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Article
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Abstract: This paper aims to propose a stochastic linear parameter varying (LPV) model approach to design a

state feedback controller for three-phase two-level inverters. To deal with the parameter changes, stochastic noise

and delays faced by the inverter, it is modeled as a stochastic LPV system with time delay. The stability analysis

and control synthesis are conducted for the LPV system. With parameter-dependent Lyapunov functionals, the

sufficient stability condition for asymptotical mean-square stability is obtained. In addition, the slack matrix

technique is employed to improve the feasibility and reduce the conservatism of the conditions. The obtained

theoretical results are applied to the three-phase two-level inverter, whose currents are treated as state variables

and controlled to reach the equilibrium point. The simulation results validate the effectiveness of the proposed

theories and demonstrate the advantages of using the slack matrix.

Keywords: three-phase two-level inverter; linear parameter varying (LPV) system; stochastic system; time delay;

mean square stability

1. Introduction

Three-phase two-level inverters are the most widely used power converters in power electronics
and motor drives. The main components of the inverters are controllable power switches such as
IGBTs, MOSFETs, GTOs, etc. [1]. By implementing appropriate control strategies, they can output
active and reactive power as required, meanwhile operate with desirable performance in terms of good
current quality, high power efficiency, and strong robustness against disturbances. In real applications,
the inverter faces uncertain conditions including time-varying grid voltage, filter capacitance and
inductance changes, measurement delays, and environment noises. To effectively control the inverter,
all these uncertainties should be taken into account [2,3].

Linear parameter-varying (LPV) systems are used to describe systems with time-varying pa-
rameters. Since the seminal work of Shamma in 1991 [4], the LPV control and filtering approach
has attracted a lot of attention from the control field. This is because 1) it is effective to cope with
nonlinearities and time-varying dynamics of the system, and 2) the maturely developed LTI control
methodologies, such as sensitivity shaping and modeling tools, can be extended to LPV systems.
During the past decades, several advances in theoretical and practical aspects have been done. Among
others, theoretical works are related to analysis and synthesis issues [5,6], robust filtering problems
[7,8], fault detection and isolation [9], etc. Practical engineering works are also popular, for instance, an
LPV static output feedback control method is proposed to improve lateral stability and driving comfort
of narrow tilting vehicles [10], LPV modeling method is adopted to ensure large signal stability for
multi-mode buck-boost converters [11], the uncertain robot system is controlled by an LPV controller
with sliding mode optimization [12]. Time delays exist in many practical systems, such as network
controlled systems, electronic networks, hydraulic systems, and chemical processes, which are mostly
nonlinear systems. Time delays may cause instability and oscillation in these systems and severely
degrade performance [13,14]. To target this problem, research on time-delayed LPV system starts
coming on stage in recent years, see [15,16].

Stochastic systems are used to model systems with stochastic perturbations. This approach is
used in several fields and engineering applications, such as mechanical systems, economic systems,
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etc. Over the past decades, the study of stabilization and filtering problems for stochastic systems has
received much attention, and many valuable results have been obtained. For stabilization problems,
the asymptotic stability of semiswitched stochastic systems has been investigated in [17], the problem
of input-to-state stability for nonlinear systems with stochastic impulses is systematically studied [18].
For filtering problems, the recursive filtering problem for a class of uncertain stochastic systems with
amplify and forward relays has been investigated in [19], the problem of distributed robust filtering for
switched stochastic time-delay systems with fading measurements over sensor networks is addressed
in [20].

This paper aims to propose a stochastic LPV model approach to deal with the uncertain conditions
and time delay faced by a three-phase two-level inverter, where the grid voltage, filter capacitance,
and inductance are treated as time-varying parameters, and the environment noises as stochastic
disturbances. Sufficient conditions for stability analysis and controller synthesis are obtained for the
stochastic LPV system. The theoretical results obtained are applied to the inverter, whose currents
are treated as state variables and controlled to reach the equilibrium point. The contributions of this
paper are of three folds: 1) the LPV approach is used to model the three-phase two-level inverter,
which is a new practical method; 2) comparing with previous theoretical works, this paper further
considers the stochastic perturbation and parameter-varying time delay, based on which the stochastic
LPV model is established and the stability conditions are obtained; 3) the slack matrix technique is
adopted to improve the feasibility of the stability conditions, which facilitates the controller design
process. The remaining of this work includes system description and inverter modeling in Section II.
Main theoretical analysis is presented in Section III. Simulations to validate the proposal are provided
in Secition IV. Finally, conclusioms are addressed in Section V.

2. System Description and Inverter Modeling

Figure 1 is a two-level three-phase inverter, which is normally used as grid-connecting power converter
(the case in this paper) or motor drive. In ideal case, the inverter can be modelled in synchronous
reference frame as follows [21]:

L
did
dt

=udVin − rid −ωLiq − vd, (1a)

L
diq
dt

=uqVin − riq + ωLid − vq, (1b)

where Vin is the input dc power source, ω is the frequency of grid voltage, L is the filtering inductor
and r is its equivalent series resistance, and the dq variables are transformed from the three-phase abc
variables, i.e., vd, vq are grid voltages transformed from va, vb and vc, id, iq are grid currents transformed
from ia, ib and ic, and ud, uq are switching functions generated by controller, which is to be used to
generate the switching signals Sa, Sb and Sc, though PWM modulator. To provide required power to
grid, the dq currents must be controlled to desired value. Taking into account the inverter parameter
variations, stochastic grid perturbations, and control/communication delays, the inverter model can
be formulated as a general time-delayed stochastically perturbed LPV system:

dx(t) =[A(ρ(t))x(t) + Ah(ρ(t))x(t− h(ρ(t)))]dt

+ B(ρ(t))u(t)dt + Bv(ρ(t))v(t)dt

+ Bω(ρ(t))x(t)dω(t), (2a)

y(t) =C(ρ(t))x(t) + Ch(ρ(t))x(t− h(ρ(t)))

+ D(ρ(t))v(t), (2b)

x(θ) =φ(θ), θ ∈ [−h(ρ(0)), 0], (2c)

where x(t) = [id; iq] is the state vector, A(ρ(t)) is the system matrix related to L, r, ω; u(t) =

[udVin − vd; uqVin − vq] is the control input, B(ρ(t)) is the control matrix related to L; v(t) ∈ Rq
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belonging to L2[0, ∞), is either a disturbance input or a reference signal; ω(t) is a one-dimensional
(1-D) Brownian motion satisfying E{dω(t)} = 0 and E{dω2(t)} = dt; ρ(t) ∈ Rs is vector-valued
parameter evolving continuously over time and its range is limited to a compact subset; h(ρ(t)) is the
parameter varying delay and satisfies:

0 ≤ h(ρ(t)) ≤ H < ∞, |ḣ(ρ(t))| ≤ σ < ∞,

where H and σ are constant scalars; x(θ) is the initial data function given in the time interval [−H, 0].
The value of ρ(t) is unknown, but can be measured in real time.

Figure 1. Two-level three-phase inverter.

Disregarding the control input u(t), the autonomous system of (2) is formulated as:

dx(t) =[A(ρ(t))x(t) + Ah(ρ(t))x(t− h(ρ(t)))]dt

+ Bv(ρ(t))v(t)dt + Bω(ρ(t))x(t)dω(t), (3a)

y(t) =C(ρ(t))x(t) + Ch(ρ(t))x(t− h(ρ(t)))

+ D(ρ(t))v(t), (3b)

x(θ) =φ(θ), θ ∈ [−h(ρ(0)), 0]. (3c)

On the other hand, to carry out stability analysis and synthesis, the exogenous disturbance “v(t)”
in (2) is considered to be zero, yielding following system:

dx(t) =A(ρ(t))x(t) + Ah(ρ(t))x(t− h(ρ(t)))

+ B(ρ(t))u(t)dt + Bω(ρ(t))x(t)dω(t), (4a)

x(θ) =φ(θ), θ ∈ [−h(ρ(0)), 0]. (4b)

Therefore the autonomous system of (4) can be formulated as:

dx(t) =[A(ρ(t))x(t) + Ah(ρ(t))x(t− h(ρ(t)))]dt

+ Bω(ρ(t))x(t)dω(t), (5a)

x(θ) =φ(θ), θ ∈ [−h(ρ(0)), 0]. (5b)

For simplicity, ρ will be used instead of ρ(t) in the rest of this paper. Before going further, some
definitions and lemmas should be given, which are important for deriving main results.

Definition 1: For any initial state x(0) ∈ Rn, the time-delayed LPV stochastic system (3) is said to
be robustly stable with disturbance attenuation index γ if for all v(t) ∈ L2[0, ∞)] and all parameter
trajectories, it holds that

‖y(t)‖2 < γ‖v(t)‖2. (6)
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Also, the system is asymptotically mean square stable according to Definition 1 in [22].

3. System Analysis and Controller Design

3.1. Stability Analysis and Synthesis

Proposition 1: If there exists a family of parameter-dependent continuous differentiable symmetric
positive matrices P(ρ) and Q(ρ), such that for all the parameter trajectories, it satisfiesΠ11 P(ρ)Ah(ρ) Bω

T(ρ)P(ρ)
∗ Π12 0
∗ ∗ −P(ρ)

 < 0, (7)

where Π11 =
s
∑

i=1
τi

∂P(ρ)
ρi

+ sym{P(ρ)A(ρ)}+ Q(ρ), Π12 = −
(

1−
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t− h(ρ)), then sys-

tem (5) is asymptotically mean square stable.
Proof. Choose Lyapunov-Krasovskii functional as:

V(x, ρ) = xT(t)P(ρ)x(t) +
∫ t

t−h(ρ)
xT(s)Q(s)x(s)ds. (8)

According to Itô’s formula [23],

dV(x, ρ) = LV(x, ρ)dt + 2xT(t)P(ρ)Bω(ρ)x(t)dω(t), (9)

where

LV(x, ρ) =

xT(t)Ṗ(ρ)x(t) + 2xT(t)P(ρ)A(ρ)x(t)

+ 2xT(t)P(ρ)Ah(ρ)x(t− h(ρ))

+ xT(t)Bω
T(ρ)P(ρ)Bω(ρ)x(t) + xT(t)Q(ρ)x(t)

−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
· xT(t− h(ρ))Q(t− h(ρ))x(t− h(ρ))

=

[
x(t)

x(t− h(ρ))

]T

Π

[
x(t)

x(t− h(ρ))

]
,

with Π =

Π11 P(ρ)Ah(ρ)

∗
(

1−
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t− h(ρ))

, and Π11 =
s
∑

i=1
τi

∂P(ρ)
ρi

+ sym{P(ρ)A(ρ)}+

Bω
T(ρ)P(ρ)Bω(ρ) + Q(ρ). Thus, according to [24], system (5) is asymptotically mean square sta-

ble if Π < 0, which is equal to the inequality (7) with Schur complement transformation. Proof is
completed.

Proposition 2: If there exists a family of parameter-dependent continuous differentiable symmetric
positive matrices R(ρ), Q̄(ρ) and matrices F(ρ), such that for all the parameter trajectories, it holds
that Π11 Ah(ρ)R(t− h(ρ)) R(ρ)Bω

T(ρ)

∗ Π22 0
∗ ∗ −R(ρ)

 < 0, (10)
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where

Π11 =sym{A(ρ)R(ρ) + B(ρ)F(ρ)} −
s

∑
i=1

τi
∂R(ρ)

ρi
+ Q̄(ρ),

Π22 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q̄(t− h(ρ)),

then system (4) is mean square stable under u(t) = K(ρ)x(t) with K(ρ) = F(ρ)R−1(ρ).
Proof. Consider system (4) with u(t) = K(ρ)x(t), K(ρ) is a parameter-dependent state feedback

controller.
Substitute A(ρ) in (7) with A(ρ) + B(ρ)K(ρ), and perform a congruence transformation to it with

diag{P−1(ρ), P−1(t− h(ρ)), P−1(ρ)}, it is obtained thatΠ̄11 Ah(ρ)P−1(t− h(ρ)) P−1(ρ)Bω
T(ρ)

∗ Π̄12 0
∗ ∗ −P−1(ρ)

 < 0, (11)

where

Π̄11 =P−1(ρ)
s

∑
i=1

τi
∂P(ρ)

ρi
P−1(ρ) + P−1(ρ)Q(ρ)P−1(ρ)

+ sym{(A(ρ) + B(ρ)K(ρ))P−1(ρ)},

Π̄12 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
· P−1(t− h(ρ))Q(t− h(ρ))P−1(t− h(ρ)).

Let matrix R(ρ) = P−1(ρ), Q̄(ρ) = P−1(ρ)Q(ρ)P−1(ρ), F(ρ) = K(ρ)P−1(ρ), then it is obtained that
(10), and K(ρ) = F(ρ)R−1(ρ). Proof is completed.

Remark 1: τi denotes the varying rate of parameter i which is assumed to be measurable in real
time. If τi is not measurable, but its bound is known a prior, i.e. |τi| ≤ υi, then ∑s

i=1 τi
∂R(ρ)

∂ρi
can be

approximated by ∑s
i=1±υi

∂R(ρ)
∂ρi

to obtain a new stability condition. ∑s
i=1±(·) represents the sum of

every combination of +(·) and −(·), which contains a total of 2s combinations.
Proposition 3: If there exists a family of parameter-dependent continuous differentiable symmetric

positive matrices P(ρ), Q(ρ) and matrix W, such that for all the parameter trajectories, it satisfies that
−
(
W + WT) P(ρ) + WT A(ρ) WT Ah(ρ) 0 WT

∗ Π22 0 Bω
T(ρ) 0

∗ ∗ Π33 0 0
∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ −P(ρ)

 < 0, (12)

where Π22 = −P(ρ) +
s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ), Π33 = −
(

1−
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t− h(ρ)), then system (5) is

asymptotically mean square stable.
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Proof. The inequality (12) can be written as


0 P(ρ) 0 0 0
∗ Π22 0 Bω

T(ρ) 0
∗ ∗ Π33 0 0
∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ −P(ρ)

+


−I

AT(ρ)

AT
h (ρ)

0
I

W


I
0
0
0
0


T

+ (∗) < 0. (13)

The null spaces of [ −I AT(ρ) AT
h (ρ) 0 I ] and [ I 0 0 0 0 ] are

A(ρ) Ah(ρ) 0 I
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

and


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

.

According to Projection Lemma [25], following inequalities are obtained:
Π̄11 P(ρ)Ah(ρ) Bω

T(ρ) P(ρ)
∗ Π̄12 0 0
∗ ∗ P−1(ρ) 0
∗ ∗ ∗ −P(ρ)

 < 0, (14)



s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ)− P(ρ) 0 Bω
T(ρ) 0

∗ −
(

1−
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t− h(ρ)) 0 0

∗ ∗ P−1(ρ) 0
∗ ∗ ∗ −P(ρ)

 < 0, (15)

where

Π̄11 =
s

∑
i=1

τi
∂P(ρ)

ρi
+ sym{P(ρ)A(ρ)}+ Q(ρ)− P(ρ),

Π̄12 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t− h(ρ)).

The inequality (14) equals to the inequality (7) with Schur complement transformation, which indicates
(12) can ensure the system to be asymptotically mean square stable. Proof is completed.

Remark 2: With the introduction of a new additional matrix W, the matrix P(ρ) in the Lyapunov
function is separated from the system matrix. This extra degree of freedom reduces the usually strong
interrelations between plant data and Lyapunov variables, hence improves the solution feasibility and
reduces the conservatism.

Theorem 1: If there exists a family of parameter-dependent continuous differentiable symmetric
positive matrices X(ρ), Y(ρ), P̄(ρ) and matrices R(ρ), V, such that for all the parameter trajectories, it
holds that 

−
(
V + VT) Π12 Ah(ρ)V 0 V
∗ Π22 0 VT Bω

T(ρ) 0
∗ ∗ Π33 0 0
∗ ∗ ∗ −P̄(ρ) 0
∗ ∗ ∗ ∗ −X(ρ)

 < 0, (16)
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where

Π12 =X(ρ) + A(ρ)V + B(ρ)R(ρ),

Π22 =− X(ρ) +
s

∑
i=1

τi
∂X(ρ)

ρi
+ Y(ρ),

Π33 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Y(t− h(ρ)),

then system (4) is mean square stable under u = K(ρ)x(t) with K(ρ) = R(ρ)V−1(ρ).
Proof. Consider system (4) with u(t) = K(ρ)x(t), substituting A(ρ) in (12) with A(ρ) + B(ρ)K(ρ),

and perform a congruence transformation with diag{W−1, W−1, W−1, I, W−1}, it is obtained that
Π̄11 Π̄12 Ah(ρ)W−1 0 W−1

∗ Π̄22 0 W−T Bω
T(ρ) 0

∗ ∗ Π̄33 0 0
∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ −W−T P(ρ)W−1

 < 0, (17)

where

Π̄11 =− (W−1 + W−T),

Π̄12 =W−T P(ρ)WT + (A(ρ) + B(ρ)K(ρ))W−1,

Π̄22 =W−T

(
−P(ρ) +

s

∑
i=1

τi
∂P(ρ)

ρi
+ Q(ρ)

)
W−1,

Π̄33 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
W−TQ(t− h(ρ))W−1.

Let matrix X(ρ) = W−T P(ρ)W−1, Y(ρ) = W−TQ(ρ)W−1, V = W−1, P̄(ρ) = P−1(ρ), (16) is obtained,
and K(ρ) = R(ρ)V−1. Proof is completed.

3.2. Performance Analysis and Synthesis

Proposition 4: The time-delayed LPV stochastic system (3) is said to be robustly stable with
disturbance attenuation γ if there exists a family of parameter-dependent continuous differentiable
symmetric positive matrices R(ρ) and Q(ρ), such that for all the parameter trajectories, it holds that

Π11 P(ρ)Ah(ρ) P(ρ)Bv(ρ) CT(ρ) Bω
T(ρ)P(ρ)

∗ Π22 0 CT
h (ρ) 0

∗ ∗ −γ2 I DT(ρ) 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −P(ρ)

 < 0. (18)

where

Π11 =P(ρ)A(ρ) + AT(ρ)P(ρ) +
s

∑
i=1

τi
∂P(ρ)

ρi
+ Q(ρ),

Π22 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t− h(ρ)).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 October 2024 doi:10.20944/preprints202410.1721.v1

https://doi.org/10.20944/preprints202410.1721.v1


8 of 16

Proof. Assume that the system has zero initial state, i.e., x(t) = 0 when t ∈ [−h(ρ), 0], then according
to Itô’s formula, it can be obtained that

E{V(x(t), t)} = E
{∫ t

0
LV(x(s), s)

}
ds. (19)

Let

J(t) =E
{∫ t

0

[
yT(s)y(s)− γ2vT(s)v(s)

]
ds
}

=E


∫ t

0

 x(s)
x(s− h(ρ))

v(s)


T

Π̄

 x(s)
x(s− h(ρ))

v(s)

ds

, (20)

where

Π̄ =

Π̄11 P(ρ)Ah(ρ) P(ρ)Bv(ρ)

∗ Π̄22 0
∗ ∗ −γ2 I

+

CT(ρ)

CT
h (ρ)

DT(ρ)


CT(ρ)

CT
h (ρ)

DT(ρ)


T

,

with

Π̄11 =P(ρ)A(ρ) + AT(ρ)P(ρ) +
s

∑
i=1

τi
∂P(ρ)

ρi

+ Q(ρ) + Bω
T(ρ)P(ρ)Bω(ρ),

Π̄22 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t− h(ρ)).

With Schur complement, condition (18) ensures Π̄ < 0, thus J(t) < 0, meaning yT(t)y(t) < γ2vT(t)v(t).
Thus system (3) is robustly stable in the sense of definition 2. Proof is completed.

Proposition 5: The time-delayed LPV stochastic system (2) is said to be robustly stabilized by state
feedback controller K(ρ) with disturbance attenuation γ if there exists a family of parameter-dependent
continuous differentiable symmetric positive matrices R(ρ), Q̄(ρ) and matrices F(ρ), such that for all
the parameter trajectories, it holds that

Π11 AhR(t− h(ρ)) Bv(ρ) R(ρ)CT R(ρ)Bω
T(ρ)

∗ Π22 0 R(t− h(ρ))CT
h 0

∗ ∗ −γ2 I DT 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −R(ρ)

 < 0, (21)

where

Π11 =sym{A(ρ)R(ρ) + B(ρ)F(ρ)} −
s

∑
i=1

τi
∂R(ρ)

ρi
+ Q̄(ρ),

Π22 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q̄(t− h(ρ)).
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and K(ρ) = F(ρ)R−1(ρ). Proof. Consider system (2) with u(t) = K(ρ)x(t), substituting A(ρ) in
(18) with A(ρ) + B(ρ)K(ρ), and perform a congruence transformation with diag{P−1(ρ), P−1(t −
h(ρ)), I, I, P−1(ρ)}, it is obtained that

Π̄11 AhP−1(t− h(ρ)) Bv(ρ) P−1(ρ)CT P−1(ρ)Bω
T(ρ)

∗ Π̄22 0 P−1(t− h(ρ))CT
h 0

∗ ∗ −γ2 I DT 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −P−1(ρ)

 < 0, (22)

where

Π̄11 =sym
{
(A(ρ) + B(ρ)K(ρ))P−1(ρ)

}
+ P−1(ρ)

(
Q(ρ) +

s

∑
i=1

τi
∂P(ρ)

ρi

)
P−1(ρ),

Π̄22 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
· P−1(t− h(ρ))Q(t− h(ρ))P−1(t− h(ρ)).

Let matrix R(ρ) = P−1(ρ), Q̄(ρ) = P−1(ρ)Q(ρ)P−1(ρ), F(ρ) = K(ρ)P−1(ρ), then (21) is obtained, and
K(ρ) = F(ρ)R−1(ρ). Proof is completed.

Proposition 6: The time-delayed LPV stochastic system (3) is said to be robustly stable with
disturbance attenuation γ if there exists a family of parameter-dependent continuous differentiable
symmetric positive matrices P(ρ), Q(ρ) and matrix W, such that for all the parameter trajectories, it
holds that 

Π11 Π12 WT Ah(ρ) WT Bv(ρ) 0 0 WT

∗ Π22 0 0 CT(ρ) Bω
T(ρ) 0

∗ ∗ Π33 0 CT
h (ρ) 0 0

∗ ∗ ∗ −γ2 I DT(ρ) 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ ∗ −P(ρ)


< 0, (23)

where Π11 = −(W + WT), Π12 = P(ρ) + WT A(ρ), Π22 = −P(ρ) +
s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ), Π33 =

−
(

1−
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t− h(ρ)).
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Proof. The inequality (23) can be written as:

0 P(ρ) 0 0 0 0 0
∗ Π22 0 0 CT(ρ) Bω

T(ρ) 0
∗ ∗ Π33 0 CT

h (ρ) 0 0
∗ ∗ ∗ −γ2 I DT(ρ) 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ ∗ −P(ρ)


+



−I
AT(ρ)

AT
h (ρ)

BT
v (ρ)

0
0
I


W(ρ)



I
0
0
0
0
0
0



T

+



−I
AT(ρ)

AT
h (ρ)

BT
v (ρ)

0
0
I



T

WT(ρ)



I
0
0
0
0
0
0


< 0.

The null spaces of
[ −I A(ρ) Ah(ρ) Bv(ρ) 0 0 I ] and [ I 0 0 0 0 0 0 ] are

A(ρ) Ah(ρ) Bv(ρ) 0 0 I
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


,



0 0 0 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


respectively. According to Projection Lemma,

(24) is obtained, 

Π̄11 P(ρ)Ah(ρ) P(ρ)Bv(ρ) CT(ρ) Bω
T(ρ) P(ρ)

∗ Π̄12 0 CT
h (ρ) 0 0

∗ ∗ −γ2 I DT(ρ) 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ −P(ρ)


< 0, (24)

with

Π̄11 =
s

∑
i=1

τi
∂P(ρ)

ρi
+ P(ρ)A(ρ) + AT(ρ)P(ρ) + Q(ρ)− P(ρ),

Π̄12 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t− h(ρ)),

and 

Π̃11 0 0 CT(ρ) Bω
T(ρ) 0

∗ Π̃22 0 CT
h (ρ) 0 0

∗ ∗ −γ2 I DT(ρ) 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ −P(ρ)


< 0, (25)
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with Π̃11 =
s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ)− P(ρ) and Π̃22 = −
(

1−
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t− h(ρ)).

The inequality (24) equals to the inequality (18) with Schur complement transformation, which
indicates (23) can ensure the system to be robustly stable. Proof is completed.

Theorem 2: The time-delayed LPV stochastic system (2) is said to be robustly stabilized by state
feedback controller K(ρ) with disturbance attenuation γ if there exists a family of parameter-dependent
continuous differentiable symmetric positive matrices X(ρ), Y(ρ), P̄(ρ) and matrices R(ρ), V, such
that for all the parameter trajectories, it holds that

Π11 Π12 Π13 Bv(ρ) 0 0 V
∗ Π22 0 0 VTCT(ρ) VT Bω

T(ρ) 0
∗ ∗ Π33 0 VTCT

h (ρ) 0 0
∗ ∗ ∗ −γ2 I VT DT(ρ) 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P̄(ρ) 0
∗ ∗ ∗ ∗ ∗ ∗ −X(ρ)


< 0 (26)

where

Π11 =− (V + VT), Π12 = X(ρ) + A(ρ)V + B(ρ)R(ρ),

Π13 =Ah(ρ)V, Π22 = −X(ρ) +
s

∑
i=1

τi
∂X(ρ)

ρi
+ Y(ρ),

Π33 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
Y(t− h(ρ)).

and K(ρ) = R(ρ)V−1(ρ).
Proof. Consider system (2) with u(t) = K(ρ)x(t), substituting A(ρ) in (23) with A(ρ) + B(ρ)K(ρ),

and perform a congruence transformation with diag{W−1, W−1, W−1, I, I, I, W−1}, it is obtained that

Π̄11 Π̄12 Π̄13 Bv(ρ)W−1 0 0 W−1

∗ Π̄22 0 0 W−TCT(ρ) 0 0
∗ ∗ Π̄33 0 W−TCh

T(ρ) 0 0
∗ ∗ ∗ −γ2 I W−T DT(ρ) 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ ∗ Π̄77


< 0, (27)

where
Π̄11 =− (W−1 + W−T),

Π̄12 =W−T P(ρ)WT + (A(ρ) + B(ρ)K(ρ))W−1,

Π̄13 =Ah(ρ)W−1,

Π̄22 =W−T

(
−P(ρ) +

s

∑
i=1

τi
∂P(ρ)

ρi
+ Q(ρ)

)
W−1,

Π̄33 =−
(

1−
s

∑
i=1

τi
∂h(ρ)

ρi

)
W−TQ(t− h(ρ))W−1,

Π̄77 =−W−T P(ρ)W−1.

Let matrix X(ρ) = W−T P(ρ)W−1, Y(ρ) = W−TQ(ρ)W−1, V = W−1, P̄(ρ) = P−1(ρ), (26) is obtained,
and K(ρ) = R(ρ)V−1. Proof is completed.
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4. Simulation Results

For following simulation, the grid and inverter parameters are chosen as follows: vd = 400V,
vd = 0V, Vin = 750V, L = 0.002H, r = 0.004Ω, ω = 314rad/s. These values are chosen to comply
with European low voltage grid, which has a voltage of 400V, a frequency of 50Hz, with small line
resistance and inductance. The matrices of the LPV inverter model (2) are as follows:

A(ρ) =

− r
L
+ 0.1ρ1(t) −ω

ω − r
L
+ 0.1ρ1(t)

,

Ah(ρ) =

− r
L
+ 0.1ρ2(t) −ω

ω − r
L
+ 0.1ρ2(t)

,

B(ρ) =

 1
L
+ 0.1ρ1(t)

1
L
+ 0.1ρ1(t)

, Bυ(ρ) =

[
0.2 + 0.1ρ1(t)
0.1 + 0.1ρ2(t)

]
,

Bω(ρ) =

[
1.4 + 0.1ρ1(t) 1.0 + 0.2ρ1(t)

0.7 0.9

]
,

C(ρ) =

[
1.2 + 0.2ρ1(t) + 0.1ρ2(t)

0.8

]T

,

Ch(ρ) =
[
0.6 + 0.1ρ1(t) + 0.1ρ2(t) 0.4

]
,

D(ρ) =1 + 0.1ρ1(t) + 0.1ρ2(t), h(ρ) = 0.01ρ2(t),

where ρ1(t) = sin(t) and ρ2(t) = |cos5t| are time-varying parameters, satisfying ρ1(t) ∈ [−1, 1],
ρ2(t) ∈ [0, 1], τ1 ∈ [−1, 1], and τ2 ∈ [−5, 5]; h(ρ) is the parameter varying delay with a bounded
varying rate. The initial states are set as x(t) = [1.0,−1.0]T , where t ∈ [−1, 0].

To deal with the problem of infinite LMIs to be solved during controller synthesis, gridding
technique and basis functions should be adopted. The basis functions are chosen as f1(ρ) = 1, f2(ρ) =

ρ1(t), f3(ρ) = ρ2(t), leading to R(ρ) = ∑3
j=1 f j(ρ)Rj, F(ρ) = ∑3

j=1 f j(ρ)Fj, therefore the controller
synthesis problem becomes finding matrices Rj(j = 1, 2, 3) and Fj(j = 1, 2, 3) to satisfy (10), (16), (21),
and (26).

4.1. Stabilization

The state feedback control K(ρ) is designed to ensure that system (4) is asymptotically mean
square stable. By solving the conditions in (10) in Proposition (2), it is obtained that,

R1 =10−26

[
0.1402 0.0557
0.0557 0.1030

]
, R2 = 10−28

[
0.3142 0.2191
0.2191 0.1663

]
,

R3 =10−28

[
0.5181 −0.5006
−0.5006 0.5802

]
,

F1 =10−26
[
−0.1251 −0.1250

]
,

F2 =10−28
[
−0.1031 −0.0825

]
,

F3 =10−28
[
−0.4335 −0.4369

]
.

K1 =
[
−0.5222 −0.9310

]
, K2 =

[
0.2204 −0.7866

]
,

K3 =
[
−9.3997 −8.8628

]
.
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Figure 2-(a) shows the state response of one arbitrarily chosen set, which means a random set of
currents can be controlled to a certain reference. Figure 2-(b) shows the state response of ten arbitrarily
chosen sets, which shows that the states of all the sets converge to zero. As can be seen, the stochastic
phenomenon can influence the trajectories of currents, but does not affect the stability. Therefore, the
time-delayed LPV inverter system is asymptotically stabilized under the stochastic perturbations.

(a)

(c) (d)

(b)

Figure 2. Stabilization: (a) one set of state response without slack matrix; (b) ten sets of state response
without slack matrix; (c) one set of state response with slack matrix; (d) ten sets of state response with
slack matrix.

4.2. Stabilization with Slack Matrix

Using slack matrix technique and solve the conditions in (16) in Theorem 1, it is obtained that:

V =10−28
[
0.2004 0.1983; 0.2192 0.2194

]
,

R1 =10−26
[
−0.2288 −0.2284

]
,

R2 =10−28
[
−0.1545 −0.1342

]
,

R3 =10−30
[
0.2733 0.2741

]
.

K1 =
[
−28.4143 −78.3968

]
, K2 =

[
−8.8494 7.3862

]
,

K3 =
[
−0.0018 0.0141

]
.

Similar as in the previous subsection, Figure 2-(c) shows the state response of one arbitrarily
chosen set, and Figure 2-(d) shows the state response of ten arbitrarily chosen sets. As can be seen,
with the controller obtained by adopting slack matrix, the currents converge to the equilibrium with
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faster speed, compared to the controller obtained in previous subsection, which demonstrates the
advantage of slack matrix technique.

4.3. Disturbance Attenuation

Let’s consider in the system a disturbance signal v(t) = 1/(1 + 0.5t2). Then, the state feed-
back control K(ρ) is designed to ensure the system (2) is stabilized and achieves some disturbance
attenuation index γ. By solving the conditions in (21) in Theorem 2, it is obtained that,

R1 =

[
0.0846 0.0846
0.0846 0.0847

]
, R2 =

[
−0.0033 −0.0035
−0.0035 −0.0037

]
,

R3 =

[
−0.0111 −0.0111
−0.0111 −0.0111

]
, F1 =

[
−0.3018 −0.3017

]
,

F2 =
[
−0.0023 −0.0019

]
, F3 =

[
0.0031 0.0031

]
.

K1 =
[
−3.8245 0.2580

]
, K2 =

[
−65.2790 62.5179

]
,

K3 =
[
1.3953 −1.6769

]
.

With this controller, the currents converge to equilibrium and the system is stabilized under stochastic
perturbations, as shown in Figure 3-(a) and Figure 3-(b), and the achieved disturbance attenuation
index is γ is 21.4113.

(a)

(c) (d)

(b)

Figure 3. Disturbance attenuation: (a) one set of state response without slack matrix; (b) ten sets of
state response without slack matrix; (c) one set of state response with slack matrix; (d) ten sets of state
response with slack matrix.
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4.4. Disturbance Attenuation with Slack Matrix

Similar to Section 4-C, let’s consider in the system a disturbance signal v(t) = 1/(1 + 0.5t2). By
solving the conditions in (26) in Proposition (5), it is obtained that,

V =
[
0.1136 0.1150; 0.1167 0.1185

]
,

R1 =
[
−0.1501 −0.1500

]
, R2 =

[
0.0075 0.0076

]
,

R3 =
[
0.0012 0.0012

]
,

K1 =
[
−5.8506 4.4128

]
, K2 =

[
−0.0117 0..0758

]
,

K3 =
[
0.0369 −0.0260

]
.

Applying the controller to the inverter system, as shown in Figure 3-(c) and Figure 3-(d), the
currents converge at faster speed, comparing to the controller obtained without adopting slack matrix
technique. Furthermore, the achieved disturbance attenuation index γ is 12.0578, which is smaller
than the previous method. These results again demonstrate the advantage of slack matrix technique.

5. Conclusions

A stochastic LPV approach has been proposed to control the three-phase two-level inverter. The
time-delayed stochastic LPV system is first established, for which the analysis and synthesis of the
system are carried out. With the parameter-dependent Lyapunov functionals, sufficient conditions
have been proposed for stability analysis and control synthesis in terms of parameter-dependent LMIs.
The slack matrix approach has been used to derive a new set of stability LMIs, which improves the
feasibility and reduces the conservatism of the solution. The theoretical results are verified on the
inverter, whose currents are controlled to reach the equilibrium point. Simulation results validate the
effectiveness of the proposed theories and demonstrate the advantages of adopting a slack matrix, in
terms of faster state response and lower disturbance attenuation index.
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