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Abstract: The encapsulation of particular quality functions and predicates within temporal logic formulas
markedly enhances the representation of detailed temporal characteristics within a system. During our
preliminary investigations, we innovatively combined quality constraint functions and predicates with
Possibility Linear Temporal Logic (PoLTL), yielding the conception of Fuzzy Linear Temporal Logic with
Quality Constraints (QFLTL). This amalgamation results in a significant elevation of QFLTL’s expressivity
relative to POLTL, ensuring the preservation of informational integrity whilst achieving a synchronized, yet
selectively inclined, and exact consolidation of path reachability specifics alongside property satisfaction
evaluations. This treatise represents a significant contribution to the field by integrating quality constraint
functions and predicates into Possibility Computation Tree Temporal Logic (PoCTL), thus giving rise to Fuzzy
Computation Tree Temporal Logic with Quality Constraints (QFCTL). We provide a comprehensive definition
of QFCTL's syntax, conduct an in-depth analysis of its logical characteristics, outline a precise model checking
algorithm for QFCTL, and perform a meticulous complexity assessment of said algorithm. Moreover, by
enriching QFCTL with a quantitative characteristic predicate operator, we innovate, culminating in the
development of an enhanced Fuzzy Computation Tree Temporal Logic with Quality Constraints (QFCTL*).
The treatise explores the logical facets of QFCTL*, formulates a bespoke model checking algorithm for QFCTL¥,
and conducts a rigorous analysis of its algorithmic complexity. To attest to the practical utility and robust
expressive power of QFCTL and QFCTL*, we present a model checking example that serves as empirical
evidence of the efficacy of the proposed model checking algorithms.

Keywords: quality function; quality predicate; QFCTL; QFCTL*; model checking

MSC: 68T37 Reasoning under uncertainty in the context of artificial intelligence

1. Introduction

Model checking [1,2] is a cornerstone in formal verification, prominently featuring model
checking for Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). The automation
inherent in model checking has facilitated its widespread adoption in the analysis and validation of
software and hardware systems[3-5], communication protocols[6,7], and security protocols[8,9],
achieving commendable outcomes. As computer systems grow in scale and complexity, practical
systems increasingly exhibit quantitative behavioral attributes. Multi-agent systems [10-13], for
instance, feature intricate dynamic structures and behavioral patterns that require the integration of
quantitative information for an accurate portrayal of their dynamic behavior. In addressing the
verification challenges posed by systems endowed with quantitative data, quantitative model
checking methodologies have piqued considerable interest from academic and industrial circles alike.
Hart et al. [14,15] pioneered probabilistic model checking, rooted in probability measures, employing
Markov chains or Markov decision processes to model system behaviors and probabilistic
computation tree logic or probabilistic linear temporal logic to define system properties. Sultan et al.
[16,17] extended the probabilistic framework to multi-agent systems, introducing probabilistic multi-
agent model checking. Chechik et al. [18,19] explored model checking for CTL and LTL on multi-
valued Kripke structures, where values reside within a finite De Morgan algebra. Moreover, Li
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YongMing et al. established the theoretical foundation for possibility temporal logic and its
applications in model checking. Literature [20] proposed Possibility Computation Tree Temporal
Logic (PoCTL) and investigated its expressiveness. It was proven that PoCTL, particularly qualitative
PoCTL, is more expressive than CTL. Equivalences for expressing fundamental CTL formulas using
qualitative PoCTL formulas were provided. Some PoCTL formulas that cannot be expressed by any
CTL formula were given. Qualitative properties of repeat accessibility and persistence were
represented with PoCTL formulas. A model-checking approach for PoCTL based on fuzzy matrix
composite operations and fixed-point techniques was presented, and the time complexity of the
algorithm was analyzed. Literature [21] introduced the theory of generalized possibility measures
and Generalized Possibility Kripke Structure (GPKS). Generalized Possibility Computation Tree
Temporal Logic(GPoCTL) was proposed, with its syntax and semantics defined. A model-checking
method for GPoCTL based on fuzzy matrix composite operations and fixed-point techniques was
provided, and the time complexity of the algorithm was analyzed.

Quality constraints serve to delineate specific quality requisites that systems or computation
trees must satisfy [22,23]. These requisites encompass a spectrum of performance metrics—such as
response time and throughput—reliability metrics—such as failure rates—and security metrics. In
our pioneering research pursuits, we innovatively amalgamated specific quality functions and
predicates into Possibility Linear Temporal Logic (PoLTL), culminating in the proposition of Fuzzy
Linear Temporal Logic with Quality Constraints (QFLTL) [24]. QFLTL empowers the articulation of
a system's more intricate temporal attributes. These functions and predicates are meticulously
defined based on the system's empirical operational data or projected objectives, yielding fuzzy truth
values indicative of quality levels. The introduction of quality constraints significantly bolsters
QFLTL's expressive capabilities in several facets: (1) Departing from PoLTL's singular information
amalgamation operator, the minimum "A", QFLTL introduces an enhanced repertoire of information
aggregation operators, encompassing minimum "A", product "", and the weighted average operator
"®,". This innovation effectively mitigates the issue of information erosion. (2) The weighted average
operator "®," enables a preference-sensitive integration of path reachability insights and property
satisfaction measures or the synthesis of disparate property subformulas, facilitating the delineation
of more nuanced temporal properties. (3) The linear differential operators A.y,(:), An.(*) and A.¢(),

"o

coupled with the quality predicate " P ", can impose quality constraints on property formulas
grounded in anticipated objectives, thereby enriching the portrayal of diverse system quantifiable
properties. (4) By recursively defining formula satisfaction values onto path segments that meet
property conditions, it ensures the synchronous alignment of path reachability and property
satisfaction. These enhancements have been empirically validated in reference [24].

Building on the robust foundation established by QFLTL research, we introduce quality
functions and quality predicates into PoCTL, culminating in the proposition of QFCTL. We delve into
its logical characteristics and investigate the model checking theory of QFCTL on Fuzzy Kripke
Structure(FKS). Section 2 delineates the syntax and semantics of QFCTL, illustrating its robust
expressive capabilities and practical utility through instructive examples. Section 3 explores the
intricate logical properties of QFCTL, encompassing the equivalence calculation and partial order
relations of its formulas, the functional completeness of QFCTL operators, and the fundamental
properties and determination of the characteristic predicate operator Qp(-), which delineates the
fulfillment characteristics of property formulas under the constraint of quality predicate P on
pertinent paths, indicating full, none, or partial satisfaction. Section 4 focuses on the model checking
problem of QFCTL on FKS. By ingeniously reducing the computation of QFCTL formulas from
infinite to finite paths, we introduce a model checking algorithm with a time complexity proportional
to the product of the QFCTL formula's length and the FKS's scale, and a space complexity equivalent
to the FKS's scale. The reasonableness and complexity of the algorithm are rigorously substantiated.
Section 5 builds upon QFCTL by introducing the quantitative characteristic predicate operator Qz(.),
leading to the proposal of QFCTL*. We investigate the logical properties of QFCTL*, provide a
determination theorem for the operator Qp(.), which describes the fulfillment status of property
formula ¥ under the constraint of quality predicate P on pertinent paths, signifying the ratio of
paths satisfying ¥ under P constraint among all paths satisfying 1. We prove the well-defined
nature of Qp(.), delineate the model checking algorithm for QFCTL*, and conduct a thorough
analysis of the algorithm's complexity. Section 6 presents model checking application examples of
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ten illustrative QFCTL formulas and QFCTL* formulas on the FKS that characterizes the patient
treatment process, as outlined in reference [24]. Through these applications, we vividly demonstrate
the robust expressive capabilities and practical applicability of QFCTL and QFCTL*. Simultaneously,
the automatic and effective nature of the model checking algorithms for QFCTL and QFCTL*
presented in the paper is empirically validated. Conclusively, in Section 7, we summarize the primary
research content of the article and outline some meaningful research directions pertaining to
temporal logic with quality constraints and its reasoning problems.

2. The Syntax and Semantics of QFCTL

We introduce these quality functions and quality predicates into PoCTL to propose QFCTL, and
present the syntax and semantics of QFCTL.

2.1. The Syntax of QFCTL

In a concerted effort to enhance the paper's reachability and readability, we will first revisit the
fuzzy propositional operators delineated in reference [24].

Definition1(Fuzzy Operations [24]) Vx,y,A € [0,1], the fuzzy propositional operators are defined as
follows:

@ Acp(x) =1x

2) Apex)=2A-x+1-4

B) Af()=2-x+(1A-1)/2;

4) —x=1-x;

(5) xAy=min{x,y};

(6) xVvy=max{x,y};

7) x—=y=max{l—x,y}

8 x®y=2-x+1A-1)-y.

Adhering to the syntactical blueprints established by CTL, FCTL, and PoCTL, QFCTL's
formulaic structure should incorporate basic propositions, logical conjunctions (such as AND, OR,
NOT), path quantifiers (including EXISTS, FOR ALL), and a suite of temporal operators (comprising
NEXT, GLOBALLY, EVENTUALLY, UNTIL, and the like). Building upon this robust framework, we
incorporate the fuzzy propositional operators meticulously explicated in reference [24]. We augment
this foundation with the introduction of the characteristic predicate operator Qp(*), a critical quality
constraint operator. This operator intricately delineates the fulfillment characteristics of property
formulas under the constraint of quality predicate P on pertinent paths, signifying scenarios
encompassing full satisfaction, none satisfaction, or partial satisfaction, thereby significantly
amplifying QFCTL's expressive capacity.

The syntactic form of QFCTL is defined as follows.

Definition 2 [Syntax of QFCTL] Let AP denote a set of atomic propositions, and Q represent the
set of rational numbers. APR < [0,1] N Q signifies a finite set of fuzzy propositional constants. Univariate
fuzzy propositional logic operators are symbolized by A€ {—, Acp, Ane, Acr}, and bivariate fuzzy propositional
logic operators by A€ {A\,V,—,®;}. Temporal logic operators are designated by A€ {O, 0, J}. The
universal path quantifier is denoted by V preceding a path formula, and the existential path quantifier by 3
preceding a path formula. Quality predicates are represented by P € [0,11 N Q, and Qp(-) signifies the
characteristic predicate operator.
QFCTL state formulas ¢ are recursively defined over AP U APR as follows:
(1) An atomic proposition p, where p € AP, is a QFCTL state formula.
(2) A propositional constant r, where v € APR, is a QFCTL state formula, with special cases for v = 0
corresponding to “False” and r = 1 to "True”.
(3) Formulas Ay @, @1 A, @aare QFCTL state formulas, where @, @4, @, are QFCTL state formulas.
(4) Expressions Yy, 3, Qp(yp) are QFCTL state formulas, where 1 is a QFCTL path formula.
QFCTL path formulas v are recursively defined as follows:

(5) A QFCTL state formula ¢ is a path formula.
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(6) Formulas A, @, U @, are QFCTL path formulas, where @, @4, @, are QFCTL state formulas.

To facilitate discussions regarding the complexity of the QFCTL model checking algorithm, the
concept of a QFCTL formula's length is defined as follows.

Definition 3 [Length of a QFCTL Formula] Let ¢ be a QFCTL state formula. The length of ¢, denoted as
lpl, is defined recursively as follows,

@ Ipl=Irl=1

@) 1Al =lel+1;

B) o1 g @a] = lo1| + @l +1;

@) IVArLel =13 410l =1Qp(A1 @) = [VAp| = |34¢| = [Qp(Ap)| = 9| + 1;

() IV(p1 22 92)| = 13(p1 22 @2)| = 1Qp(@1 L2 @2);

= |V(p1U@2)| = [3(p1Ue2)| = [Qp(@1U@2)| = lo1] + |oo| + 1.

Note 1: The focus on state formulas when defining the length of QFCTL formulas is due to the model checking
process which assesses the satisfaction value of formulas in specific states. Path formulas are integral
components, nested within state formulas. According to Definition 2, part (4), path formulas 1 are structured
as state formulas under the constraints imposed by quantifiers and characteristic predicates.

Example 1. Given an atomic proposition set AP = {request, grant}, consider the QFCTL formula below,
@ = vo(request — 30(grant @;,,Ogrant) A —(4/5).,(VO-request))

The process for computing the length of formula ¢ is as follows,

lo| = (Jrequest — 30 (grant ®;,,Ogrant)| + 1) + (|vO-request| +2) + 1

= |request — IO(grant ®3/4Ogrant)| + |VO-request| + 4

= (1+|30(grant 693/4Ogrant)| + 1) + (1 + |—request|) + 4

= |30 (grant 693/4Ogrant)| + |—request| + 7

= (1+ |grant @;,,Ogrant|) +2+7

= |grant ®;,,Ogrant| + 10

=1+ |Ogrant| + 1+ 10

= |QOgrant| + 12

= 14.

2.2. The Semantics of QFCTL

The semantics of QFCTL is anchored in fuzzy Kripke structures, wherein propositions are
mapped onto states via a fuzzy valuation function to determine fuzzy truth values. For a QFCTL
formula, its truth value at a particular state is determined by recursively computing the truth values
of its constituent subformulas. Let's begin by revisiting the definition of a Fuzzy Kripke Structure
(FKS), essential for grounding our understanding of QFCTL's semantic framework.

Definition 4 [Fuzzy Kripke Structures (FKSs)1[24]. An FKS is a tuple M = (S,1, 6, AP, L), where,

(1) S is afinite set of states;

(2) The fuzzy distribution I:S — [0,1] represents the fuzzy set of each state as the initial state;

(3) 8:S xS — [0,1] represents the fuzzy transition relationship between system states;

(4) AP is aset of finite atomic propositions;

(5) L:S — [0,1]4P is a state label function that characterizes a set of fuzzy atomic propositions.

Definition 5 [path and path reachabilityl. Suppose M = (S,1,6,AP,L) is an FKS, where a path m isa
state sequence T = Tro, Ty, , T, My, € S®, and L(mw) € [0,1]4F represents a set of fuzzy atomic
propositions as a fuzzy label function. VYp € AP,i € N (where N represents the set of natural numbers)

L(m)(p) € [0,1] represents the fuzzy atomic proposition induced by atomic proposition p on state ;.
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Tl =1, Typq, - € S© represents a path starting from state ;. The recursive definition of path reachability is

as follows.

) _ 1(my) i =0;
6i(m) = {51'*-1(70 A 50(7Ti—1:”i) £>0.

where §; () represents the reachability of the path fragment my,my, -, m;. This reflects the idea of
the “barrel principle”, which states that the overall reachability of a path is determined by the
minimum reachability of any path fragment. When i — +®, §% () represents the reachability of
the infinite path m = my, 7y, -+, 7w, W44, -+ € S,

Path(M) = {m|m € §*,1(my) > 0} is the set of infinite paths in M. For every state s within S,
Path(s) = {m|m € §®,s = my} signifies the collection of all infinite paths m starting at s, whereas
Child(s) = {s'|6(s,s") > 0} designates the ensemble of states s’ that are immediately accessible
from state s, as defined by the transition function 4.

For every i belonging to the set of natural numbers N , determine the fulfillment value of the
QFCTL state formula ¢ over the path segment denoted by 7! = 1, 7;,4, - € S® within the infinite
sequence of states S*. This involves synthesizing the path reachability &;(m) of the path from the
initial state m, up to the current state m; with the fulfillment value of the formula ¢ at state ;.

Definition 6. [Semantics for QFCTL] Let M = (S,1,6,AP,L) be a Fuzzy Kripke Structure (FKS), where
P €[0,1] n Q signifies a quality predicate. Let ¢ represent a QFCTL state formula and 1 a QFCTL path
formula. The semantics of QFCTL can be characterized by a fuzzy function: [M, ¢]:S — [0,1]. Employing an
information fusion operator o€ {A, -,@,}, facilitates the combination of fuzzy truth values. The interpretation

[-] is recursively defined as follows,

1) [s,rl=r;

@) [s,p] = L(s)(p);

©G) [s.81 (@] =44 ([s, D);

4) [[5;_(1’1 Ay o] = [s, 011 2, s, @21

6) [rie] = & o [m ol

© [7',O9)] = [r"*" ¢];

) [ om)] = ]_\z/i[[ﬂ’xp]];

® [*.00)]= Al el

© [ eiuea] =V (Ir 0l a I 0.0);

=i

10) vyl = A [yl

1D [s3yl=__ Vv [m9y];

mEPath(s)
i 1 V1 € Path(s), [m, Y] € P;
(12) [s,Qp(¥)] =40.5 3m, n' € Path(s), [, Y] € PA[n',¢] € P;
0 V1 € Path(s), [, ] ¢ P.

Note 2: (1) If the quality constraint operators Acy (), Ane(-) and A (+), the quality property predicate operator
Qp (), are removed from QFCTL, and the information fusion operator "o” is restricted to "A" only; then QFCTL
degrades to PoCTL. It is evident that the set of PoOCTL formulas constitutes a true subset of the set of QFCTL
formulas.

(2) The semantics of QFCTL state formulas, excluding those that contain the quality property predicate
operator Qp(+), are directly defined on the current state without considering path reachability. Essentially, they
are interpreted as fuzzy propositional logic.

(3) The semantics for QFCTL formulas are recursively defined over paths, with the fifth clause of
Definition 6 serving as a pivotal base case in the recursive definition. Formally, it appears as if the path

reachability information &; () is synthesized onto the path segment ' only when the QFCTL path formula
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is distilled to its core—a state formula . This information does not seem to feature in other recursive cases.
However, the innermost component of any QFCTL formula is invariably a state formula. Consequently,
irrespective of the superficial form of the QFCTL formula, the path reachability information will inevitably be
synthesized through the process of recursive iteration. To superimpose 8; (r) at each level of the formula would
introduce redundancy in reachability information and lead to informational asynchrony, thus compromising

the integrity of the recursive structure.

As an example, let us examine the computation of semantics for the "LI" operator,
[r.oue] = ¥ ([w,0:] 7 P Is0il) = V(6@ e [y pa] A A 5im) o [mio 011

"nen

The information fusion operator "" encapsulates the essence of the multiplicative principle. In
the quest for the truth value of the QFLTL formula ¢ on the path ©’ = 7,744, - € S®, one initiates
the process by computing the path reachability §;(m) of the prefix path, spanning from m, to ,m;.
Subsequently, this value is multiplied by the satisfaction value [r;, ¢] of the formula at 7!, ensuring
a methodical integration of path reachability and formula satisfaction. The information fusion
operator "®,", on the other hand, embodies the philosophy of weighted averages. It calls for the
sophisticated amalgamation of path reachability and formula satisfaction values, calibrated
according to distinct weights, thereby facilitating a nuanced understanding of formula satisfaction
across the path.

2.3. Exemplary Illustrations of QFCTL’s Practicality

QFCTL formulas embody a rich expressive capacity. Reflect on the QFCTL formula delineated
in Example 1:

¢ = V[ (request — 30 (grant @3,,Ogrant) A =(3/4),(V1-request)).

Upon confining the atomic propositions 'request' and 'grant' to Boolean values of 0 or 1, ¢
elucidates the process's unvarying adherence to the stipulation that, post-request initiation
("request"), there is a temporal sequence in the future where permission is conferred ("grant ").
Should permission be granted consecutively twice, the satisfaction value materializes as 1; if granted
solely once, the satisfaction value is assuredly not less than 1/4. Conversely, should the process
abstain from initiating a request, the satisfaction value is no less than 1/5.

When the atomic propositions 'request’ and 'grant' assume values over a more extensive
domain, and with due consideration paid to varying degrees of path reachability, ¢ furnishes an
array of values. These disparate values encapsulate distinct process execution trajectories, manifestly
evidencing that QFCTL wields a more copious expressive potential than PoCTL.

Example 2. Figure 1 illustrates the Fuzzy Kripke Structure (FKS), as delineated in reference [24], which
characterizes the evolution of a patient’s health condition throughout treatment. The atomic propositions
‘poor’, ‘fine’, "excenllent’ embody the patient’s health status, with each state assigning a fuzzy value within
the specified interval [0,1] to these propositions, thereby representing a fuzzy proposition. For example, the
assignment s;(e) = 0.5, signifies that when the patient is in the state s,, their health status has a 0.5
possibility of being “excellent”. The orientation of the directed edges delineates the direction of state transition,
and the fuzzy values inscribed upon these edges denote the possibilities of transition between interrelated states.
Notably, the sole initial state is identified as s,.
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Figure 1. The FKS M for the patient's treatment process.

The subsequent QFCTL formulas are presented, accompanied by their detailed semantic
interpretations:

@, = 30(0.8,¢(e)) delineates the maximal possibility that, among all therapeutic alternatives in
the medical treatment course, the patient's ultimate health status will be "excellent" with a possibility
of not less than 0.8.

@y = VO (0.8.£(e)) signifies the least possibility that, among all therapeutic alternatives in the
medical treatment course, the patient's ultimate health status will be "excellent” with a possibility of
not less than 0.8.

@3 = 30(fDy4€) encapsulates the highest possibility that, within all therapeutic alternatives,
the patient's health status will consistently satisfies the "fine" condition with a 40% weightage,
simultaneously alongside the "excellent" condition with a 60% weightage.

@, = VO(f®p4e) illustrates the least possibility that, within all therapeutic alternatives, the
patient's health status will persistently adhere to the requirement of being "fine" with a 40%
weightage and "excellent” with a 60% weightage.

s = 3(0.5,.(f)Lle) delineates the maximal possibility that the patient's health status will
remain "fine" with a necessity not exceeding 0.5 until it transitions to "excellent."

@6 = V(0.5,.(f)Ue) signifies the least possibility that the patient's health status will remain
"fine" with a necessity not exceeding 0.5 until it transitions to "excellent."

@7 = Q>03(0.8.£(e)) delineates the fulfillment condition (whether entirely, partially, or not at
all) for the possibility of the patient's health status being "excellent" with a possibility of not more
than 0.8, with a likelihood of not less than 0.3 across all therapeutic alternatives.

@g = Qs05(f@o4e) encapsulates the fulfillment condition for the possibility that the patient's
health status will consistently comply with the requirement of being "fine" with a 40% weightage and
"excellent" with a 60% weightage, with a likelihood exceeding 0.5 across all therapeutic alternatives.

@9 = Q506(0.5,.(f)LUe) delineates the fulfillment condition for the possibility that the patient's
health status will remain "fine" with a necessity not exceeding 0.5 until it transitions to "excellent,"
with a likelihood exceeding 0.6 across all therapeutic alternatives.

It is abundantly clear that these temporal properties with quality constraints exceed the
expressive capabilities of PoCTL.

3. The Relations and Attributes of QFCTL Formulas.

Initially, we delineate the notion of relationships between QFCTL formulas.
Definition 7 [Relationships Between QFCTL Formulas] Let ¢, ¢4, ¢, denote QFCTL state
formulas and v, Y4, P, denote QFCTL path formulas. Consider M = (S,1,5,AP,L) to be a FKS,
where Path(M) = {r|m € S®,I(my) > 0} is the set of infinite paths in M. Let “~" represent a relational
operator, which may be selected from the set {>,<,>,<,#,=}. The relations among QFCTL formulas are
delineated as follows:

(1) I for every state s € S, the evaluation [Is, p1]~[s, @,], then @, is deemed to be in relation “~ " with
@, indicated as @;~@,.

(2) If for every path mw € Path(M), the evaluation [, ,]~[m,,], then P, is deemed to be in relation
“~ " with ,, indicated as P, ~P,.

Subsequently, our research expedition advances towards the meticulous examination of the
distinctive logical attributes intrinsic to Quantified Fuzzy Computation Tree Logic (QFCTL). As a
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pivotal pillar within its own theoretical architecture, this in-depth exploration is paramount for
enhancing comprehension of the fundamental logical mechanisms that underpin this specialized
field.

Theorem 1 [Equivalence Calculus of QFCTL Formulas] Let ¢, ¢4, @, be state formulas in QFCTL, and
M = (S,1,6,AP,L) be an FKS. Then the following conclusions hold:

D) ¢ =--e;

@) Ap(@) = 22ne(29), Ane (@) = 2acp(—9);

(B) Ane(@) = @®sTure, Ap(@) = Ap(9) + (1 = 21)/2;
(4) 91102 = P2B1-291;

©B) P®i(@1 A p2) = (PD2901) A (9D1902), 9Oa(P1V @2) = (9D101) V (9Da902);
6) @1 APz ==(291V =92), 91V @r = (201 A=¢2);
(7) @1 = @2 =91V @y;

8) @ =Tureugp;

9) 3C¢@ =3(Tureu @), VO@ =V (Ture U ¢);

(10) 30¢ = ~VO-¢, VOp = =30-0¢;

(11) I = avO—p, Ve = =30-¢;

(12) Op = =2(O=¢), O¢ = =(0=9), 09 = ~(H-¢);
(13) 9 =9V O0e,Op =9 AOlep;

(14) @1 U@z = @5 V (91 A O(o1 U 93);

(15) V(@1 A @2) = VU@, AVU@y;

(16) I0(¢1 V @5) = 30, v I, ;

Proof: The above conclusions can be readily proven through straightforward calculations based on
Definition 6. Here, we provide proof examples for (2), (5), (14), (15), and (16) as follows.
Proof of Conclusion (2). For all s € S,

[s, = 2Ane (=) = 1 =[5, Ane ()]
=1-(A =D+ s, ~¢]) A (®)
=1-(A-D+2(1-[s ¢D)
= Als, 9] = [s, A (@)].
Therefore, 4, (¢) = =2, (—¢). By analogous reasoning, it can be shown that,
Ane (@) = =y (290).
Proof of Conclusion (5). Forall s € S,
[s, @2 (@1 A 92)] = ALs, @] + (1 = D([s, @11 A [s, 021D
= @As, el + A = Ds, 1D A (ALs, o] + (1 = Ds, 92

=[5, @011 A [5, 0D 01].
Therefore, ¢@;(¢p1 A @,) = (@®,91) A (@®,¢9,) . By analogous reasoning, it can be shown

that, o@,(¢, V @,) = (99,9,) V (99,9,).
Proof of Conclusion (14). For all m € Path(M), i € N,
[ @2 v (@1 A O (o1 U 03)]
= [[Tfi: ‘Pz]] \% [[”i' @1 A O(p, U ‘Pz)]]
[[”i; (Pz]] v ([[”i; §01]] A [[”i; O, U §02)]])
[[Tfi' ‘Pz]] \% ([[Tfi' ‘P1]] A |I7Ti+1, e, u ‘Pz]])
= [[Tfi: ‘Pz]] \% ([[Tfi' ‘Pl]] A j2\141([[nj' ‘Pz]] A i+1/5\k<j[[7fk' o))
= [[”i; (Pz]] v ]_Z\L_/Jrl([[”j' Q”z]] A ([[”iKPJ] A i+1/s\k<]_|I7Tk; »:1))
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= e:lv v Aw.ea] A A T 0D
=([[7ti,<p2]]/\Ture)V V ([[nj goz]]/\ /\ [[T[k D)

= (" 2] A A I m)v v ([[nf (Pz]]/\ SESTN)
- sz/i([[nj,(pzl] A isé\q[[n <P1]])

=", 01 L o,].
Conclusion (14) Established.
Proof of Conclusion (15). For all s € S,

[s, vO(@1 A @r)] = h th( )[[77 U(p1 A 92)]
= T[EPath(S)Lé\O[I:T[ $1 A (Pz]]

= (A [[n gol]] A /\ [[n (pz]])

nEPath(s) i20

B (”EPath(S)lé\Oﬂn qul]]) A (nePz/z.}:h(S)Lé\Oﬂn QDZ]D
_ nepath(s)[[n Ui A eP/\h )[[n [, Oo,]]

= [s,vlei] Als, vQe,]

= [s, V@, AVUe,].

Conclusion (15) Established.

The proof for Conclusion (16) is identical to that of Conclusion (15) and will not be repeated here.
This completes the proof of Theorem 1. o

Proposition 1. The set {—,V,®,, Qr(), 30,3 U,V U} constitutes a functionally complete set of operators for
QFCTL.

With the functionally complete set of operators for QFCTL, we only need to consider the
operators within this set during model checking.

Proposition 2 [Inequality Relations Among QFCTL Formulas] Let M = (S,1,5,AP,L) be an FKS, ¢
signifies a QFCTL state formula, and 1 denotes a QFCTL path formula. Then,

(1) Aep(@) < Acp (@) < Ay (@), with equality holding if and only if A = 1;
2 Op <O < Oy;
3) vy < .

The aforementioned conclusions can be readily proven by simple calculations according to
Definition 6.

The characteristic predicate operator Qp(-) qualitatively characterizes the relationship between
the satisfaction value of a QFCTL formula and a quality predicate P € [0,1] N Q. Below are the
properties and decision theorems for the characteristic predicate operator.

Theorem 2 [Fundamental Properties and Decisions of the Characteristic Predicate Operator] Let =
(S,1,6,AP,L) bean FKS,  denotes a QFCTL path formula. Let P = [a,§] € [0,1] be a quality predicate,
where P denotes the complement of P in [0,1], and v[s, ] = {[m, ¥]|r € Path(s)} represents the set of
satisfaction values of Y over all paths starting from state s € S. Then,

1) QW) + Q) = 1,0p(=¥) = Qs (¥);

(2) Qp(Y) =0 ifandonlyif Vip > or P < a;

B) Qp(W) =1 ifandonlyif a < VY <IFPY < B;

4) Qp(y) =05 ifandonlyif Vp <a<IP <L or a VY < < T,

Proof: (1) For all s € S, if [s,Qp(¥)] = 1, then for all © € Path(s), [r, ] € P. Consequently, for all
m € Path(s), [m, ] & P, where P denotes the complement of P. This implies [s, Qz(1)] = 0, so we
have Qp(¥) + Q5(y) = 1. Conversely, if [s,Qp(1)] = 0, then it follows that [s, Qs(y)] = 1, again
yielding Qp(¥) + Q5(¥) = 1.

For all s €S, if [s,Qp(¥)] = 0.5, then there exist m, ' € Path(s),[m, Y] € P and [n',y] ¢ P
simultaneously. Consequently, [s, Qz()] = 0.5. Therefore, Qp () + Q5(¥) = 1.
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This demonstrates that the sum of the predicates Qp(y) and Q5(y) is always unity, reflecting
the complementary nature of the sets P and P within the logical framework defined.

For all s €S, if [s,Qp(=)] = 1, then for all m € Path(s), [n, =] € P. Consequently, for all
m € Path(s), 1 — [n,9] € P, which implies [r,3] € P. Thus , [[s, QI—,(IIJ)] =1= [[s, QP(—ﬂ/))]] )
Conversely, if [s,Qp(=3)] = 0, then [s,Qs(¥)] = 0, and also [s, Qs(¥)] = 0 = [[s, Qp (=9)].

Forall s € S, if [s,Qp(—p)] = 0.5, then there exist m, ' € Path(s),[m, ] € P and [n', -] ¢
P. This implies that [r,] € P and [r',3] € P. Hence [s,Qs(¥)] = 0.5. Therefore, [s, Q)] =
0.5 = [[s, Qp ()]

(2) First, prove the sufficiency. When Vi > 8, forall s € S, since < [s, VY] = A [m ],

mePath(s)
it follows that for all m € Path(s),[r,y] > . Given that f is the upper bound of P = [a, B], it

implies that for all w € Path(s), [r,y] & P. According to Definition 6, we conclude that [s, Qp(¥)] =
0. This intuitive result is illustrated in Figure 2.

I I

0 «a B v EL

Figure 2. Qp(y)) =0 when Vi > B.

When 3y < a, for all s €S, since a > [s,IP] = P\/th( )[[7T, Y], it follows that for all & €
TTEPa S

Path(s), [m, ] < a. Given that a is the lower bound of P = [a,f],, it implies that for all w €
Path(s), [m, ] & P. According to Definition 6, we conclude that [s, Qp(y)] = 0. This intuitive result
is illustrated in Figure 3.

| oz

6V1[J I a L1

Figure 3. Qp()) = 0 when 3P < a.

In fact, (2) corresponds to v[s,)JNP = &, which means that v[s,3]andP are disjoint.
Conversely, when proving the necessity, Qp(y)) = 0 corresponds to two scenarios depicted in Figure
2 and Figure 3, leading straightforwardly to the conclusion that either Vi) > f or 3y < a. Thus,
conclusion (2) is proven.

(3) First, prove the sufficiency. When a < Vi < 33 < g, forall s € S, ononehand, we have a <
[s, vyl = A [my], implying that for all m € Path(s),[m, 9] = a. On the other hand, § >

TEPath(s)
[s,3Y]= V [=y], implying that for all @ € Path(s), [rm,3] < . Consequently, for all n €

mEePath(s)
Path(s), [m, ] € P. According to Definition 6, we conclude that [s, Qp(¥)] = 1. This intuitive result

is illustrated in Figure 4. In fact, (3) corresponds to v[s,] € P, i.e., v[s, ] is contained within P.

0 a vy Iy B 1
Figure4. Qp(y) =1 when a <V <3P < f.

With reference to Figure 4, it is straightforward to demonstrate the necessity of conclusion (3).
Thus, conclusion (3) is proven.
(4) First, prove the sufficiency. When VY <a <3y <, for all s€S, on one hand, a >

s, vy] = P/\th( )[[n', 1], which implies that there exists @ € Path(s), so that [r,y] & P. On the other
mTEPa S

hand, from « < [s,3Y] < B, we know that a < th( )[[n, Y] < B, which indicates that there exists
mEeEPath(s
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7', € Path(s), so that a < [n/,] < B. . Therefore, there exists n',€ Path(s), so that [n’,)] € P.
According to Definition 6, we conclude that [s, Qp(3)] = 0.5. This intuitive result is illustrated in
Figure 5.

0 VY «a 3y B 1

Figure 5. Qp(1) = 0.5 when VY < a <3y < .

When a < Vi < B < 3J, similarly, it can be proven that Qp(y) = 0.5. This is intuitively
illustrated in Figure 6.

0 a v g Iy 1
Figure 6. Qp(¥) = 0.5 when a < VY < g < F.

In fact, (4) corresponds to the case where v[s,y] partially intersects with P. With reference to
Figures 5 and 6, the proof of the necessity of conclusion (4) is also evident.
Proof of Theorem 4 is complete. 0

Corollary 1. Let M = (S,1,6,AP,L) be an FKS, and 1 be a QFCTL path formula. When the quality
predicate P is an open or half-open interval, the conclusion (1) of Theorem 2 holds. The conditions for
conclusions (2), (3), and (4) can be slightly modified to yield the following conclusions:

When P = (a,B) c [0,1], we have:

(1) Qp() =0 ifandonlyif Vip = or Y < a;

(2) Qp() =1 ifandonlyif a <VY <3P < B;

B) Qp(¥) =05 ifandonlyif VP <a<IP <P or a <VYP < < Y.

When P = (a, 8] < [0,1], we have:

4) Qp(¥) =0 ifandonlyif Vip > f or Y < ;

G) Qp() =1 ifandonlyif a <VY <3P < B;

6) Qp(¥) =05 ifandonlyif VP <a<IP <P or a <VYP < < P,

When P = [a,f) < [0,1], we have:

(7) Qp() =0 ifandonlyif Vip = f or Y < a;

) Qp() =1 ifandonlyif a < VY <P < f;

9) Qp(¥) =05 ifandonlyif Vv <a<FP <P or a <VYP < < AP,

From Theorem 2 and Corollary 1, we know that the values of [s,3y] and [s, V] can be
computed first, and then the value of [s, Qp(¥)] can be derived.

4. Model Checking for QFCTL

The semantics of QFCTL are defined on FKS (Fuzzy Kripke Structures), incorporating quality
constraint operators and characteristic predicate operators. Compared to PoCTL model checking,
QFCTL poses additional challenges in three key areas. Firstly, when computing the semantics of
formulas, it integrates information from both path reachability degrees and satisfaction values of
system properties. This integration is not a binary choice but a synthesis based on different preference
requirements, undoubtedly increasing computational complexity. Secondly, the integration of these
two types of information necessitates constant synchronization, meaning that the satisfaction value
of a property on a specific path segment should be combined with the reachability degree of that
segment, rather than aggregating the satisfaction value of the property over the entire path and then
combining it with the overall reachability degree of the path. This synchronization requirement
further elevates computational difficulty. Lastly, quality constraints are applied to subformulas of
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properties to reflect the importance and preferences of different properties, which also adds to the
computational complexity. Therefore, explicit model checking for QFCTL cannot be conducted using
fuzzy matrix composition operations[20,21], as these operations are incompatible with quality
constraint computations. Fortunately, FKS are finite, with limited numbers of atomic propositions,
propositional constants, and quality constraint operators. By leveraging ideas from fixed-point
theory[18,19], we reduce the semantic computation of QFCTL on infinite paths to iterative
calculations within a finite number of steps.

4.1. Description of the Model Checking Problem for QFCTL

Analogous to the model checking problem for PoCTL, the model checking problem for QFCTL
can be described as follows. Let ¢ be a QFCTL state formula, and M = (S,1,8,AP,L) be an FKS
(Fuzzy Kripke Structure). Let P € [0,1] N Q denote the quality predicate, and APR S [0,1]N Q be a
finite set of fuzzy constants. The model checking problem for QFCTL involves computing the value
of [s, ] for all s €S such that I(s) > 0. For QFCTL, the model checking problem is extended to
compute the truth values of formulas that incorporate quality constraint functions and characteristic
predicates, thus necessitating a different model checking approach.

From Proposition 1, it is known that{-,v,®;, Qp(-),30,3 U,V U} constitutes a functionally
complete set of operators for QFCTL formulas. According to Definition 6, the operators —,v
,@; and 30 can be directly evaluated on the current state or the current state along with its
immediate successor state to obtain solutions. Therefore, it suffices to provide algorithms for solving
QFCTL formulas with the operators Qp(:),3 U,and V U. Theorems 2 and Corollary 1 can serve as
decision theorems for model checking with the operator Qp(:). For any path formula ¥ and quality
predicate P, by solving for [s,3y] and [s,Vvy] for all s € S, we can obtain the value of [s, Qp()].
Hence, the core problem of QFCTL model checking lies in computing the truth values of QFCTL
formulas with the operators 3 U and V L. We reduce the computation of these two operators to
finite paths, and the QFCTL model checking problem can be solved through a finite number of
iterations.

For all n € N, the semantics of the "bounded until" operator are defined as follows:

[m o, Uh @] = V ([[ﬂi.goz]]/\os/]_\d[[ﬂ".wl]])

0s<i<n
= VG e lme) A A 6@ e [m o).
The following theorem provides the basis for iteratively solving the model checking problem for
QFCTL formulas with the operators 3 L and V U within a finite number of steps.

Theorem 3. Let ¢, and ¢, be QFCTL state formulas, and M = (S,1,6,AP,L) be an FKS. Then the
following conclusions hold:

(1) 3(p1 U @) = (e, UK @,);

(2) V(91 U @3) = V(o1 U8 @),

(3)3(p1 U @2) = 92 V(91 AFO3(91 U 93);

V(P11 U @z) =@z V (91 AVOV (91 U @3).

Proof: (1) It is naturally true that 3(p; U!S! @,) < 3(p; U ¢,). What needs to be proven is that

3(py U @z) < 3(pq ulsl ©2).
We prove that for all s €S and for all = € Path(s), it holds that,

[, 0. U @] < [[5' (e, ulsl (Pz)]]~ 9]
It suffices to prove that for all k € N,
[, @1 U @51 < [[5,3(p1 U @3)]. @

When k <|S|, the Inequality (2) obviously holds. When k=S|, [[n, @, uls! (pz]] <
[[s, 3(¢p, U (pz)]],the Inequality (2) also holds. Now, assume that the Inequality (2) holds when k =
m=|S|,ie,

[, 0 U™ @,] < [[5’ (¢, U (Pz)]]- (3
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We prove that the inequality (2) holds when k = m + 1. The discussion is divided into cases as
follows:
If there exists 0 <t < m where m,, = m;, then,

[ U™ @ol = V(A () o [m, @] A6 () o [, 02])

0si<m+1 0<j<i

= [, U™ @]V (05]/.\<m5 () o [[T[]" ‘Pl]] A Sy (1) © [T, @2])
<[me U™ @]V (OS]/_\<m5j*(7f) o [, 1] A 8¢ () © [, 2])
< [m e, um @]V (Os/j\<t5j*(”) ° [[”j’(lh]] A 67 (m) o [y, @2])

= [, 01 U™ @]

Therefore, applying the induction hypothesis (Inequality (3)), we have

[m, @1 U™ @,] < [, 0, U™ ;] < [[Sra(‘Pl uls! (Pz)]]'

If for all t < m, where m,, # m;, then since m + 1 > |S|, there mustexist 0 <! < h <m on the
path @ =my,my, -, Ty, - , such that m =m,, creating a loop. By removing the path segment
TM4q, 0, Ty, We construct a new path p = my, my, -+, 7y, *** Tpyq, =+, Ty, +-. Relabeling in order, we
obtain p = pg, Py, ", Pm—(n-1), *» Where foralli < I,p; = m;, and forall i > h p;_p_y) = m;.

[ U™ @l = V(A & o [m, o] ASi () o [, 02])

0si<m+1 0<]<l
=l ™ @]V A () [7, 1] A 8 () © [, 021D
m * o |l7z; * o
< [[77:' (21 u §02]] \ 0< '<n{\—(h 1)6 (T[) [[77:]' §01]] A 6m(71') [[T[m' §02]])

=Tmo U galV A 85 e [1,01] A 8@ @ [pm-rony 02])

<lmeu™edv A 1)6 () [ 01] A 83y () © [om—ny, 921D
= [, U™ @]V o< ]<"/l\ e’ 67 (m) o [[T[]'(pl]] Aoy m-p(P)° [[Pm (h—-1)» (Pz]])
< m
S S O A OB LA PO RS )
= [m @, U™ ;] V [, oy UMD g, ]
Since 0 <[ < h < m, itfollowsthat m — (h — ) + 1 < m. According to the induction hypothesis
(Inequality (3)), we have,

[p, 1 M=% g, ] < [5,3(ps UM )] “
Combining Inequality (3) and (4), we obtain,

[m, @1 U™ @,] < [[5'3(471 ulsl ‘Pz)]]-
Thus, Inequality (2) holds, for all k € N, [, ¢, U* @,] < [s,3(p, U'! @,)]. Therefore,

[, 0, U @,] < [[5‘3(‘.01 ulsl (Pz)]]~
This completes the proof of Conclusion (1).
The proof of Conclusion (2) is analogous to the proof of (1) and will not be repeated here.
Next, we proceed to prove Conclusion (3). Forall s € S,

[s, 92 V (91 A3O3(; U )]
= [s, 21V ([s, 11 A [s, 303(‘/’1 U @)l

=[s, 01 v ([s, 011 A . P [[Tf O3(p1 U @)D

= I5.0,0V @5l AV (300, U 92)D)

=[s, 01 v ([s, 011 A EP(\l/th(s)(pepam( )[[p, o1 U @,]))

=[s,0dv([si@sdA V. ( V (o wz]]/\ N [[p’ o1 D))

mEPath(s) pEPath(nl) 0<l<|S|

=[s,edv(_ V. ( V ([p% 2] A L, AN /\ [[p’ o1 D))

mePath(s) pEPath(nl) 0<l<|S|

=[s,@Jv( V ([[ ‘Pz]]/\ /\ IIT[] ‘P1]]))

mwEPath(s) 1<l<|S|+1

= ([[” , 02V Y% (H” ‘Pz]]/\ /\ [[”] §01]]))

nePath(s) 1<i <|s|+1

= (([[” e A1)V [[” <P2]] A /\ [[”]'<P1]]))

nEPath(s) 1<i <|S|+1
= (([m 0'472]]/\ /\ [[T[] ‘Pl]])v ([[Tf ‘Pz]]/\ /\ [[”] ‘Pl]]))

nePath(s) 1<l<|S|+1

=V ([[ (le]/\ /\ [[”] (Pll]))

nEPath(s) 0<l<|S|+1
— V |I7T o, U|S|+1 ¥, ]]

mePath(s)
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= V. [me,uSg,] (Based onInequality (2))

- mEePath(s)
= [s,3(p; UF )]
= [s,3(¢1 U @)]. (Based on Conclusion (1))

The proof of Conclusion (4) is similar to the proof of Conclusion (3) and will not be repeated
here. This completes the proof of Theorem 3. o

4.2. Solution Algorithms and Complexity Analysis for the Model Checking Problem of QFCTL

Below, we present the solution algorithm for the model checking problem of the QFCTL formula
3(p1Ue,).

Algorithm 1 The Computation Algorithm of 3(¢;Ll¢p,).

Input: A QFCTL formula 3(¢,U¢,), a FKS M = (S, 1,5, AP, L), with the information fusion operator o€ {A,
, D2}

Solution process:

1 Initialization: Fuzzy set v,v":S — [0,1], Vs € S, v(s) = [s, .1, V'(s) = [s, ¢4].

2LOOPVs € S,I(s) >0

3 87(s) = 1(s);

4 f(s) = 8*(s)°v(s);// Initialize the objective function value for the source state s.

5 u = s;// Label the current expanded state.

6 LOOP from i =1 to i = |§]|

7 fw=fwv (6*(/,1)"17’(;1) A slem}{ld(#)(d*(u) AS(u, s'))"v(s’)); /I Update the object tive function
value for the current state u.

8 §*(w) = 6"(w) A 8(u, s");// Update the reachability of the path.

9 f(s) = f(u);// Update the objective function value for the source state s.

10 u = s’;// Update the current state.

11 END

12 END

Output: Fuzzy set f.

When computing [s, V(¢,Ll@,)], it suffices to modify the objective function update formula in

Step 6 of Algorithm 1 to,
[ =FOV(SF@VEA A (66 ANV ).
s’echild(s)

To avoid confusion, we will use f; to denote the computation result of 3(¢;Llp,) and f, to
denote the computation result ofV(¢, Ll@,).

Theorem 3 guarantees the correctness of Algorithm 1.

The following delineates an algorithm aimed at addressing the model-checking challenge
pertinent to the QFCTL formula, specifically Qp(Oe).

Algorithm 2, formulated explicitly in alignment with the stipulations of Definition 6 to directly
compute Qp(Og), exhibits a correctness that is patently obvious.

Below is presented an algorithm for solving the model checking problem of QFCTL formula

Qp(p1Uey).
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Algorithm 2 The Computation Algorithm of Qp(O¢).

Input: A QFCTL formula Qp (O¢), a FKS M = (S,1,8,AP, L), with the information fusion operator o€ {A,
, i}

Solution process:

1LOOPVs € S,I(s) >0

2 [s, @ (P)]=0;

3 LOOP Vs’ € Child(s),5(s,s") >0

4 I5, Qp ()] = (I(s) A S(s,s)) o [s", 9ll;
5 IF [s,Qp(¥)] € Pand [s, Qp(¥)]=0
6 [s, Qe (W)I=1;

7 END

8 ELSE IF [s,Qp(¥)] & Pand [s, Qp(¥)]=1
9 [s, @p(¥)]=0.5;

10 BREAK;

11 END

12 END

13 END

Output: Vs € S output [s, Qp ()]

Algorithm 3 The Computation Algorithm of Qp(p;Lg,).

Input: A QFCTL formula Qp (¢4 Llg,), an FKS M = (8,1, 6, AP, L), with the information fusion operator o€ {A,
i}

Solution process:

1 Algorithm 1 is employed to obtain the fuzzy sets f; and f,;

2LOOPVs € S, I(s) >0

3 | IF P=[ap]

4 IF f,(s) > B or f(s) <a THEN [s,Qp(¥)] = O;

5 IF a<fy(s)<fss) <p THEN [s5,Qp(¥)] = 1;

6 IF fiy(s) < a < fy(s) < Bora< fyls) < B < fs(s) THEN [s,Qp(¥)] = 05;

7 END

8 IF P = (a,f)

9 IF f,(s) = B or fa(s) <a THEN [s,Qp(¥)] = O;

10 IF a<fy(s) < fs(s) <p THEN [s5,Qp(¥)] = 1;

11 IF fiy(s) < a < fy(s) <Bora<fyls) <B<fa(s) THEN [s,Qp()] = 0.5;
12 END

13 | IF P = (a,B]

14 IF fy(s) > B or f(s) <a THEN [s,Qp(¥)] = O;

15 IF a<fy(s) < fs(s) <p THEN [s5,Qp(¥)] = 1;

16 IF fiy(s) < a < fy(s) SBora<fyls) <B<fa(s) THEN [s,Qp()] = 0.5;
17 END

18 | IF P=[a,p)

19 IF fy(s) = B or fa(s) <a THEN [s,Qp(¥)] = O;

20 IF a<fy(s) < fs(s) <p THEN [s5,Qp(¥)] =1;

21 IF fy(s) <a < fo(s) <Pora<fu(s)<B<fols) THEN [s,Qp()] =05
22 END

23 END

Output: Vs € S output s, Qp (¥)].

Theorem 2 and Corollary 1 guarantee the correctness of Algorithm 3.

Theorem 4. Let ¢ be a QFCTL state formula, M = (S,1,6,AP,L) be a FKS, and P < [0,1] be a quality
predicate. Then, the time complexity of the model checking problem for @ on M is O(|@| - |Supp(D]. (IS| +
[Supp(6)])), and the space complexity is O(|S| + |Supp(S)]).
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Proof: The primary computational time is spent on evaluating 3(¢;U¢,) and V(¢;U¢,) within
Algorithm 1. The algorithm consists of two nested loops: the outer loop iterates over |Supp(I)|, and
the inner loop iterates over |S|. Within the inner loop, there is a nested operation of supremum

)Yld( )(6*(;1) A6(u,s)°v(s") (Step 7 of Algorithm 1). Since Yses Xs'ecnitas) 1 = [Supp(d)|, a total
s'echild(u

of 3|Supp(8)| operations are performed (One for each successor state s’, with three operations Ao
and vV each executed once). Steps 8, 9, and 10 of Algorithm 1 execute a total of 4|S| operations
(During Each loop iteration performs one minimum operation and three assignment operations).
Therefore, the overall time complexity of Algorithm 1 is O(|Supp(D|. (IS| + |Supp(8)])). The space
overhead is used to store state and transition function values, which can be reused. Hence, the space
complexity is O(|S| + |Supp(6)]). Consequently, the time complexity of the model checking problem
for ¢ on M is O(|e|- [Supp(D)|. (S| + [Supp(6)])) , and the space complexity is O(|S|+
|Supp(8)]).0

5. QFCTL* and Its Model Checking

To more precisely characterize the satisfaction of a QFCTL path formula 1 on the set of paths
originating from any state s, under the constraint of a quality predicate P, we introduce a quantifier
characteristic predicate operator Qz(.) into QFCTL, resulting in an Enhanced Fuzzy Computation
Tree Temporal Logic with Quality Constraints, denoted as QFCTL*. Furthermore, we discuss the
logical properties and model checking techniques of QFCTL*.

QFCTL* differs from QFCTL by incorporating an additional quantifier characteristic predicate
operator Qp(.) and discuss the associated logical properties and model checking algorithms related
toit.

Definition 8 [Semantics of the Operator Qp(.)] Let M = (S,1,6,AP,L) be an FKS (Fuzzy Kripke
Structure), P € [0,1] be a quality predicate, and 1 be a QFCTL path formula. For all s € S, the semantics
of the operator Qp(.) is defined as follows:

[{lm, Y1Im € Path(s), [m, ] € P}|
[{[m, Y1lIm € Path(s)}|

Qp(¥) qualitatively characterizes the satisfaction of the property formula ¥ on Path(s) in
terms of three scenarios: fully satisfied, fully unsatisfied, or partially satisfied. Qp(.) provides a more
granular characterization of the satisfaction of the property formula iy on Path(s), specifically
quantifying the proportion of paths in Path(s) that satisfy the constraint P with respect to .

[s, Q)] = ®)

Example 3 (Continuing from Example 2). The QFCTL* formula @19 = Q%¢6(0.5,.(f)Lle) represents the
proportion of all treatment plans during the course of treatment that maintain the patient’s condition with a
necessity of at least "fine” (with a threshold of 0.5) until there is a transition to "excellent” with a possibility
greater than 0.6. For instance, if [Sg, Q306(0.5,.(f)Ue)] = 0.2, this signifies that 20% of the treatment
plans fulfill the criterion where the patient’s condition remains with a necessity of at least "fine” (with a
threshold of 0.5) throughout the treatment process until there is a transition to "excellent” with a likelihood
exceeding 0.6.

The following explains that the sets in both the numerator and the denominator of formula (5)
are finite sets, indicating that Definition 8 is well-defined.
For all © € Path(s), n € N¥, denote m(n) = my, my,+,m,_; as the prefix path of 7 with length
n. We define the semantics of QFCTL path formula ¢;Llg, on m(n) as follows:
[r(n), o1 Ue,] = 0 V (A 51'*(”) ° [[Tfj,(h]] A S; (1) o [y, 21D (6)

<i<n 0<j<i

Lemma 1. Let M = (S,1,5,AP, L) be an FKS (Finite Kripke Structure), P € [0,1] be a quality constraint
predicate, and P is a QFCTL path formula. Then, for all s € S,
{[m, ¥1Im € Path(s)} = {Ip(ISD), ¥1lp € Path(s)}.
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Proof: When v is a QFCTL state formula (where a state formula is a special type of path formula
with semantics defined at m, = s), the conclusion holds. We consider two cases: ¥ = Q¢ and

Y = @,Ugp,.

When y = Og, we have [r, O¢] = (I(rry) A §(y, 1)) ° [y, 9], where [r, O¢] depends only
on m, and ;. Therefore, the conclusion holds.
When 1 = ¢, Ll¢,, based on Definition 6 and Formula (6), we derive the following conclusion:

[w, o Ug,] = n;/ISI [z (n), p:Ue.]. (7)
We prove that for all n > |S|, there exists a path p € Path(s) such that,

[r(n), p:Ue.] < [r(IS]), @1Ue.] v [o(SD, @, Le,]. 8)

When n = k = |S|, taking p = m, Inequality (8) holds.
Assume that Equation (8) holds when n = k > |s|. That s, there existsa path p in Path(s) such
that:

[ (k), @1 Ue,] < [m(ISD), @U@l v [p(ISD, @1 Le,]. )

Then, when n = k + 1, the classification discussion is as follows:
If there existsa t € N such that 0 <t < k and m, = m,, then,

[n(k +1),:Up] = V(A &) o [m,¢:] A8 () o [mi, 21)

0<i<k+1 0<j<i

= [n(), @Upal v A 57 () [, 0:] A 8i) @ [mis 021)
= [0, :Upl v A 5 ()0 [7;, @1] A 65(10) © [t @21)
< [n(), @ilipal v A &) @ [y, 02 A 6: () o e, 02D
< [m(k), 1@l v V. (A 8 (1) o [m;, 1] A 8; () © [y, 02 1)

0si<k 0<j<i

< [m(k), o1 Ug,1 v [m(k), ¢, Ug,]

= [n(k), @1Ug] < [(ISD, @:Uep. TV [p(IsD, 9:1Ue,]  (Inductive Hypothesis (9))

If for all t < k, we have m;, # m;, then since k + 1 > |S|, there must exist 0 <! < h < k on the
path m(k + 1) before the state m, such that m; = mp,, forming a loop. By removing the path segment
41, Tp—1, Ty from the path, we construct a new path p as follows:

p = T[O:T[lr"':nl:”h+1:""T[k""‘

Numbering sequentially, we obtain:
P = Po,P1,""" s Pr—(h—1)r """+
Where py =my =5, forall i <[, m; = p; and forall i > h, m; = p;__yp).
[m(k + 1), 1 Ug,] = [r(k), o, LUp,] v 0<§\<k5j*(77) ° [[T[jr(pl]] A 6 (1) o [y, @21

< [r),illoalv - A 6P [P 1] A 8k (0) o [k, 021D

< [y otV A 670 [0): 1] A Sk n-1y () © [Pr-n-0y, 02])

< [n(k), o:Up vV (A 87(p) e [pj, 1] ASr(p) © [pr @21))

0<i<k 0<j<k

= [r(k), U, V [p(k), 9, Le,]

< [m(SD, Ul v Ip(ISD, e1Ue,]  (Inductive Hypothesis (9))

In this way, we have proven Inequality (8).

Furthermore, it is evident that for all n = k > |s|, [n(|S]), ¢;Ue,] < [r(n), ¢;Ue,]. Combining
this with Inequality (8), we have:

For all n = [S], there exists a path p € Path(s), such that,

[r(n), @1Uep,] = [r(SD), @U@l v [o(SD, ¢, Le,].

Furthermore, combining this with Equation Inequality (7), we obtain:

[, @1 Ug.] € {Io(ISD, ¢1Ue@.]lp € Path(s)}. (10)
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For all s €S, let us arbitrarily choose any p(|S|) = po, p1,*,P|s|-1, (Po = s). For any ps €
Child(p|s)-1), construct p(|S| + 1) = po, p1, -, Pis|-1, Pis)- It is evident that [p(IS]), ¢;Ue,] < [p(IS| +
1), ¢, Ue,]. Continuing the discussion as follows:

If there exists a t such that 0 <t < |S| and pj5 = p;.

[p(S1+ 1, 9:Ug2] = [pUSD, 1o ]V A 87 < [ 0] A5y () @ [, 02])
< Do(ISD @:Ugl v A 87 () [pjo 91 A 8: ()  Tow @21

<le(sh.oilezlv V. (A 87 e [pj0a] A6; () o [ 02]D)

= [p(SD, U] v [p(SD, @ Ue2] = [p(S]), ¢:Ue.].

In this way, we obtain, [[p(|S|), (plquoZ]] = [[p(|S| + 1), ¢1U¢2]. By repeating this process, we
can derive that,

Ip(ISD, @1lg.] = Lim[p(n), @1Lig.]. (11)

Denote the limit as lim p(n) = w, and we obtain that,
n—oo

Lo(sD), @1 Uep2] = [, o1 Ue,]. (12)

If for all t < |S], it holds that p5 # p;, then there must exist 0 <! < h < |S|, such that p; = py,
generating a cycle. After traversing the path segment m;,,,:+,m,_1,m, W times, we obtain the path
segment:

p(|S| + W(h - l)) = pO' plr Tty Pl, (PH_l; Tty ph_l; ﬂh)wph+1, oy, plsl
The following conclusion is readily apparent on p(|S| + w(h — 0)).
[p(S]+w(h = D), @:Up,] = [p(Is]), ¢1LUep,]. (13)

Denote lim p(ISI +w(h— l)) = 1’. We have proven that,
W—00

LoD, @1Ue.] = [, o1 LU, ]. (14)

From Equations (12) and (14), we obtain that,
[o(SD), p1Ue.] € {[m, ;1 Ug,]|m € Path(s)}. (15)
By synthesizing the conclusions (10) and (15), we can deduce that the conclusion of Lemma 1

holds. o

Theorem 5 [Decision Theorem for the Operator Qp(.)] Let M = (S,1,8,AP,L) be an FKS, where P <
[0,1] is a quality predicate, and v is a QFCTL path formula. For all s € S, it holds that,

[{[z(IS]), ¥]Im € Path(s), [x(|S]),¥] € P}
[{[z(ISD, ¥]Im € Path(s)}|
Based on Lemma 1 and Definition 8, Theorem 5 is established. Theorem 5 clarifies that the

semantic of the operator Qp(.) is well-defined, and it also furnishes a foundation for model checking
the operator Qp(.).

[s, Q)] = (16)

Proposition 3 [The fundamental properties of quantified characteristic predicate operators] Let
M =(S,1,6,AP,L) be an FKS, ¢ be a QFCTL path formula, and P < [0,1]be a quality predicate. Let
P denotes the complement of P in [0,1]. Then,
1) Q)+ Qs(¥) =1, (=) = Q(¥);
(2) Q2 (W) = 0 if and only if Qp(h) = 0;
(3) Q3 (¥) =1 ifand only if Qp(P) = 1.

The proof of Conclusion (1) of Proposition 3 is similar to the proof of Conclusion (1) of Theorem
2. The proofs of Conclusion (2) and Conclusion (3) of Proposition 3 are evident.

Next, we present the model-checking algorithm for Qz(3). We only need to provide the
algorithm for the case when y = ¢, Ll¢,, as other cases are either trivial and can be directly computed
based on Definition 6 and Theorem 5, or they can be reduced to the case of ¥ = ¢, Llp,
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Algorithm 4 Computing Qp(@1Lp,)./Yp = p,Ue,

Input: A QFCTL formula Qp(@,U¢;), an FKS M = (§,1,8, AP, L), with the information fusion operator o€
{/\,', 6,1}

Solution process:

1 Initialize: Fuzzy sets v,v":S — [0,1], Vs € S, v(s) = [s, .1, v'(s) = [s, ¢4].

2LOOP Vs € S,I(s) >0

3 6*(s) = I1(s);

4 f(s) = 8*(s)°v(s);// Initialize the objective function value for the source state s.

5 Nu(s)=De(s) = @;// Nu(s) represents the setin the numerator of Equation (16), while De(s) represents
the set in the denominator of Equation (16).

6 Depth(s) = 0; // Depth(s)-count represents the depth of the extension for s.

7 Initialize empty stack OPEN and table TREE //The stack OPEN is utilized for depth-prioritized
expansion of M originating from node s, whereas the TREE table meticulously archives the resultant
tree generated from s as its root, ensuing from the expansion of M.

8 Push s onto stack OPEN;

9 s.Father =TREE.head; //s is the root node of TREE.

10 Cn(TREE. head)=0;// Record the number of child nodes of TREE.head.

11 | LOOP stack OPEN is not empty.

12 The top element p is popped from stack OPEN.
13 u.Father.Child[Cn( p. Father)] = p// Store node p in table TREE.
14 Cn(u)=0;// Cn(u) record the number of child nodes of node p.
15 IF Depth(u) < |S|// The maximum search depthis |S| —1.
16 LOOP for all s' € Child(u)
17 AN = F) v (6 W' () A (6 (W) A8 (w,s"))°v(s"));//Update the objective
function value for the state s'.
18 §*(s") = 8*(w) A 8(u, s");// Calculate the path reachability from the root node
tonode s'.
19 u- Child[Cn(w)] = s";// Node s, as a child node of node p in the spanning
tree, is stored in table TREE.
20 Cn(u) + +;// The count of p's child nodes is incremented by one.
21 s'.Father = y;// Set the parent node pointer of s’ to point to node p, in
preparation for expanding s’ in TREE.
22 Push s’onto stack OPEN.;
23 Depth(s") = Depth(u) + 1;
24 END
25 END
26 ELSE IF Depth(u) = |S|// Reach the deepest level of the search.
27 IF f(u) > 0 THEN De(s) = De(s) U {f(w)};//A path =(|S]) =s,---,u is found.
28 IF f(u) € P THEN Du(s) = Du(s) U {f (w};
1 () € {[m(IS1),¥] € Plm € Path(s)}.
29 END
39 | END
31 | q(s) = |Du(s)|/|De(s)];
32 END

l Output: Vs € S,I(s) > 0, output g(s).

Theorem 6 Let M = (S,1,5,AP, L) be an FKS, where P € [0,1] is a quality predicate, and 1 = @,U¢, isa
QFCTL path formula. For all s € S, I(s) > 0, the output of Algorithm 4 ensures q(s) = [[s, Q;((p1IJ<p2)]].

The time complexity of model checking Qp(p1Llp,) is O(suup(l) - |S|S\=1), and the space complexity is
(N !

Proof: Algorithm 4 employs a bounded depth-first search algorithm with a maximum search depth
of |S| —1. Starting from each initial state s, it produces a specific path that begins at s with
Depth(s) = 0 and terminates at a state 4 with Depth(u) = |S| — 1, as detailed below,

T[(lSD =S, S,;"'r#’!.u'

During the iterative search process, the objective function f(s) is continuously evaluated (as
specified in step 17 of Algorithm 4), making it straightforward to obtain the following results,
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f(8) =1(s)°v(s) vV (8" ()°V'(s) A (67(s) A6, s))°v(s)) V -+

VW)V W) AT W) ASQ, 1) v(w))
= V. (A §@e[n,e] ASi(m) o [m,¢20)

0<i<|S| 0<j<i

= [7(SD, ¢1Ug-].
Step 27: If [w(|S]), p1Uep,] = f(s) > 0, then De(s) = De(s) U {f(w)};
Step 28: If [(|S]), p1Up,] = f(s) € P, then Du(s) = Du(s) U {f (w)}.
Consequently, it is straightforward to derive the following:
De(s) = {[n(ISI), p:Uep,lIm € Path(s)};
Du(s) = {[=(ISD), p1Ue.]Im € Path(s), [n(IS]), p1Ue.] € P}.
Therefore, q(s) = [s, Q5 (¢, U®,)]. The correctness of Algorithm 4 is thereby established.

During the search process, for each node generated, the seven main computations from Step 17
to Step 23 are executed, and the resulting nodes are continuously stored in the generated tree, TREE.
The primary time and space costs associated with generating TREE are both linearly related to the
number of nodes in TREE. Specifically, TREE has 1 node at level 0, at most |S| nodes at level 1, at
most |S|? nodes at level 2, ..., and at most |S|'¥I=1 nodes at the deepest level |S| — 1. Therefore, the
number of nodes in TREE is given by (|S[!*! — 1)/(|S| — 1). The number of elements in the sets De(s)
and Du(s) does not exceed the number of leaf nodes in TREE, which is |S|!*I=%. Consequently, the
time complexity for computing De(s) and Du(s) is O(|S|'I"1). Since this search process needs to
be repeated for all s €S,I(s) >0, the overall time complexity becomes O(suup(l)-|S|'SI"%).
However, the space occupied by TREE, De(s) and Du(s) can be reused, so the space complexity is

determined by the size of TREE, which is 0(|S|1¥I™1). o

Theorem 7 Let M = (S,1,5,AP,L) be an FKS, ¢ be a QFCTL* state formula, and P < [0,1] be a quality

predicate. The time complexity of QFCTL* model checking is O(|@]| - suup(l) - |S||S|_1), and the space
complexity is O(|S|ISI71).

Based on Theorem 6, when considering an arbitrary QFCTL* formula ¢, the complexity of
model checking is the product of the length of ¢ (denoted as |¢]|) and the complexity of Algorithm
4. Therefore, the time complexity of QFCTL* model checking is O(|¢| - suup(l) - |S|'*!). The space

complexity remains 0(|S|"¥1=1) due to the reusable nature of the space.

6. Illustrative Examples

Up to this point, we have expounded on the theoretical underpinnings of QFCTL model
checking. In this section, we will elucidate the modeling advantages of QFCTL, and the efficacy of
our model checking techniques through a series of illustrative examples. All the model-checking
examples provided herein are executed within the FKS depicted in Figure 1.

First, we present the outcomes of evaluating QFCTL formulas ¢, through ¢4 from Example 2
using Algorithm 1. The information fusion operator "o" is instantiated as "@®g3".

The computation of [sg, ¢;] = [[so, 30(0.8,¢ (e))]] requires |S| = 3 iterations, where s, denotes
the initial state, and |S| indicates the cardinality of the state space S.

The initial value is given by f(so) = 1(s) Doz So (0.8Cf(e)) = 0.3+ 0 = 0.3. Furthermore,
6°(sg) = 1(sp) = 1.

Let u = s; the first iteration proceeds as follows:

F =FWV , V(6" A8, )°s (08¢, (e)) (17)

s'echild(u)

= 0.3V ((I(S0) A 8(50,50)) Do 50(0.8:(e)))
V ((I(50) A 6(S0,51)) Do 51(0.8.£(€)) V ((U(So) A 6(Sp, 52)) Boz 52(0.8¢£(e)))
=03V (0.3@,30)V(0.8@,50.8x%x0.5)V(0.2@,;50.8x1)=0.62.

8" (W) =8"W A6 s1) = 0.8,f(s) = f(w) = 0.62,u = 51.
The second iteration proceeds as follows:
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f=f@v (5*(u) A 6(u,57)°s'(0.8¢(e))

s'echi ld(
=0.62V (0.8 A 8(s1,50)) Dos 50(0.8.£(e)))
V ((0.8 A 6(51,51)) Doz 51(0.8.5(e)) V (0.8 A 6(51,52)) Doz 52(0.8c(€)))
=0.62V (0.4 Dy30)V (0.7 B3 0.8x0.5)V (0.7 By5 0.8 x 1) =0.77.
W =8 WA sz) =07,f(s) = f(W) =077, u = s,.

The third iteration proceeds as follows:

fWw=fwv , vV (8 WASws))s'(0.8.4(e))
s’echild(u)

=0.77 v (0.7 A 5(52,50)) Do3 50(0.8¢(e)))
V ((0.7 A 6(52,51)) Doz 51(0.8c5(€)) V (0.7 A 8(s2,52)) Doz 52(0.8.£(e)))
=0.62V (0 Dy30) Vv (0.5B30.8%0.5)V (0.7 B3 0.8x1)=0.77.
5 (W) = 8" (W) A8, 52) = 07, £(s) = f(W) = 0.77, 4 = 5.
Ultimately, the evaluation yields, [s,, ¢1] = f (1) = 0.77.

When computing [sq, ¢,] = [[SO,VO(OBCf(e))]], one merely needs to substitute Formula (17)
with the following Formula (18).

F@) = fG) A (87 A 81 59)°'(0.87()). as)

s'e Chld()

Following three iterations, the computed value is [s,, ¢,] = 0.3.

When computing [so, 93] = [so, 3I0(fBo.4e)], where f(so) = 1(so) Doz So(fDo.4€), One merely
needs to substitute Formula (17) with the following Formula (19).

f=fwv (5*(/1) A6(1,57))°s' (fBo.0). (19)

’ecn ild(w)

Upon completing another trio of iterations, the calculated outcome is [sy, @3] = 0.328.

In computing [so, sl = [0, VO(f®o4e)] , where f(so) = 1(so) Doz So(f@ose) , replace
Formula (17) with the following Formula (20).

fw=fwv (6" () A6, )°s'(f Do .ue). (20)

s'echi ld()

After undergoing three iterations, the solution obtained is [s, ¢,] = 0.088.

Upon completing another trio of iterations, the calculated outcome is [sy, @3] = 0.328.

In computing [[so, ¢s] = [So,3(0.5,.(f)Ue)], where f(sq) = I(sq) D3 So(e), replace Formula
(17) with the following Formula (21).

fw) =fwv ((5 (°1(0.5pe (F)) A ((6" (W) A8 (1, 57))°s"(e))). (1)

s'echi ld(

After undergoing three iterations, the solution obtained is [sy, ¢s] = 0.685.
In computing [so, @6l = [So, V(0.5,.(f)Lle)], where f(so) = 1(sq) D3 So(e), replace Formula
(17) with the following Formula (22).

f) =@ A (@ (W°1(0.5ne () A ((67(W) A 8w, $))°s"(€))). (22)

s'echi ld(

After undergoing three iterations, the solution obtained is [[sq, ¢s] = 0.3.
We tabulate the model checking outcomes for properties ¢, to ¢ in Model M as follow.

Table 1. Model Checking Results for Properties ¢4 to @4 in Model M.

@i 30(0.85(e)) VO(0.8,5(€)) I0(fBose) VO(fBoae) 3(0.54c(f)Lle) V(0.5nc(f)Lle)
[so, ] 0.77 0.3 0.328 0.088 0.685 0.3

In the literature [20,21], PoCTL is studied, which solely utilizes the classical max-min operation
for information synthesis, excluding quality constraint operators such as Acf(*), A,.(), and @;.Asa
result, it cannot express the more nuanced properties like ¢; to ¢, in QFCTL. We have computed
the satisfaction values of the PoCTL formulas ¢, = 3<e, ¢, = Ve, ¢p3 =ALI(f Ae), ¢p; =TT A
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e), ¢,=VU(f Ae), ¢s=3(fUe) and ¢s = 3(f Ue), which correspond to these six QFLTL
formulas, on the KFS in the example regarding the patient treatment process. The calculation results
are presented in Table 2 to facilitate comparison and analysis between QFCTL and PoCTL.

Table 2. Model Checking Results for PoCTL formulas ¢, to ¢¢ in Model M.

¢ ICe voe Ao(f Ae) va(f Ae) A(fle) v(flUe)
[so, ;] 0.7 0 0 0 0.1 0

By conducting a comparative analysis of Tables 1 and 2, we arrive at the following conclusions:

(1) QFCTL demonstrates superior expressivity in comparison to PoCTL. PoCTL is unable to
articulate temporal properties that incorporate qualitative constraints, such as ¢; to ¢4, which
specify concrete quality constraints. QFCTL enables a more precise and quantitative portrayal of
system attributes, as exemplified by the second row of the two tables, showcasing the diversity of
satisfaction values achieved by the corresponding formulas within the system. Evidently, under
identical systems, QFCTL formulas differentiate values with greater granularity, whereas PoCTL is
relatively coarser.

(2) PoCTL may lead to the loss of information from either side of the path reachability and
property formula satisfaction levels. However, QFCTL avoids this deficiency. PoCTL simply employs
the "A" operator to amalgamate the values of path reachability and property formulas, ultimately
opting for the lesser value as the satisfaction gauge. For instance, in Table 2, the bold figures represent
the path reachability, whereas the non-bold values correspond to property formula values.
Conversely, QFCTL in Table 1 perpetually integrates information from both domains, thereby
overcoming the information loss in PoCTL.

(3) PoCTL is incapable of distinguishing between the relative importance of sub-formulas within
a property formula, nor does it differentiate between the significance of the property formula itself
and path reachability. On the other hand, QFCTL adroitly discriminates between such information
types. For example, both the PoCTL formulas ¢3; and ¢,, and the QFCTL formulas ¢3; and ¢,,
require simultaneous occurrences of f and e along the path. However, ¢; and ¢, select the lesser
value of f and e, whereas ¢; and ¢, unify f and e with a weight ratio of 0.4:0.6, signifying the
greater importance attributed to e. In the fusion of path reachability and property satisfaction, PoCTL
solely picks the minimal value, whereas QFCTL formulas can blend the two using the @3
operation, applying a weight ratio of 0.3:0.7, indicating QFCTL places greater emphasis on property
formula satisfaction over path reachability.

(4) PoCTL might induce asynchrony between property formula values and path-reachability
information, whereas QFCTL invariably ensures these two aspects of information remain
synchronized. As seen in Table 2, the truth values of ¢; and ¢, are always "0," resulting from
computations within M where, irrespective of the path taken from s,, the value of the property
formula f Ae is always "0." Therefore, regardless of the current path reachability level, taking the
minimum with the property formula satisfaction value of "0" results in "0." This clearly instigates a
mismatch between path reachability and property formula satisfaction values. The valuation
processes of QFCTL formulas ¢3; and ¢,, as evident from Table 1 and the examples, illustrate the
remediation of information asynchrony in QFCTL.

Proceeding forth, Algorithm 2 will be applied to conduct model checking for temporal logic
properties ¢, through @,.

The temporal logic property is articulated as ¢; = Q503(0.8,¢(e)), while the quality predicate
P; is delineated within the interval [0.3,1).

Having previously determined via Algorithm 1 that [[SO,VO(O.BCf(e))]] =03 and
[s0,3€(0.8.£(e))] = 0.77, it follows that,

03< [[so,vo (o.scf(e))]] < [[so,ao (o.scf(e))]] <1

Consequently, [[50, Qs03 (0.8Cf(e))]] =1
This result elucidates that across all therapeutic pathways, the criterion which stipulates "the
patient's physical condition being maximally in an ‘excellent’ state with a possibility of 0.8 occurs with
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a likelihood of no less than 0.3" is fully satisfied. This affirms that our treatment protocols adhere to
the possibility standards for achieving a high level of clinical efficacy.

The temporal logic property @g = Qsq5(f@o4e), with the quality predicate Py delineated as
(0.5,1).

Owing to the fact that [so,30(f@4e)] =0.328<0.5 , it logically follows that
[S0, @>05(f@o.4e)] = 0.

This finding elucidates that across every conceivable therapeutic trajectory, the proposition
stating "the patient's health status continuously meets the criteria of being ‘fine’ with a 40% stipulation
and ‘excellent’ with a 60% stipulation with a likelihood exceeding 0.5" is not upheld. Consequently, it
is affirmed that our current therapeutic paths do not fulfill the possibility threshold for concurrently
maintaining these health standards at the specified frequencies.

The temporal logic property ¢@q = Q506(0.5,.(f)Le), complemented by the quality predicate
Py defined as (0.6,1).

Previously determined, we have [s,, ¥(0.5,.(f)Lle)] = 0.3 and,

[50,3(0.5,.(f)le)] = 0.685.

Given that [so, V(0.5,.(f)Ue)] < 0.6 < [[50,3(0.5,.(fHUe)] <1 , it is deduced that
[0, @>0.6(0-5e (FHUE)] = 0.5.

This reveals that some, but not all, therapeutic courses satisfy the property that "the patient’s
health status, being maximally under a necessity of 0.5 to be ‘fine’, until transitioning to “excellent’,
does so with a possibility greater than 0.6". This indicates a mixed fulfillment of the possibility
condition across different treatment pathways.

Proceeding with Algorithm 4, we conduct model checking on the QFCTL* formula ¢4y =
Q%46(0.5,.(f)Ue). The generation tree TREE, produced by the FKS M with the unique initial state
So as the root node, as depicted in Figure 7 corresponding to what was shown in Figure 1, illustrates
the values calculated for the objective function f(u) upon the creation of node u, which are placed
to the right or below each node yu in the tree diagram.

0.3 0.445 0.475 0.59 0.59 0.625 0.685 0.685

Figure 7. The TREE generated by M in Figure 1.

In TREE, there exist 8 paths of length |S| = 3, among which 3 highlighted in red satisfy the
following conclusions:

[7(3),0.5,.(f)Ue] € Py, = (0.6,1);
{[m(3), 0.5, (F)Uel|m € Path(sy)} = Du(so);
={0.3,0.445,0.475,0.59,0.625, 0.685, 0.685};
{[(3), 0.5, (FHUel|m € Path(sy), [m(3), 0.5, (f)Ue] € Pio} = De(so)
= {0.625, 0.685, 0.685}.
[0, @30.6(0-5ne (FIUE)] = q(s0) = [De(so)|/|Du(so)| = 3/8 = 0.375.
It indicates that 37.5% of the treatment regimens meet the criterion of the patient's condition
being maximally at 'fine' with a necessity of 0.5 throughout the treatment course, until transitioning
to 'excellent’ with a likelihood greater than 0.6.

These examples illustrate that PoCTL lacks formulas akin to the qualitative QFCTL formulas ¢,
and ¢g, which describe the qualitative fulfillment status of property formulas. Similarly, it does not
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possess formulas like the quantitative QFCTL* formula ¢y, capable of delineating the quantitative
satisfaction condition of property formulas. This unequivocally demonstrates that QFCTL and
QFCTL* exhibit superior expressive power over PoCTL, enabling a more refined formal description
of temporal system properties. This enhanced capability facilitates a deeper analysis and a more
detailed modeling of system temporal behaviors.

These model-checking instances, first and foremost, substantiate the rich expressiveness and
practical applicability of QFCTL and QFCTL* proposed in the article, capable of elaborately and
accurately depicting the temporal properties of uncertain systems. Secondly, these examples affirm
the effectiveness of the model-checking algorithm put forward, enabling automated and efficient
formal verification of uncertain systems.

7. Conclusions and Future Work

This paper introduces quality constraint functions and quality predicates into Possibility
Computation Tree Logic (PoCTL), proposing Fuzzy Computation Tree Logic with quality Constraints
(QFCTL). We explore the logical characteristics of QFCTL and present model checking algorithms for
QFCTL on Fuzzy Kripke Structure Systems (FKS). Key contributions include:

(1) Section 2 elaborates on QFCTL syntax in section 2.1, defines its semantics in 2.2, and
demonstrates QFCTL's expressive power and practical applicability through illustrative examples in
2.3.

(2) In section 3, we discuss QFCTL's logical features, encompassing equivalences of QFCTL
formulas (Theorem 1), partial order relations (Proposition 2), and a complete set of functional
operators for QFCTL (Proposition 1). Special focus is given to the basic properties and determination
of the Quality Predicate Operator Qp(-) (Theorem 2, Corollary 1), which signifies formula
satisfaction under the constraints of predicate P on relevant paths, yielding truth values of either "1"
for full satisfaction, "0" for none, or "0.5" indicating partial satisfaction.

(3) Section 4 delineates a model checking algorithm for QFCTL on FKS, reducing the
computation of QFCTL formulas from infinite to finite paths. Model-checking algorithms (Algorithm
1, 2, and 3) are provided with a time complexity proportional to the product of the formula's length
and the scale of the FKS (0(|¢| - |Supp(D)]. (IS| + |Supp(8)1))), and space complexity dependent on
FKS size (O(|S|+ |Supp(6)])) . Rigorous proofs of the algorithm's validity (Theorem 3) and
complexity analysis (Theorem 4 ) are provided.

(4) Section 5 advances by introducing a quantitative quality predicate operator Qp(.)
(Definition 8), characterizing property formula Qp(y) satisfaction under predicate P based on the
ratio of satisfied paths among those fulfilling 1. The well-definedness of operator Qp(.) is proven
(Theorem 5). Logical traits of QFCTL* are explored alongside the relationship between operators Qp(:
) and Qp(.) (Proposition 3). An algorithm for model checking QFCTL* (Algorithm 4) is presented,
accompanied by complexity analysis (Theorem 11).

(5) Section 6 provides ten exemplary QFCTL and QFCTL* formulas(¢;~@1,) applied in model
checking scenarios involving patient treatment processes on FKS, as illustrated in literature [24].
These cases attest to the robust expressiveness and practical utility of QFCTL and QFCTL*. They also
affirm the automation and effectiveness of our proposed model checking algorithms.

Subsequent primary research efforts will encompass:

(1) The complexity of the QFCTL* model checking algorithm is exponential. We anticipate
reducing the complexity of the QFCTL* model checking algorithm through formal reduction
methods such as possibility bisimulation and partial-order reduction.

(2) Integrating fuzzy temporal constraints [22,25], path reachability information, and property
satisfaction values in a biased, synchronized manner. We aim to investigate fuzzy temporal logic with
dual constraints of fuzzy time and quality attributes, thereby enhancing the completeness and
accuracy of information representation.

(3) The search and decision problems within QFCTL based on possible decision processes [25,26]
remain a domain requiring further exploration. This endeavor will focus on advancing
methodologies to address these issues, contributing to the field's mathematical, academic, and
readability standards.

These research directions not only aim to tackle existing challenges but also to pave the way for
future advancements in the field of fuzzy temporal logic and model checking algorithms.
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