al. Diagnostic Accuracy of the Truenat MTB Plus Assay and Comparison with the Xpert MTB/RIF Assay to Detect Tuberculosis among Hospital Outpatients in Cameroon. J. Clin. Microbiol. 2022, 60, e0015522. [Google Scholar] [CrossRef]
- Georghiou, S.B.; Gomathi, N.S.; Rajendran, P.; Nagalakshmi, V.; Prabakaran, L.; Kumar, M.M.P.; Macé, A.; Tripathy, S.; Ruhwald, M.; Schumacher, S.G.; et al. Accuracy of the Truenat MTB-RIF Dx assay for detection of rifampicin resistance-associated mutations. Tuberculosis 2021, 127, 102064. [Google Scholar] [CrossRef] [PubMed]
- Gegia, M.; Winters, N.; Benedetti, A.; van Soolingen, D.; Menzies, D. Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 223–234. [Google Scholar] [CrossRef]
- Vogensen, V.B.; Anthony, R.M.; Kerstjens, H.A.; Tiberi, S.; de Steenwinkel, J.E.; Akkerman, O.W. The case for expanding worldwide access to point of care molecular drug susceptibility testing for isoniazid. Clin. Microbiol. Infect. 2022, 28, 1047–1049. [Google Scholar] [CrossRef]
- Alagna R, Cabibbe AM, Miotto P, Saluzzo F, Köser CU, Niemann S, et al. European Respiratory Journal. 2021.
- WHO. Rapid Communication: Key changes to the treatment of drug-resistant tuberculosis. World Health Organization. 2022.
- Tagliani E, Saluzzo F, Cirillo DM. Microbiological tests and laboratory tests: the value of point-of-care testing. In: The Challenge of Tuberculosis in the 21st Century. 2023.
- World Health Organization. Use of targeted next-generation sequencing to detect drug-resistant tuberculosis: rapid communication [Internet]. 2023. Available from: https://www.who.int/publications/i/item/9789240076372.
- Jouet, A.; Gaudin, C.; Badalato, N.; Allix-Béguec, C.; Duthoy, S.; Ferré, A.; Diels, M.; Laurent, Y.; Contreras, S.; Feuerriegel, S.; et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur. Respir. J. 2021, 57, 2002338. [Google Scholar] [CrossRef]
- World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance, second edition. Second. Geneva: World Health Organization; 2023.
- Farooq, H.Z.; Cirillo, D.M.; Hillemann, D.; Wyllie, D.; van der Werf, M.J.; Ködmön, C.; Nikolayevskyy, V. Limited Capability for Testing Mycobacterium tuberculosis for Susceptibility to New Drugs. Emerg. Infect. Dis. 2021, 27, 985–987. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, L.; Cabibbe, A.M.; Mhuulu, L.; Ruswa, N.; Dreyer, V.; Diergaardt, A.; Günther, G.; Claassens, M.; Gerlach, C.; Utpatel, C.; et al. Implementation of targeted next-generation sequencing for the diagnosis of drug-resistant tuberculosis in low-resource settings: a programmatic model, challenges, and initial outcomes. Front. Public Heal. 2023, 11, 1204064. [Google Scholar] [CrossRef] [PubMed]
- Rivière, E.; Heupink, T.H.; Ismail, N.; Dippenaar, A.; Clarke, C.; Abebe, G.; Heusden, P.; Warren, R.; Meehan, C.J.; Van Rie, A. Capacity building for whole genome sequencing of Mycobacterium tuberculosis and bioinformatics in high TB burden countries. Briefings Bioinform. 2021, 22. [Google Scholar] [CrossRef]
- Griffin, A.M.J.; Caviedes, L.; Gilman, R.; Coronel, J.; Delgado, F.; Quispe, M.; Moore, A.A.J. Field and laboratory preparedness: challenges to rolling out new multidrug-resistant tuberculosis diagnostics. Rev. Panam. De Salud Publica-Pan Am. J. Public Heal. 2009, 26, 120–127. [Google Scholar] [CrossRef]
- Leite, J.A.; Vicari, A.; Perez, E.; Siqueira, M.; Resende, P.; Motta, F.C.; Freitas, L.; Fernandez, J.; Parra, B.; Castillo, A.; et al. Implementation of a COVID-19 Genomic Surveillance Regional Network for Latin America and Caribbean region. PLOS ONE 2022, 17, e0252526. [Google Scholar] [CrossRef]
- Akoniyon, O.P.; Adewumi, T.S.; Maharaj, L.; Oyegoke, O.O.; Roux, A.; Adeleke, M.A.; Maharaj, R.; Okpeku, M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. Biology 2022, 11, 587. [Google Scholar] [CrossRef]
- Argimón, S.; Masim, M.A.L.; Gayeta, J.M.; Lagrada, M.L.; Macaranas, P.K.V.; Cohen, V.; Limas, M.T.; Espiritu, H.O.; Palarca, J.C.; Chilam, J.; et al. Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines. Nat. Commun. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Stop TB Partnership. Global Drug Facility Update on Access to Bedaquiline [Internet]. [cited 2023 Oct 3]. Available from: https://www.stoptb.org/news/global-drug-facility-update-access-to-bedaquiline.
- Dlamini MT, Lessells R, Iketleng T, de Oliveira T. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases. 2019.
- World Health Organization. WHO Science Council meeting, Geneva, Switzerland, 11–12 July 2022: report. Geneva; 2022.
- Ness, T.; Van, L.H.; Petermane, I.; Duarte, R.; Lange, C.; Menzies, D.; Cirillo, D.M. Rolling out new anti-tuberculosis drugs without diagnostic capacity. Breathe 2023, 19, 230084. [Google Scholar] [CrossRef]
- Park, P.H.; Magut, C.; Gardner, A.; O’yiengo, D.O.; Kamle, L.; Langat, B.K.; Buziba, N.G.; Carter, E.J. Increasing access to the MDR-TB surveillance programme through a collaborative model in western Kenya*. Trop. Med. Int. Heal. 2012, 17, 374–379. [Google Scholar] [CrossRef]
- Bishop,.T.; Adebiyi, E.F.; Alzohairy, A.M.; Everett, D.; Ghedira, K.; Ghouila, A.; Kumuthini, J.; Mulder, N.J.; Panji, S.; Patterton, H.-G. Bioinformatics Education--Perspectives and Challenges out of Africa. Briefings Bioinform. 2015; 16, 355–364. [CrossRef]
- Ali, T.; Singh, U.; Ohikhuai, C.; Panwal, T.; Adetiba, T.; Agbaje, A.; Faleye, B.O.; Klinton, J.S.; Oga-Omenka, C.; Tseja-Akinrin, A.; et al. Partnering with the private laboratories to strengthen TB diagnostics in Nigeria. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 31, 100369. [Google Scholar] [CrossRef] [PubMed]
- Ntoumi, F.; Petersen, E.; Mwaba, P.; Aklillu, E.; Mfinanga, S.; Yeboah-Manu, D.; Maeurer, M.; Zumla, A. Blue Skies research is essential for ending the Tuberculosis pandemic and advancing a personalized medicine approach for holistic management of Respiratory Tract infections. Int. J. Infect. Dis. 2022, 124, S69–S74. [Google Scholar] [CrossRef] [PubMed]
| Challenges | Proposed Solutions |
| Health system | |
| Limited tools and infrastructure, supply chain challenges, sustainability | |
| High cost (capital investment, running, data storage, and overhead expenses) | |
| Lack of expertise (bioinformatics, clinical interpretation) | |
| Inefficient use of the sequencing capacity, limited coverage |
|
| DST methods | |
| Lack of clear cut-off values for new TB drugs (pDST), some resistance mechanisms cannot be explored (gDST) | |
| Inappropriate use of DST |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
