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Article 
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XianFeng Yu 1,2, YongMing Li 1,3,*, ShengLing Geng 1 and HuiRong Li 2 

1  Sollege of Computer Science, Qinghai Normal University, Xining 810008, China 
2  School of Mathematics and Computer Application, Shangluo University, Shangluo, 726000, China 
3  School of Mathematics and Statistics, Shaanxi Normal University, Xian 710062, China 

*  Correspondence: pioneer.369@163.com 

Abstract: The encapsulation of particular quality  functions and predicates within  temporal  logic  formulas 

markedly  enhances  the  representation  of  detailed  temporal  characteristics  within  a  system.  During  our 

preliminary  investigations,  we  innovatively  combined  quality  constraint  functions  and  predicates  with 

Possibility Linear Temporal Logic  (PoLTL), yielding  the  conception of Fuzzy Linear Temporal Logic with 

Quality Constraints  (QFLTL). This amalgamation  results  in a  significant elevation of QFLTL’s expressivity 

relative to PoLTL, ensuring the preservation of informational integrity whilst achieving a synchronized, yet 

selectively  inclined,  and  exact  consolidation  of  path  reachability  specifics  alongside  property  satisfaction 

evaluations. This  treatise  represents a  significant  contribution  to  the  field by  integrating quality  constraint 

functions and predicates into Possibility Computation Tree Temporal Logic (PoCTL), thus giving rise to Fuzzy 

Computation Tree Temporal Logic with Quality Constraints (QFCTL). We provide a comprehensive definition 

of QFCTLʹs syntax, conduct an in‐depth analysis of its logical characteristics, outline a precise model checking 

algorithm  for QFCTL,  and  perform  a meticulous  complexity  assessment  of  said  algorithm. Moreover,  by 

enriching  QFCTL  with  a  quantitative  characteristic  predicate  operator,  we  innovate,  culminating  in  the 

development of an enhanced Fuzzy Computation Tree Temporal Logic with Quality Constraints (QFCTL*). 

The treatise explores the logical facets of QFCTL*, formulates a bespoke model checking algorithm for QFCTL*, 

and conducts a  rigorous analysis of  its algorithmic complexity. To attest  to  the practical utility and  robust 

expressive power of QFCTL  and QFCTL*, we present  a model  checking  example  that  serves  as  empirical 

evidence of the efficacy of the proposed model checking algorithms. 

Keywords: quality function; quality predicate; QFCTL; QFCTL*; model checking 

MSC: 68T37 Reasoning under uncertainty in the context of artificial intelligence 

 

1. Introduction 

Model  checking  [1,2]  is  a  cornerstone  in  formal  verification,  prominently  featuring model 

checking  for  Linear  Temporal  Logic  (LTL)  and Computation  Tree  Logic  (CTL).  The  automation 

inherent in model checking has facilitated its widespread adoption in the analysis and validation of 

software  and  hardware  systems[3–5],  communication  protocols[6,7],  and  security  protocols[8,9], 

achieving commendable outcomes. As computer  systems grow  in  scale and complexity, practical 

systems  increasingly  exhibit  quantitative  behavioral  attributes. Multi‐agent  systems  [10–13],  for 

instance, feature intricate dynamic structures and behavioral patterns that require the integration of 

quantitative  information  for  an  accurate  portrayal  of  their  dynamic  behavior.  In  addressing  the 

verification  challenges  posed  by  systems  endowed  with  quantitative  data,  quantitative  model 

checking methodologies have piqued considerable interest from academic and industrial circles alike. 

Hart et al. [14,15] pioneered probabilistic model checking, rooted in probability measures, employing 

Markov  chains  or  Markov  decision  processes  to  model  system  behaviors  and  probabilistic 

computation tree logic or probabilistic linear temporal logic to define system properties. Sultan et al. 

[16,17] extended the probabilistic framework to multi‐agent systems, introducing probabilistic multi‐

agent model checking. Chechik et al.  [18,19] explored model checking for CTL and LTL on multi‐

valued Kripke  structures, where  values  reside within  a  finite De Morgan  algebra. Moreover, Li 
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YongMing  et  al.  established  the  theoretical  foundation  for  possibility  temporal  logic  and  its 

applications  in model  checking. Literature  [20] proposed Possibility Computation Tree Temporal 

Logic (PoCTL) and investigated its expressiveness. It was proven that PoCTL, particularly qualitative 

PoCTL, is more expressive than CTL. Equivalences for expressing fundamental CTL formulas using 

qualitative PoCTL formulas were provided. Some PoCTL formulas that cannot be expressed by any 

CTL  formula  were  given.  Qualitative  properties  of  repeat  accessibility  and  persistence  were 

represented with PoCTL  formulas. A model‐checking approach for PoCTL based on fuzzy matrix 

composite  operations  and fixed‐point  techniques was presented,  and  the  time  complexity  of  the 

algorithm was analyzed. Literature [21]  introduced  the  theory of generalized possibility measures 

and Generalized  Possibility Kripke  Structure  (GPKS). Generalized  Possibility Computation  Tree 

Temporal Logic(GPoCTL) was proposed, with its syntax and semantics defined. A model‐checking 

method  for GPoCTL based on  fuzzy matrix composite operations and fixed‐point  techniques was 

provided, and the time complexity of the algorithm was analyzed. 

Quality constraints serve  to delineate specific quality  requisites  that  systems or computation 

trees must satisfy [22,23]. These requisites encompass a spectrum of performance metrics—such as 

response time and throughput—reliability metrics—such as failure rates—and security metrics. In 

our  pioneering  research  pursuits,  we  innovatively  amalgamated  specific  quality  functions  and 

predicates into Possibility Linear Temporal Logic (PoLTL), culminating in the proposition of Fuzzy 

Linear Temporal Logic with Quality Constraints (QFLTL) [24]. QFLTL empowers the articulation of 

a  systemʹs more  intricate  temporal  attributes.  These  functions  and  predicates  are meticulously 

defined based on the systemʹs empirical operational data or projected objectives, yielding fuzzy truth 

values  indicative  of  quality  levels.  The  introduction  of  quality  constraints  significantly  bolsters 

QFLTLʹs expressive capabilities in several facets: (1) Departing from PoLTLʹs singular  information 

amalgamation operator, the minimum ʺ∧ʺ, QFLTL introduces an enhanced repertoire of information 

aggregation operators, encompassing minimum ʺ∧ʺ, product ʺ∙ʺ, and the weighted average operator 

ʺ⨁ఒʺ. This innovation effectively mitigates the issue of information erosion. (2) The weighted average 

operator ʺ⨁ఒʺ enables a preference‐sensitive integration of path reachability insights and property 

satisfaction measures or the synthesis of disparate property subformulas, facilitating the delineation 

of more nuanced  temporal properties.  (3) The  linear differential operators  𝜆௖௣ሺ∙ሻ, 𝜆௡௘ሺ∙ሻ and 𝜆௖௙ሺ∙ሻ , 
coupled with  the  quality  predicate  ʺ  𝑃   ʺ,  can  impose  quality  constraints  on  property  formulas 

grounded  in anticipated objectives,  thereby enriching  the portrayal of diverse system quantifiable 

properties.  (4) By  recursively defining  formula  satisfaction  values  onto path  segments  that meet 

property  conditions,  it  ensures  the  synchronous  alignment  of  path  reachability  and  property 

satisfaction. These enhancements have been empirically validated in reference [24]. 

Building  on  the  robust  foundation  established  by  QFLTL  research,  we  introduce  quality 

functions and quality predicates into PoCTL, culminating in the proposition of QFCTL. We delve into 

its  logical  characteristics  and  investigate  the model  checking  theory  of QFCTL  on Fuzzy Kripke 

Structure(FKS).  Section  2  delineates  the  syntax  and  semantics  of QFCTL,  illustrating  its  robust 

expressive  capabilities  and  practical  utility  through  instructive  examples.  Section  3  explores  the 

intricate  logical properties of QFCTL, encompassing  the equivalence calculation and partial order 

relations  of  its  formulas,  the  functional  completeness of QFCTL operators,  and  the  fundamental 

properties  and determination of  the  characteristic predicate operator  𝑄௉ሺ∙ሻ , which delineates  the 

fulfillment  characteristics  of  property  formulas  under  the  constraint  of  quality  predicate  P  on 

pertinent paths, indicating full, none, or partial satisfaction. Section 4 focuses on the model checking 

problem  of QFCTL  on  FKS. By  ingeniously  reducing  the  computation  of QFCTL  formulas  from 

infinite to finite paths, we introduce a model checking algorithm with a time complexity proportional 

to the product of the QFCTL formulaʹs length and the FKSʹs scale, and a space complexity equivalent 

to the FKSʹs scale. The reasonableness and complexity of the algorithm are rigorously substantiated. 

Section 5 builds upon QFCTL by introducing the quantitative characteristic predicate operator 𝑄௉∗ሺ. ሻ, 
leading  to  the  proposal  of QFCTL*. We  investigate  the  logical  properties  of QFCTL*,  provide  a 

determination  theorem  for  the operator  𝑄௉∗ሺ. ሻ , which describes  the  fulfillment  status of property 

formula 𝜓   under  the  constraint of quality predicate  𝑃   on pertinent paths,  signifying  the  ratio of 
paths  satisfying  𝜓   under  𝑃   constraint  among  all paths  satisfying  𝜓 . We prove  the well‐defined 

nature  of  𝑄௉∗ሺ. ሻ ,  delineate  the model  checking  algorithm  for QFCTL*,  and  conduct  a  thorough 

analysis of the algorithmʹs complexity. Section 6 presents model checking application examples of 
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ten  illustrative QFCTL  formulas  and QFCTL*  formulas on  the FKS  that  characterizes  the patient 

treatment process, as outlined in reference [24]. Through these applications, we vividly demonstrate 

the robust expressive capabilities and practical applicability of QFCTL and QFCTL*. Simultaneously, 

the  automatic  and  effective  nature  of  the model  checking  algorithms  for  QFCTL  and  QFCTL* 

presented in the paper is empirically validated. Conclusively, in Section 7, we summarize the primary 

research  content  of  the  article  and  outline  some  meaningful  research  directions  pertaining  to 

temporal logic with quality constraints and its reasoning problems. 

2. The Syntax and Semantics of QFCTL 

We introduce these quality functions and quality predicates into PoCTL to propose QFCTL, and 

present the syntax and semantics of QFCTL. 

2.1. The Syntax of QFCTL 

In a concerted effort to enhance the paperʹs reachability and readability, we will first revisit the 

fuzzy propositional operators delineated in reference [24]. 

Definition1(Fuzzy Operations  [24])  ∀𝑥,𝑦, 𝜆 ∈ ሾ0,1ሿ ,  the  fuzzy  propositional  operators  are  defined  as 
follows: 

(1) 𝜆௖௣ሺ𝑥ሻ ൌ 𝜆 ∙ 𝑥; 
(2) 𝜆௡௘ሺ𝑥ሻ ൌ 𝜆 ∙ 𝑥 ൅ 1 െ 𝜆; 
(3) 𝜆௖௙ሺ𝑥ሻ ൌ 𝜆 ∙ 𝑥 ൅ ሺ1 െ 𝜆ሻ/2; 
(4) ൓𝑥 ൌ 1 െ 𝑥; 
(5) 𝑥 ∧ 𝑦 ൌ 𝑚𝑖𝑛 ሼ𝑥,𝑦ሽ; 
(6) 𝑥 ∨ 𝑦 ൌ 𝑚𝑎𝑥 ሼ𝑥, 𝑦ሽ; 
(7) 𝑥 ⟶ 𝑦 ൌ 𝑚𝑎𝑥 ሼ1െ 𝑥, 𝑦ሽ 
(8) 𝑥⨁ఒ𝑦 ൌ 𝜆 ∙ 𝑥 ൅ ሺ1 െ 𝜆ሻ ∙ 𝑦. 

Adhering  to  the  syntactical  blueprints  established  by  CTL,  FCTL,  and  PoCTL,  QFCTLʹs 

formulaic structure should incorporate basic propositions, logical conjunctions (such as AND, OR, 

NOT), path quantifiers (including EXISTS, FOR ALL), and a suite of temporal operators (comprising 

NEXT, GLOBALLY, EVENTUALLY, UNTIL, and the like). Building upon this robust framework, we 

incorporate the fuzzy propositional operators meticulously explicated in reference [24]. We augment 

this foundation with the introduction of the characteristic predicate operator 𝑄௉ሺ∙ሻ, a critical quality 
constraint operator. This operator  intricately delineates  the  fulfillment  characteristics of property 

formulas  under  the  constraint  of  quality  predicate  P  on  pertinent  paths,  signifying  scenarios 

encompassing  full  satisfaction,  none  satisfaction,  or  partial  satisfaction,  thereby  significantly 

amplifying QFCTLʹs expressive capacity. 

The syntactic form of QFCTL is defined as follows. 

Definition 2 [Syntax of QFCTL] Let  𝑨𝑷  denote a set of atomic propositions, and ℚ  represent the 
set of rational numbers. 𝐴𝑃𝑅 ⊆ ሾ0,1ሿ ∩ ℚ  signifies a finite set of fuzzy propositional constants. Univariate 
fuzzy propositional logic operators are symbolized by   △ଵ∈ ሼ൓, 𝜆௖௣, 𝜆௡௘, 𝜆௖௙ሽ, and bivariate fuzzy propositional 
logic  operators  by   △ଶ∈ ሼ⋀,⋁,⟶,⨁ఒሽ .  Temporal  logic  operators  are  designated  by  ∆∈ ሼ◯,♢,ሽ .  The 
universal path quantifier is denoted by ∀  preceding a path formula, and the existential path quantifier by ∃ 
preceding  a  path  formula. Quality  predicates  are  represented  by  𝑃 ⊆ ሾ0,1ሿ ∩ ℚ ,  and  𝑄௉ሺ∙ሻ   signifies  the 
characteristic predicate operator. 

QFCTL state formulas 𝜑  are recursively defined over 𝐴𝑃 ∪ 𝐴𝑃𝑅  as follows: 

(1) An atomic proposition 𝑝, where 𝑝 ∈ 𝐴𝑃, is a QFCTL state formula. 
(2) A propositional  constant  𝑟 , where  𝑟 ∈ 𝐴𝑃𝑅 ,  is  a QFCTL  state  formula, with  special  cases  for  𝑟 ൌ 0 

corresponding to ʺFalseʺ and  𝑟 ൌ 1  to ʺTrueʺ. 
(3) Formulas △ଵ 𝜑,𝜑ଵ △ଶ 𝜑ଶare QFCTL state formulas, where 𝜑,𝜑ଵ,𝜑ଶ  are QFCTL state formulas. 
(4) Expressions ∀𝜓,∃𝜓,𝑄௉ሺ𝜓ሻ are QFCTL state formulas, where 𝜓  is a QFCTL path formula. 

QFCTL path formulas 𝜓  are recursively defined as follows: 

(5) A QFCTL state formula 𝜑  is a path formula. 
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(6) Formulas ∆𝜑,𝜑ଵ ⊔ 𝜑ଶ  are QFCTL path formulas, where 𝜑,𝜑ଵ,𝜑ଶ  are QFCTL state formulas. 

To facilitate discussions regarding the complexity of the QFCTL model checking algorithm, the 

concept of a QFCTL formulaʹs length is defined as follows. 

Definition 3 [Length of a QFCTL Formula] Let 𝜑  be a QFCTL state formula. The length of 𝜑, denoted as 

|𝜑|, is defined recursively as follows, 

(1) |𝑝| ൌ |𝑟| ൌ 1; 
(2) |△ଵ 𝜑| ൌ |𝜑| ൅ 1; 
(3) |𝜑ଵ △ଶ 𝜑ଶ| ൌ |𝜑ଵ| ൅ |𝜑ଶ| ൅ 1; 
(4) |∀ △ଵ 𝜑| ൌ |∃ △ଵ 𝜑| ൌ |𝑄௉ሺ△ଵ 𝜑ሻ| ൌ |∀∆𝜑| ൌ |∃∆𝜑| ൌ |𝑄௉ሺ∆𝜑ሻ| ൌ |𝜑| ൅ 1; 
(5) |∀ሺ𝜑ଵ △ଶ 𝜑ଶሻ| ൌ |∃ሺ𝜑ଵ △ଶ 𝜑ଶሻ| ൌ |𝑄௉ሺ𝜑ଵ △ଶ 𝜑ଶሻ|; 
ൌ |∀ሺ𝜑ଵ⨆𝜑ଶሻ| ൌ |∃ሺ𝜑ଵ⨆𝜑ଶሻ| ൌ |𝑄௉ሺ𝜑ଵ⨆𝜑ଶሻ| ൌ |𝜑ଵ| ൅ |𝜑ଶ| ൅ 1.  

Note 1: The focus on state formulas when defining the length of QFCTL formulas is due to the model checking 

process  which  assesses  the  satisfaction  value  of  formulas  in  specific  states.  Path  formulas  are  integral 

components, nested within state formulas. According to Definition 2, part (4), path formulas 𝜓  are structured 
as state formulas under the constraints imposed by quantifiers and characteristic predicates. 

Example 1. Given an atomic proposition set 𝐴𝑃 ൌ ሼ𝑟𝑒𝑞𝑢𝑒𝑠𝑡,𝑔𝑟𝑎𝑛𝑡ሽ, consider the QFCTL formula below, 
𝜑 ൌ ∀□ሺ𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ⟶ ∃♢ሺ𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡ሻ ∧ ൓ሺ4/5ሻ௖௣ሺ∀□൓𝑟𝑒𝑞𝑢𝑒𝑠𝑡ሻሻ 

The process for computing the length of formula 𝜑  is as follows, 

|𝜑| ൌ ሺ|𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ⟶ ∃♢ሺ𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡ሻ| ൅ 1ሻ ൅ ሺ|∀□൓𝑟𝑒𝑞𝑢𝑒𝑠𝑡| ൅ 2ሻ ൅ 1 

ൌ |𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ⟶ ∃♢ሺ𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡ሻ| ൅ |∀□൓𝑟𝑒𝑞𝑢𝑒𝑠𝑡| ൅ 4 

ൌ ሺ1 ൅ |∃♢ሺ𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡ሻ| ൅ 1ሻ ൅ ሺ1 ൅ |൓𝑟𝑒𝑞𝑢𝑒𝑠𝑡|ሻ ൅ 4 

ൌ |∃♢ሺ𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡ሻ| ൅ |൓𝑟𝑒𝑞𝑢𝑒𝑠𝑡| ൅ 7 

ൌ ሺ1 ൅ |𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡|ሻ ൅ 2 ൅ 7 

ൌ |𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡| ൅ 10 

ൌ 1 ൅ |◯𝑔𝑟𝑎𝑛𝑡| ൅ 1 ൅ 10 

ൌ |◯𝑔𝑟𝑎𝑛𝑡| ൅ 12 

ൌ 14. 

2.2. The Semantics of QFCTL 

The  semantics  of QFCTL  is  anchored  in  fuzzy Kripke  structures, wherein  propositions  are 

mapped onto states via a  fuzzy valuation  function  to determine  fuzzy  truth values. For a QFCTL 

formula, its truth value at a particular state is determined by recursively computing the truth values 

of its constituent subformulas. Letʹs begin by revisiting  the definition of a Fuzzy Kripke Structure 

(FKS), essential for grounding our understanding of QFCTLʹs semantic framework. 

Definition 4 [Fuzzy Kripke Structures (FKSs)][24]. An FKS is a tupl𝑒 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ, where, 

(1) 𝑆  is a finite set of states; 

(2) The fuzzy distribution  𝐼: 𝑆 ⟶ ሾ0,1ሿ represents the fuzzy set of each state as the initial state; 

(3) 𝛿: 𝑆 ൈ 𝑆 ⟶ ሾ0,1ሿ represents the fuzzy transition relationship between system states; 

(4) 𝐴𝑃  is a set of finite atomic propositions; 

(5) 𝐿: 𝑆 ⟶ ሾ0,1ሿ஺௉ is a state label function that characterizes a set of fuzzy atomic propositions. 

Definition 5 [path and path reachability]. Suppose 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  is an FKS, where a path  𝜋  is a 

state  sequence  𝜋 ൌ 𝜋଴,𝜋ଵ,⋯ ,𝜋௜ ,𝜋௜ାଵ,⋯ ∈ 𝑆ఠ ,  and  𝐿ሺ𝜋ሻ ∈ ሾ0,1ሿ஺௉   represents  a  set  of  fuzzy  atomic 

propositions  as  a  fuzzy  label  function.  ∀𝑝 ∈ 𝐴𝑃, 𝑖 ∈ ℕ  (where  ℕ  represents  the  set  of  natural  numbers) 

𝐿ሺ𝜋௜ሻሺ𝑝ሻ ∈ ሾ0,1ሿ represents  the  fuzzy  atomic  proposition  induced  by  atomic  proposition  𝑝   on  state  𝜋௜ . 
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𝜋௜ ൌ 𝜋௜ ,𝜋௜ାଵ,⋯ ∈ 𝑆ఠ  represents a path starting from state  𝜋௜. The recursive definition of path reachability is 

as follows. 

𝛿௜
∗ሺ𝜋ሻ ൌ ൜

𝐼ሺ𝜋଴ሻ 𝑖 ൌ 0;
𝛿௜ିଵ
∗ ሺ𝜋ሻ ∧ 𝛿ሺ𝜋௜ିଵ,𝜋௜ሻ 𝑖 ൐ 0.  

where  𝛿௜
∗ሺ𝜋ሻ represents the reachability of the path fragment  𝜋଴,𝜋ଵ,⋯ ,𝜋௜. This reflects the idea of 

the  “barrel  principle”, which  states  that  the  overall  reachability  of  a  path  is  determined  by  the 

minimum reachability of any path fragment. When  𝑖 ⟶ ൅∞,  𝛿∞
∗ ሺ𝜋ሻ represents  the reachability of 

the infinite path  𝜋 ൌ  𝜋଴,𝜋ଵ,⋯ ,𝜋௜ ,𝜋௜ାଵ,⋯ ∈ 𝑆ఠ.   
𝑃𝑎𝑡ℎሺ𝑀ሻ ൌ ሼ𝜋|𝜋 ∈ 𝑆ఠ , 𝐼ሺ𝜋଴ሻ ൐ 0ሽ  is  the set of  infinite paths  in 𝑀. For every state  𝑠  within  𝑆, 

𝑃𝑎𝑡ℎሺ𝑠ሻ ൌ ሼ𝜋|𝜋 ∈ 𝑆ఠ , 𝑠 ൌ 𝜋଴ሽ   signifies  the  collection of  all  infinite paths  𝜋   starting  at  𝑠 , whereas 

𝐶ℎ𝑖𝑙𝑑ሺ𝑠ሻ ൌ ሼ𝑠′|𝛿ሺ𝑠, 𝑠ᇱሻ ൐ 0ሽ   designates  the  ensemble  of  states  𝑠ᇱ   that  are  immediately  accessible 

from state  𝑠, as defined by the transition function  𝛿. 
For every  𝑖  belonging to the set of natural numbers  ℕ  , determine the fulfillment value of the 

QFCTL state formula  𝜑  over the path segment denoted by  𝜋௜ ൌ 𝜋௜ ,𝜋௜ାଵ,⋯ ∈ 𝑆ఠ  within the infinite 

sequence of states  𝑆ఠ. This involves synthesizing the path reachability  𝛿௜
∗ሺ𝜋ሻ  of the path from the 

initial state  𝜋଴  up to the current state  𝜋௜  with the fulfillment value of the formula  𝜑  at state  𝜋௜. 

Definition 6. [Semantics for QFCTL] Let 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be a Fuzzy Kripke Structure (FKS), where 

𝑃 ⊆ ሾ0,1ሿ ∩ ℚ  signifies a quality predicate. Let  𝜑  represent a QFCTL state formula and  𝜓  a QFCTL path 

formula. The semantics of QFCTL can be characterized by a fuzzy function:  ⟦𝑀,𝜑⟧:𝑆 → ሾ0,1ሿ. Employing an 

information fusion operator  ∘∈ ሼ∧, ∙ ,⨁ఒሽ, facilitates the combination of fuzzy truth values. The interpretation 

⟦∙⟧  is recursively defined as follows, 

(1) ⟦𝑠, 𝑟⟧ ൌ 𝑟; 
(2) ⟦𝑠, 𝑝⟧ ൌ 𝐿ሺ𝑠ሻሺ𝑝ሻ; 
(3) ⟦𝑠,△ଵ ሺ𝜑ሻ⟧ ൌ△ଵ ሺ⟦𝑠,𝜑⟧ሻ; 
(4) ⟦𝑠,𝜑ଵ △ଶ 𝜑ଶ⟧ ൌ ⟦𝑠,𝜑ଵ⟧ △ଶ ⟦𝑠,𝜑ଶ⟧; 
(5) ൳𝜋௜,𝜑൷ ൌ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑⟧;   
(6) ൳𝜋௜,◯𝜑ሻ൷ ൌ ൳𝜋௜ାଵ,𝜑൷; 
(7) ൳𝜋௜,♢𝜑ሻ൷ ൌ ⋁

௝ஹ௜
൳𝜋௝,𝜑൷; 

(8) ൳𝜋௜, □𝜑ሻ൷ ൌ ⋀
௝ஹ௜
൳𝜋௝ ,𝜑൷; 

(9) ൳𝜋௜,𝜑ଵ ⊔ 𝜑ଶ൷ ൌ ⋁
௝ஹ௜
൬൳𝜋௝ ,𝜑ଶ൷ ∧ ⋀

௜ஸ௞ழ௝
⟦𝜋௞,𝜑ଵ⟧൰; 

(10) ⟦𝑠,∀𝜓⟧ ൌ ⋀
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,𝜓⟧; 

(11) ⟦𝑠,∃𝜓⟧ ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,𝜓⟧; 

(12) ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ ቐ
1        ∀𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∈ 𝑃;      

0.5 ∃𝜋,𝜋ᇱ ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∈ 𝑃 ∧ ⟦𝜋′,𝜓⟧ ∈ 𝑃
0        ∀𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∉ 𝑃.       

; 

Note 2: (1) If the quality constraint operators  𝜆௖௣ሺ∙ሻ, 𝜆௡௘ሺ∙ሻ 𝑎𝑛𝑑 𝜆௖௙ሺ∙ሻ, the quality property predicate operator 

𝑄௉ሺ∙ሻ, are removed from QFCTL, and the information fusion operator ̋ ∘ʺ is restricted to ̋ ∧ʺ only; then QFCTL 

degrades to PoCTL. It is evident that the set of PoCTL formulas constitutes a true subset of the set of QFCTL 

formulas. 

(2) The semantics of QFCTL state formulas, excluding those that contain the quality property predicate 

operator  𝑄௉ሺ∙ሻ, are directly defined on the current state without considering path reachability. Essentially, they 

are interpreted as fuzzy propositional logic. 

(3)  The  semantics  for QFCTL  formulas  are  recursively  defined  over  paths, with  the  fifth  clause  of 

Definition  6  serving  as  a  pivotal  base  case  in  the  recursive  definition. Formally,  it  appears  as  if  the  path 

reachability information  𝛿௜
∗ሺ𝜋ሻ  is synthesized onto the path segment  𝜋௜  only when the QFCTL path formula 
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is distilled to its core—a state formula  𝜑. This information does not seem to feature in other recursive cases. 

However,  the  innermost  component  of  any QFCTL  formula  is  invariably  a  state  formula. Consequently, 

irrespective of the superficial form of the QFCTL formula, the path reachability information will inevitably be 

synthesized through the process of recursive iteration. To superimpose  𝛿௜
∗ሺ𝜋ሻ  at each level of the formula would 

introduce redundancy in reachability information and lead to informational asynchrony, thus compromising 

the integrity of the recursive structure. 

As an example, let us examine the computation of semantics for the ʺ⊔ʺ operator,   

൳𝜋௜ ,𝜑ଵ ⊔ 𝜑ଶ൷ ൌ ⋁
௝ஹ௜
൬൳𝜋௝ ,𝜑ଶ൷ ∧ ⋀

௜ஸ௞ழ௝
⟦𝜋௞,𝜑ଵ⟧൰ ൌ ⋁

௝ஹ௜
൬𝛿௝

∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଶ൷ ∧ ⋀
௜ஸ௞ழ௝

𝛿௞
∗ሺ𝜋ሻ ∘ ⟦𝜋௞,𝜑ଵ⟧൰. 

The information fusion operator ʺ∙ʺ encapsulates the essence of the multiplicative principle. In 

the quest for the truth value of the QFLTL formula  𝜑  on the path  𝜋௜ ൌ 𝜋௜ ,𝜋௜ାଵ,⋯ ∈ 𝑆ఠ, one initiates 
the process by computing the path reachability  𝛿௜

∗ሺ𝜋ሻ  of the prefix path, spanning from  𝜋଴  to  ,𝜋௜. 
Subsequently, this value is multiplied by the satisfaction value  ⟦𝜋௜,𝜑⟧  of the formula at  𝜋௜, ensuring 
a methodical  integration  of  path  reachability  and  formula  satisfaction.  The  information  fusion 

operator  ʺ⨁ఒʺ, on  the other hand, embodies  the philosophy of weighted averages.  It calls  for  the 

sophisticated  amalgamation  of  path  reachability  and  formula  satisfaction  values,  calibrated 

according to distinct weights, thereby facilitating a nuanced understanding of formula satisfaction 

across the path. 

2.3. Exemplary Illustrations of QFCTLʹs Practicality 

QFCTL formulas embody a rich expressive capacity. Reflect on the QFCTL formula delineated 

in Example 1: 

𝜑 ൌ ∀□ሺ𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ⟶ ∃♢ሺ𝑔𝑟𝑎𝑛𝑡 ⨁ଷ/ସ◯𝑔𝑟𝑎𝑛𝑡ሻ ∧ ൓ሺ3/4ሻ௖௣ሺ∀□൓𝑟𝑒𝑞𝑢𝑒𝑠𝑡ሻሻ. 
Upon confining  the atomic propositions  ʹ𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ́ and  ʹ𝑔𝑟𝑎𝑛𝑡 ́  to Boolean values of 0 or 1,  𝜑 

elucidates  the  processʹs  unvarying  adherence  to  the  stipulation  that,  post‐request  initiation 

(ʺ𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ̋ ),  there  is a  temporal  sequence  in  the  future where permission  is conferred  (ʺ𝑔𝑟𝑎𝑛𝑡   ʺ). 
Should permission be granted consecutively twice, the satisfaction value materializes as 1; if granted 

solely  once,  the  satisfaction  value  is  assuredly  not  less  than  1/4. Conversely,  should  the process 

abstain from initiating a request, the satisfaction value is no less than 1/5. 

When  the  atomic  propositions  ʹ𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ́  and  ʹ𝑔𝑟𝑎𝑛𝑡 ́  assume  values  over  a more  extensive 

domain, and with due consideration paid to varying degrees of path reachability,  𝜑  furnishes an 
array of values. These disparate values encapsulate distinct process execution trajectories, manifestly 

evidencing that QFCTL wields a more copious expressive potential than PoCTL. 

Example 2. Figure 1  illustrates  the Fuzzy Kripke Structure  (FKS), as delineated  in  reference  [24], which 

characterizes  the  evolution  of  a  patientʹs  health  condition  throughout  treatment. The  atomic  propositions 

ʹ𝑝𝑜𝑜𝑟ʹ, ́ 𝑓𝑖𝑛𝑒ʹ, ́ 𝑒𝑥𝑐𝑒𝑛𝑙𝑙𝑒𝑛𝑡ʹ embody the patientʹs health status, with each state assigning a fuzzy value within 
the specified  interval  [0,1]  to  these propositions,  thereby representing a  fuzzy proposition. For example,  the 

assignment  𝑠ଵሺ𝑒ሻ ൌ 0.5 ,  signifies  that when  the  patient  is  in  the  state  𝑠ଵ ,  their  health  status  has  a  0.5 
possibility of being ʺexcellentʺ. The orientation of the directed edges delineates the direction of state transition, 

and the fuzzy values inscribed upon these edges denote the possibilities of transition between interrelated states. 

Notably, the sole initial state is identified as  𝑠଴. 
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Figure 1. The FKS 𝑀  for the patientʹs treatment process. 

The  subsequent  QFCTL  formulas  are  presented,  accompanied  by  their  detailed  semantic 

interpretations: 

𝜑ଵ ൌ ∃◇ሺ0.8௖௙ሺ𝑒ሻሻ  delineates the maximal possibility that, among all therapeutic alternatives in 

the medical treatment course, the patientʹs ultimate health status will be ʺexcellentʺ with a possibility 

of not less than 0.8. 

𝜑ଶ ൌ ∀◇ሺ0.8௖௙ሺ𝑒ሻሻ  signifies the least possibility that, among all therapeutic alternatives in the 

medical treatment course, the patientʹs ultimate health status will be ʺexcellentʺ with a possibility of 

not less than 0.8. 

𝜑ଷ ൌ ∃□ሺ𝑓⨁଴.ସ𝑒ሻ  encapsulates  the highest possibility  that, within all  therapeutic alternatives, 

the  patientʹs  health  status will  consistently  satisfies  the  ʺfineʺ  condition with  a  40% weightage, 

simultaneously alongside the ʺexcellentʺ condition with a 60% weightage. 

𝜑ସ ൌ ∀□ሺ𝑓⨁଴.ସ𝑒ሻ   illustrates  the  least  possibility  that, within  all  therapeutic  alternatives,  the 

patientʹs  health  status  will  persistently  adhere  to  the  requirement  of  being  ʺfineʺ  with  a  40% 

weightage and ʺexcellentʺ with a 60% weightage. 

𝜑ହ ൌ ∃ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ   delineates  the maximal  possibility  that  the  patientʹs  health  status  will 

remain ʺfineʺ with a necessity not exceeding 0.5 until it transitions to ʺexcellent.ʺ 

𝜑଺ ൌ ∀ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ   signifies  the  least possibility  that  the patientʹs health  status will  remain 

ʺfineʺ with a necessity not exceeding 0.5 until it transitions to ʺexcellent.ʺ 

𝜑଻ ൌ 𝑄ஹ଴.ଷሺ0.8௖௙ሺ𝑒ሻሻ  delineates the fulfillment condition (whether entirely, partially, or not at 

all) for the possibility of the patientʹs health status being ʺexcellentʺ with a possibility of not more 

than 0.8, with a likelihood of not less than 0.3 across all therapeutic alternatives. 

𝜑଼ ൌ 𝑄வ଴.ହሺ𝑓⨁଴.ସ𝑒ሻ  encapsulates  the  fulfillment condition  for  the possibility  that  the patientʹs 

health status will consistently comply with the requirement of being ʺfineʺ with a 40% weightage and 

ʺexcellentʺ with a 60% weightage, with a likelihood exceeding 0.5 across all therapeutic alternatives. 

𝜑ଽ ൌ 𝑄வ଴.଺ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ  delineates the fulfillment condition for the possibility that the patientʹs 

health status will remain ʺfineʺ with a necessity not exceeding 0.5 until it transitions to ʺexcellent,ʺ 

with a likelihood exceeding 0.6 across all therapeutic alternatives. 

It  is  abundantly  clear  that  these  temporal  properties  with  quality  constraints  exceed  the 

expressive capabilities of PoCTL. 

3. The Relations and Attributes of QFCTL Formulas. 

Initially, we delineate the notion of relationships between QFCTL formulas. 

Definition  7  [Relationships  Between  QFCTL  Formulas]  Let  𝝋,  𝝋𝟏, 𝝋𝟐   denote  QFCTL  state 

formulas  and  𝝍,  𝝍𝟏, 𝝍𝟐   denote QFCTL path  formulas. Consider 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ   to  be  a  FKS, 
where 𝑃𝑎𝑡ℎሺ𝑀ሻ ൌ ሼ𝜋|𝜋 ∈ 𝑆ఠ , 𝐼ሺ𝜋଴ሻ ൐ 0ሽ  is  the set of  infinite paths  in 𝑀. Let “~”  represent a relational 
operator, which may be  selected  from  the  set  ሼ൐,൏,൒,൑,്,ൌሽ . The  relations among QFCTL  formulas are 
delineated as follows: 

(1) If for every state  𝑠 ∈ 𝑆, the evaluation  ⟦𝑠,𝜑ଵ⟧~⟦𝑠,𝜑ଶ⟧, then 𝜑ଵ  is deemed to be in relation “~” with 
𝜑ଶ, indicated as 𝜑ଵ~𝜑ଶ. 

(2) If for every path 𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑀ሻ, the evaluation  ⟦𝜋,𝜓ଵ⟧~⟦𝜋,𝜓ଶ⟧, then 𝜓ଵ  is deemed to be in relation 
“~” with 𝜓ଶ, indicated as   𝜓ଵ~𝜓ଶ. 

Subsequently,  our  research  expedition  advances  towards  the meticulous  examination  of  the 

distinctive  logical attributes  intrinsic  to Quantified Fuzzy Computation Tree Logic  (QFCTL). As a 
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pivotal  pillar within  its  own  theoretical  architecture,  this  in‐depth  exploration  is  paramount  for 

enhancing  comprehension of  the  fundamental  logical mechanisms  that underpin  this  specialized 

field. 

Theorem 1 [Equivalence Calculus of QFCTL Formulas] Let 𝜑,  𝜑ଵ, 𝜑ଶ  be state formulas in QFCTL, and 
𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be an FKS. Then the following conclusions hold: 

(1) 𝜑 ൌ ൓൓𝜑; 

(2) 𝜆௖௣ሺ𝜑ሻ ൌ ൓𝜆௡௘ሺ൓𝜑ሻ,  𝜆௡௘ሺ𝜑ሻ ൌ ൓𝜆௖௣ሺ൓𝜑ሻ; 

(3) 𝜆௡௘ሺ𝜑ሻ ൌ 𝜑⨁ఒ𝑇𝑢𝑟𝑒, 𝜆௖௙ሺ𝜑ሻ ൌ 𝜆௖௣ሺ𝜑ሻ ൅ ሺ1 െ 𝜆ሻ/2; 

(4) 𝜑ଵ⨁ఒ𝜑ଶ ൌ 𝜑ଶ⨁ଵିఒ𝜑ଵ; 

(5) 𝜑⨁ఒሺ𝜑ଵ ∧ 𝜑ଶሻ ൌ ሺ𝜑⨁ఒ𝜑ଵሻ ∧ ሺ𝜑⨁ఒ𝜑ଶሻ, 𝜑⨁ఒሺ𝜑ଵ ∨ 𝜑ଶሻ ൌ ሺ𝜑⨁ఒ𝜑ଵሻ ∨ ሺ𝜑⨁ఒ𝜑ଶሻ; 

(6) 𝜑ଵ ∧ 𝜑ଶ ൌ ൓ሺ൓𝜑ଵ ∨ ൓𝜑ଶሻ,  𝜑ଵ ∨ 𝜑ଶ ൌ ൓ሺ൓𝜑ଵ ∧ ൓𝜑ଶሻ; 

(7) 𝜑ଵ ⟶ 𝜑ଶ ൌ ൓𝜑ଵ ∨ 𝜑ଶ; 

(8) ◇𝜑 ൌ 𝑇𝑢𝑟𝑒 ⊔ 𝜑; 

(9) ∃◇𝜑 ൌ ∃ሺ𝑇𝑢𝑟𝑒 ⊔ 𝜑ሻ, ∀◇𝜑 ൌ ∀ሺ𝑇𝑢𝑟𝑒 ⊔ 𝜑ሻ; 

(10) ∃◯𝜑 ൌ ൓∀◯൓𝜑, ∀◯𝜑 ൌ ൓∃◯൓𝜑; 

(11) ∃𝜑 ൌ ൓∀◇൓𝜑, ∀𝜑 ൌ ൓∃◇൓𝜑; 

(12) ◯𝜑 ൌ ൓ሺ◯൓𝜑ሻ, 𝜑 ൌ ൓ሺ◇൓𝜑ሻ,◇𝜑 ൌ ൓ሺ൓𝜑ሻ; 

(13) ◇𝜑 ൌ 𝜑 ∨◯◇𝜑,𝜑 ൌ 𝜑 ∧◯𝜑; 

(14) 𝜑ଵ ⊔ 𝜑ଶ ൌ 𝜑ଶ ∨ ሺ𝜑ଵ ∧◯ሺ𝜑ଵ ⊔ 𝜑ଶሻ; 

(15) ∀ሺ𝜑ଵ ∧ 𝜑ଶሻ ൌ ∀𝜑ଵ ∧ ∀𝜑ଶ; 

(16) ∃ሺ𝜑ଵ ∨ 𝜑ଶሻ ൌ ∃𝜑ଵ ∨ ∃𝜑ଶ; 

Proof: The above conclusions can be readily proven through straightforward calculations based on 

Definition 6. Here, we provide proof examples for (2), (5), (14), (15), and (16) as follows. 

Proof of Conclusion (2). For all  𝑠 ∈ 𝑆, 

⟦𝑠,൓𝜆௡௘ሺ൓𝜑ሻ⟧ ൌ 1 െ ⟦𝑠, 𝜆௡௘ሺ൓𝜑ሻ⟧ 
ൌ 1 െ ሺሺ1 െ 𝜆ሻ ൅ 𝜆⟦𝑠,൓𝜑⟧ሻ 𝜆௖௣ሺ𝜑ሻ 
ൌ 1 െ ൫ሺ1 െ 𝜆ሻ ൅ 𝜆ሺ1 െ ⟦𝑠,𝜑⟧ሻ൯ 
ൌ 𝜆⟦𝑠,𝜑⟧ ൌ ൳𝑠, 𝜆௖௣ሺ𝜑ሻ൷. 

Therefore, 𝜆𝑐𝑝ሺ𝜑ሻ ൌ ൓𝜆𝑛𝑒ሺ൓𝜑ሻ. By analogous reasoning, it can be shown that, 

𝜆௡௘ሺ𝜑ሻ ൌ ൓𝜆௖௣ሺ൓𝜑ሻ. 
Proof of Conclusion (5). For all  𝑠 ∈ 𝑆, 

⟦𝑠,𝜑⨁ఒሺ𝜑ଵ ∧ 𝜑ଶሻ⟧ ൌ 𝜆⟦𝑠,𝜑⟧ ൅ ሺ1 െ 𝜆ሻሺ⟦𝑠,𝜑ଵ⟧ ∧ ⟦𝑠,𝜑ଶ⟧ሻ 

ൌ ሺ𝜆⟦𝑠,𝜑⟧ ൅ ሺ1 െ 𝜆ሻ⟦𝑠,𝜑ଵ⟧ሻ ∧ ሺ𝜆⟦𝑠,𝜑⟧ ൅ ሺ1 െ 𝜆ሻ⟦𝑠,𝜑ଶ⟧ሻ 

ൌ ⟦𝑠,𝜑⨁ఒ𝜑ଵ⟧ ∧ ⟦𝑠,𝜑⨁ఒ𝜑ଵ⟧. 
Therefore,  𝜑⨁ఒሺ𝜑ଵ ∧ 𝜑ଶሻ ൌ ሺ𝜑⨁ఒ𝜑ଵሻ ∧ ሺ𝜑⨁ఒ𝜑ଶሻ .  By  analogous  reasoning,  it  can  be  shown 

that, 𝜑⨁𝜆ሺ𝜑1 ∨ 𝜑2ሻ ൌ ሺ𝜑⨁𝜆𝜑1ሻ ∨ ሺ𝜑⨁𝜆𝜑2
ሻ. 

Proof of Conclusion (14). For all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑀ሻ,𝑖 ∈ ℕ, 
൳𝜋௜ ,𝜑ଶ ∨ ሺ𝜑ଵ ∧◯ሺ𝜑ଵ ⊔ 𝜑ଶሻ൷ 

ൌ ൳𝜋௜ ,𝜑ଶ൷ ∨ ൳𝜋௜ ,𝜑ଵ ∧◯ሺ𝜑ଵ ⊔ 𝜑ଶሻ൷ 

ൌ ൳𝜋௜ ,𝜑ଶ൷ ∨ ሺ൳𝜋௜ ,𝜑ଵ൷ ∧ ൳𝜋௜ ,◯ሺ𝜑ଵ ⊔ 𝜑ଶሻ൷ሻ 

ൌ ൳𝜋௜ ,𝜑ଶ൷ ∨ ሺ൳𝜋௜ ,𝜑ଵ൷ ∧ ൳𝜋௜ାଵ,𝜑ଵ ⊔ 𝜑ଶ൷ሻ 
ൌ ൳𝜋௜ ,𝜑ଶ൷ ∨ ሺ൳𝜋௜ ,𝜑ଵ൷ ∧ ⋁

௝ஹ௜ାଵ
ሺ൳𝜋௝ ,𝜑ଶ൷ ∧ ⋀

௜ାଵஸ௞ழ௝
⟦𝜋௞,𝜑ଵ⟧ሻሻ 

ൌ ൳𝜋௜ ,𝜑ଶ൷ ∨ ⋁
௝ஹ௜ାଵ

ሺ൳𝜋௝,𝜑ଶ൷ ∧ ሺ൳𝜋௜,𝜑ଵ൷ ∧ ⋀
௜ାଵஸ௞ழ௝

⟦𝜋௞,𝜑ଵ⟧ሻሻ 
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ൌ ൳𝜋௜ ,𝜑ଶ൷ ∨ ⋁
௝ஹ௜ାଵ

ሺ൳𝜋௝,𝜑ଶ൷ ∧ ⋀
௜ஸ௞ழ௝

⟦𝜋௞,𝜑ଵ⟧ሻ 

ൌ ሺ൳𝜋௜ ,𝜑ଶ൷ ∧ 𝑇𝑢𝑟𝑒ሻ ∨ ⋁
௝ஹ௜ାଵ

ሺ൳𝜋௝ ,𝜑ଶ൷ ∧ ⋀
௜ஸ௞ழ௝

⟦𝜋௞ ,𝜑ଵ⟧ሻ 

ൌ ሺ൳𝜋௜ ,𝜑ଶ൷ ∧ ⋀
௜ஸ௞ழ௜

⟦𝜋௞,𝜑ଵ⟧ሻ ∨ ⋁
௝ஹ௜ାଵ

ሺ൳𝜋௝ ,𝜑ଶ൷ ∧ ⋀
௜ஸ௞ழ௝

⟦𝜋௞,𝜑ଵ⟧ሻ 

ൌ ⋁
௝ஹ௜
ሺ൳𝜋௝,𝜑ଶ൷ ∧ ⋀

௜ஸ௞ழ௝
⟦𝜋௞,𝜑ଵ⟧ሻ 

ൌ ൳𝜋௜ ,𝜑ଵ ⊔ 𝜑ଶ൷. 
Conclusion (14) Established. 

Proof of Conclusion (15). For all  𝑠 ∈ 𝑆, 
⟦𝑠,∀ሺ𝜑ଵ ∧ 𝜑ଶሻ⟧ ൌ ⋀

గ∈௉௔௧௛ሺ௦ሻ
⟦𝜋,ሺ𝜑ଵ ∧ 𝜑ଶሻ⟧ 

ൌ ⋀
గ∈௉௔௧௛ሺ௦ሻ

⋀
௜ஹ଴
൳𝜋௜ ,𝜑ଵ ∧ 𝜑ଶ൷ 

ൌ ⋀
గ∈௉௔௧௛ሺ௦ሻ

ሺ ⋀
௜ஹ଴
൳𝜋௜ ,𝜑ଵ൷ ∧ ⋀

௜ஹ଴
൳𝜋௜ ,𝜑ଶ൷ሻ 

ൌ ሺ ⋀
గ∈௉௔௧௛ሺ௦ሻ

⋀
௜ஹ଴
൳𝜋௜ ,𝜑ଵ൷ሻ ∧ ሺ ⋀

గ∈௉௔௧௛ሺ௦ሻ
⋀
௜ஹ଴
൳𝜋௜ ,𝜑ଶ൷ሻ 

ൌ ⋀
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,𝜑ଵ⟧ ∧ ⋀
గ∈௉௔௧௛ሺ௦ሻ

൳𝜋, ⟦𝜋,𝜑ଶ⟧൷ 

ൌ ⟦𝑠,∀𝜑ଵ⟧ ∧ ⟦𝑠,∀𝜑ଶ⟧ 

ൌ ⟦𝑠,∀𝜑ଵ ∧ ∀𝜑ଶ⟧. 
Conclusion (15) Established. 

The proof for Conclusion (16) is identical to that of Conclusion (15) and will not be repeated here. 

This completes the proof of Theorem 1. □ 

Proposition 1. The set  ሼ൓,∨,⨁ఒ,𝑄௉ሺ∙ሻ,∃◯,∃ ⊔,∀ ⊔ሽ  constitutes a functionally complete set of operators for 
QFCTL. 

With  the  functionally  complete  set  of  operators  for QFCTL, we  only  need  to  consider  the 

operators within this set during model checking. 

Proposition 2 [Inequality Relations Among QFCTL Formulas] Let 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be an FKS,  𝜑 
signifies a QFCTL state formula, and  𝜓  denotes a QFCTL path formula. Then, 

(1)  𝜆௖௣ሺ𝜑ሻ ൑ 𝜆௖௙ሺ𝜑ሻ ൑ 𝜆௡௘ሺ𝜑ሻ, with equality holding if and only if  𝜆 ൌ 1; 
(2) □𝜑 ൑ ◯𝜑 ൑ ◇𝜑; 
(3)  ∀𝜓 ൑ ∃𝜓. 

The  aforementioned  conclusions  can  be  readily  proven  by  simple  calculations  according  to 

Definition 6. 

The characteristic predicate operator  𝑄௉ሺ∙ሻ  qualitatively characterizes the relationship between 

the  satisfaction  value  of  a QFCTL  formula  and  a  quality predicate  𝑃 ⊆ ሾ0,1ሿ ∩ ℚ . Below  are  the 
properties and decision theorems for the characteristic predicate operator. 

Theorem 2 [Fundamental Properties and Decisions of the Characteristic Predicate Operator] Let  ൌ
ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be an FKS,   𝜓  denotes a QFCTL path formula. Let  𝑃 ൌ ሾ𝛼,𝛽ሿ ⊆ ሾ0,1ሿ  be a quality predicate, 
where  𝑃ത   denotes the complement of  𝑃  in [0,1], and 𝑣ሾ𝑠,𝜓ሿ ൌ ሼ⟦𝜋,𝜓⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ  represents the set of 
satisfaction values of  𝜓  over all paths starting from state  𝑠 ∈ 𝑆. Then, 

(1)  𝑄௉ሺ𝜓ሻ ൅ 𝑄௉തሺ𝜓ሻ ൌ 1,𝑄௉ሺ൓𝜓ሻ ൌ 𝑄௉തሺ𝜓ሻ; 
(2)  𝑄௉ሺ𝜓ሻ ൌ 0  if and only if  ∀𝜓 ൐ 𝛽  or  ∃𝜓 ൏ 𝛼; 
(3)  𝑄௉ሺ𝜓ሻ ൌ 1  if and only if  𝛼 ൑ ∀𝜓 ൑ ∃𝜓 ൑ 𝛽; 
(4)  𝑄௉ሺ𝜓ሻ ൌ 0.5  if and only if  ∀𝜓 ൏ 𝛼 ൑ ∃𝜓 ൑ 𝛽  or  𝛼 ൑ ∀𝜓 ൑ 𝛽 ൏ ∃𝜓. 

Proof: (1) For all  𝑠 ∈ 𝑆, if  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 1, then for all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∈ 𝑃. Consequently, for all 
𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∉ 𝑃ത, where  𝑃ത  denotes the complement of  𝑃. This implies  ⟦𝑠,𝑄௉തሺ𝜓ሻ⟧ ൌ 0, so we 

have  𝑄௉ሺ𝜓ሻ ൅ 𝑄௉തሺ𝜓ሻ ൌ 1 . Conversely,  if  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0 ,  then  it  follows  that  ⟦𝑠,𝑄௉തሺ𝜓ሻ⟧ ൌ 1 , again 
yielding  𝑄௉ሺ𝜓ሻ ൅ 𝑄௉തሺ𝜓ሻ ൌ 1.   

For  all  𝑠 ∈ 𝑆 ,  if  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0.5 ,  then  there  exist  𝜋,𝜋′ ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∈ 𝑃   and  ⟦𝜋′,𝜓⟧ ∉ 𝑃 
simultaneously. Consequently, ⟦𝑠,𝑄௉തሺ𝜓ሻ⟧ ൌ 0.5. Therefore, 𝑄௉ሺ𝜓ሻ ൅ 𝑄௉തሺ𝜓ሻ ൌ 1.   
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This demonstrates that the sum of the predicates  𝑄௉ሺ𝜓ሻ and 𝑄௉തሺ𝜓ሻ  is always unity, reflecting 

the complementary nature of the sets  𝑃  and  𝑃ത  within the logical framework defined.   

For all  𝑠 ∈ 𝑆 ,  if  ⟦𝑠,𝑄௉ሺ൓𝜓ሻ⟧ ൌ 1 ,  then  for all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ , ⟦𝜋,൓𝜓⟧ ∈ 𝑃 . Consequently,  for all 
𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ ,  1 െ ⟦𝜋,𝜓⟧ ∈ 𝑃 , which  implies  ⟦𝜋,𝜓⟧ ∈ 𝑃ത .  Thus  ,  ൳𝑠,𝑄𝑃തሺ𝜓ሻ൷ ൌ 1 ൌ ൳𝑠,𝑄𝑃ሺ൓𝜓ሻ൷ . 
Conversely, if  ⟦𝑠,𝑄௉ሺ൓𝜓ሻ⟧ ൌ 0, then  ⟦𝑠,𝑄௉തሺ𝜓ሻ⟧ ൌ 0, and also  ⟦𝑠,𝑄௉തሺ𝜓ሻ⟧ ൌ 0 ൌ ⟦𝑠,𝑄௉ሺ൓𝜓ሻ⟧. 

For all  𝑠 ∈ 𝑆, if  ⟦𝑠,𝑄௉ሺ൓𝜓ሻ⟧ ൌ 0.5, then there exist  𝜋,𝜋′ ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,൓𝜓⟧ ∈ 𝑃  and  ⟦𝜋′,൓𝜓⟧ ∉
𝑃 . This  implies  that  ⟦𝜋,𝜓⟧ ∈ 𝑃ത   and  ⟦𝜋′,𝜓⟧ ∉ 𝑃ത . Hence  ⟦𝑠,𝑄௉തሺ𝜓ሻ⟧ ൌ 0.5 . Therefore,  ⟦𝑠,𝑄௉തሺ𝜓ሻ⟧ ൌ
0.5 ൌ ⟦𝑠,𝑄௉ሺ൓𝜓ሻ⟧.   

(2) First, prove the sufficiency. When  ∀𝜓 ൐ 𝛽, for all  𝑠 ∈ 𝑆, since  𝛽 ൏ ⟦𝑠,∀𝜓⟧ ൌ ⋀
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,𝜓⟧, 

it  follows  that  for all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ൐ 𝛽 .    Given  that  𝛽   is  the upper bound of  𝑃 ൌ ሾ𝛼,𝛽ሿ ,  it 
implies that for all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ,  ⟦𝜋,𝜓⟧ ∉ 𝑃. According to Definition 6, we conclude that  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ
0. This intuitive result is illustrated in Figure 2. 

 

Figure 2.  𝑄௉ሺ𝜓ሻ ൌ 0  when  ∀𝜓 ൐ 𝛽. 

When  ∃𝜓 ൏ 𝛼 ,  for  all  𝑠 ∈ 𝑆 ,  since  𝛼 ൐ ⟦𝑠,∃𝜓⟧ ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,𝜓⟧ ,  it  follows  that  for  all  𝜋 ∈

𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ൏ 𝛼 . Given  that  𝛼   is  the  lower  bound  of  𝑃 ൌ ሾ𝛼,𝛽ሿ ,,  it  implies  that  for  all  𝜋 ∈
𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∉ 𝑃. According to Definition 6, we conclude that  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0. This intuitive result 
is illustrated in Figure 3. 

 

Figure 3.  𝑄௉ሺ𝜓ሻ ൌ 0  when  ∃𝜓 ൏ 𝛼. 

In  fact,  (2)  corresponds  to  𝑣ሾ𝑠,𝜓ሿ ∩ 𝑃 ൌ 𝛷 ,  which  means  that   𝑣ሾ𝑠,𝜓ሿ and 𝑃   are  disjoint. 
Conversely, when proving the necessity,  𝑄௉ሺ𝜓ሻ ൌ 0  corresponds to two scenarios depicted in Figure 

2 and Figure 3,  leading  straightforwardly  to  the  conclusion  that either  ∀𝜓 ൐ 𝛽   or  ∃𝜓 ൏ 𝛼 . Thus, 
conclusion (2) is proven. 

(3) First, prove the sufficiency. When  𝛼 ൑ ∀𝜓 ൑ ∃𝜓 ൑ 𝛽, for all  𝑠 ∈ 𝑆, on one hand, we have  𝛼 ൑
⟦𝑠,∀𝜓⟧ ൌ ⋀

గ∈௉௔௧௛ሺ௦ሻ
⟦𝜋,𝜓⟧ ,  implying  that  for  all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ൒ 𝛼 .  On  the  other  hand,  𝛽 ൒

⟦𝑠,∃𝜓⟧ ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,𝜓⟧ ,  implying  that  for  all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ൑ 𝛽 .  Consequently,  for  all  𝜋 ∈

𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∈ 𝑃. According to Definition 6, we conclude that  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 1. This intuitive result 
is illustrated in Figure 4. In fact, (3) corresponds to  𝑣ሾ𝑠,𝜓ሿ ⊆ 𝑃, i.e.,  𝑣ሾ𝑠,𝜓ሿ is contained within  𝑃.   

 

Figure 4.  𝑄௉ሺ𝜓ሻ ൌ 1 when  𝛼 ൑ ∀𝜓 ൑ ∃𝜓 ൑ 𝛽. 

With reference to Figure 4, it is straightforward to demonstrate the necessity of conclusion (3). 

Thus, conclusion (3) is proven. 

(4)  First,  prove  the  sufficiency. When  ∀𝜓 ൏ 𝛼 ൑ ∃𝜓 ൑ 𝛽 ,  for  all  𝑠 ∈ 𝑆 ,  on  one  hand,  𝛼 ൐
⟦𝑠,∀𝜓⟧ ൌ ⋀

గ∈௉௔௧௛ሺ௦ሻ
⟦𝜋,𝜓⟧, which implies that there exists  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, so that  ⟦𝜋,𝜓⟧ ∉ 𝑃. On the other 

hand, from  𝛼 ൑ ⟦𝑠,∃𝜓⟧ ൑ 𝛽, we know that  𝛼 ൑ ⋁
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,𝜓⟧ ൑ 𝛽, which indicates that there exists 
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𝜋′,∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ ,  so  that  𝛼 ൑ ⟦𝜋′,𝜓⟧ ൑ 𝛽 .  .  Therefore,  there  exists  𝜋′,∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ ,  so  that  ⟦𝜋′,𝜓⟧ ∈ 𝑃 . 
According  to Definition 6, we conclude  that  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0.5. This  intuitive result  is  illustrated  in 
Figure 5. 

 

Figure 5.  𝑄௉ሺ𝜓ሻ ൌ 0.5  when  ∀𝜓 ൏ 𝛼 ൑ ∃𝜓 ൑ 𝛽. 

When  𝛼 ൑ ∀𝜓 ൑ 𝛽 ൏ ∃𝜓 ,  similarly,  it  can  be  proven  that  𝑄௉ሺ𝜓ሻ ൌ 0.5 .  This  is  intuitively 
illustrated in Figure 6. 

 

Figure 6.  𝑄௉ሺ𝜓ሻ ൌ 0.5  when  𝛼 ൑ ∀𝜓 ൑ 𝛽 ൏ ∃𝜓. 

In fact, (4) corresponds to the case where  𝑣ሾ𝑠,𝜓ሿ  partially intersects with  𝑃. With reference to 

Figures 5 and 6, the proof of the necessity of conclusion (4) is also evident. 

Proof of Theorem 4 is complete. □ 

Corollary  1.  Let  𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ   be  an  FKS,  and  𝜓   be  a QFCTL  path  formula. When  the  quality 
predicate  𝑃   is  an  open  or  half‐open  interval,  the  conclusion  (1)  of  Theorem  2  holds.  The  conditions  for 
conclusions (2), (3), and (4) can be slightly modified to yield the following conclusions: 

When  𝑃 ൌ ሺ𝛼,𝛽ሻ ⊂ ሾ0,1ሿ, we have: 
(1)  𝑄௉ሺ𝜓ሻ ൌ 0  if and only if  ∀𝜓 ൒ 𝛽  or  ∃𝜓 ൑ 𝛼; 
(2)  𝑄௉ሺ𝜓ሻ ൌ 1  if and only if  𝛼 ൏ ∀𝜓 ൑ ∃𝜓 ൏ 𝛽; 
(3)  𝑄௉ሺ𝜓ሻ ൌ 0.5  if and only if  ∀𝜓 ൑ 𝛼 ൏ ∃𝜓 ൏ 𝛽  or  𝛼 ൏ ∀𝜓 ൏ 𝛽 ൑ ∃𝜓. 
When  𝑃 ൌ ሺ𝛼,𝛽ሿ ⊂ ሾ0,1ሿ, we have: 
(4)  𝑄௉ሺ𝜓ሻ ൌ 0  if and only if  ∀𝜓 ൐ 𝛽  or  ∃𝜓 ൑ 𝛼; 
(5)  𝑄௉ሺ𝜓ሻ ൌ 1  if and only if  𝛼 ൏ ∀𝜓 ൑ ∃𝜓 ൑ 𝛽; 
(6)  𝑄௉ሺ𝜓ሻ ൌ 0.5  if and only if  ∀𝜓 ൑ 𝛼 ൏ ∃𝜓 ൑ 𝛽  or  𝛼 ൏ ∀𝜓 ൑ 𝛽 ൏ ∃𝜓. 
When  𝑃 ൌ ሾ𝛼,𝛽ሻ ⊂ ሾ0,1ሿ, we have: 
(7)  𝑄௉ሺ𝜓ሻ ൌ 0  if and only if  ∀𝜓 ൒ 𝛽  or  ∃𝜓 ൏ 𝛼; 
(8)  𝑄௉ሺ𝜓ሻ ൌ 1  if and only if  𝛼 ൑ ∀𝜓 ൑ ∃𝜓 ൏ 𝛽; 
(9)  𝑄௉ሺ𝜓ሻ ൌ 0.5  if and only if  ∀𝜓 ൏ 𝛼 ൑ ∃𝜓 ൏ 𝛽  or  𝛼 ൑ ∀𝜓 ൏ 𝛽 ൑ ∃𝜓. 

From  Theorem  2  and  Corollary  1, we  know  that  the  values  of  ⟦𝑠,∃𝜓⟧ and ⟦𝑠,∀𝜓⟧   can  be 
computed first, and then the value of  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧  can be derived. 

4. Model Checking for QFCTL 

The semantics of QFCTL are defined on FKS (Fuzzy Kripke Structures), incorporating quality 

constraint operators and characteristic predicate operators. Compared  to PoCTL model  checking, 

QFCTL poses additional  challenges  in  three key areas. Firstly, when computing  the  semantics of 

formulas,  it  integrates  information  from both path  reachability degrees and satisfaction values of 

system properties. This integration is not a binary choice but a synthesis based on different preference 

requirements, undoubtedly increasing computational complexity. Secondly, the integration of these 

two types of information necessitates constant synchronization, meaning that the satisfaction value 

of a property on a specific path segment should be combined with  the reachability degree of  that 

segment, rather than aggregating the satisfaction value of the property over the entire path and then 

combining  it with  the  overall  reachability degree  of  the  path. This  synchronization  requirement 

further elevates computational difficulty. Lastly, quality constraints are applied  to subformulas of 
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properties to reflect the importance and preferences of different properties, which also adds to the 

computational complexity. Therefore, explicit model checking for QFCTL cannot be conducted using 

fuzzy  matrix  composition  operations[20,21],  as  these  operations  are  incompatible  with  quality 

constraint computations. Fortunately, FKS are finite, with limited numbers of atomic propositions, 

propositional  constants,  and  quality  constraint  operators.  By  leveraging  ideas  from  fixed‐point 

theory[18,19],  we  reduce  the  semantic  computation  of  QFCTL  on  infinite  paths  to  iterative 

calculations within a finite number of steps. 

4.1. Description of the Model Checking Problem for QFCTL 

Analogous to the model checking problem for PoCTL, the model checking problem for QFCTL 

can be described as  follows. Let  𝜑   be a QFCTL  state  formula, and 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ   be an FKS 
(Fuzzy Kripke Structure). Let  𝑃 ⊆ ሾ0,1ሿ ∩ ℚ  denote the quality predicate, and  𝐴𝑃𝑅 ⊆ ሾ0,1ሿ ∩ ℚ  be a 
finite set of fuzzy constants. The model checking problem for QFCTL involves computing the value 

of  ⟦𝑠,𝜑⟧  for all  𝑠 ∈ 𝑆  such  that  𝐼ሺ𝑠ሻ ൐ 0. For QFCTL,  the model checking problem is extended  to 

compute the truth values of formulas that incorporate quality constraint functions and characteristic 

predicates, thus necessitating a different model checking approach. 

From  Proposition  1,  it  is  known  thatሼ൓,∨,⨁ఒ,𝑄௉ሺ∙ሻ,∃◯,∃ ⊔,∀ ⊔ሽ   constitutes  a  functionally 
complete  set  of  operators  for  QFCTL  formulas.  According  to  Definition  6,  the  operators  ൓,∨
,⨁ఒ and ∃◯   can  be  directly  evaluated  on  the  current  state  or  the  current  state  along with  its 

immediate successor state to obtain solutions. Therefore, it suffices to provide algorithms for solving 

QFCTL  formulas with  the operators  𝑄௉ሺ∙ሻ,∃ ⊔, and ∀ ⊔ . Theorems 2 and Corollary 1 can  serve as 

decision theorems for model checking with the operator 𝑄௉ሺ∙ሻ. For any path formula 𝜓  and quality 
predicate  𝑃, by solving for  ⟦𝑠,∃𝜓⟧ and ⟦𝑠,∀𝜓⟧  for all  𝑠 ∈ 𝑆, we can obtain the value of  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧. 
Hence,  the core problem of QFCTL model checking  lies  in computing  the  truth values of QFCTL 

formulas with  the operators  ∃ ⊔  and ∀ ⊔ . We  reduce  the computation of  these  two operators  to 

finite paths,  and  the QFCTL model  checking problem  can be  solved  through  a finite number of 

iterations. 

For all  𝑛 ∈ ℕ, the semantics of the ʺbounded untilʺ operator are defined as follows: 

⟦𝜋,𝜑ଵ ⊔௡ 𝜑ଶ⟧ ൌ ⋁
଴ஸ௜ழ௡

ሺ൳𝜋௜ ,𝜑ଶ൷ ∧ ⋀
଴ஸ௝ழ௜

൳𝜋௝ ,𝜑ଵ൷ሻ 

ൌ ⋁
଴ஸ௜ழ௡

ሺ𝛿௜
∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑ଶ⟧ሻ ∧ ⋀

଴ஸ௝ழ௜
ሺ𝛿௝

∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ሻሻ. 

The following theorem provides the basis for iteratively solving the model checking problem for 

QFCTL formulas with the operators  ∃ ⊔ and ∀ ⊔ within a finite number of steps. 

Theorem  3.  Let  𝜑ଵ 𝑎𝑛𝑑 𝜑ଶ   be  QFCTL  state  formulas,  and  𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ   be  an  FKS.  Then  the 
following conclusions hold: 

(1) ∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ ൌ ∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ; 
(2) ∀ሺ𝜑ଵ ⊔ 𝜑ଶሻ ൌ ∀ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ; 
(3) ∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ ൌ 𝜑ଶ ∨ ሺ𝜑ଵ ∧ ∃◯∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ; 
(4) ∀ሺ𝜑ଵ ⊔ 𝜑ଶሻ ൌ 𝜑ଶ ∨ ሺ𝜑ଵ ∧ ∀◯∀ሺ𝜑ଵ ⊔ 𝜑ଶሻ. 

Proof:  (1)  It  is  naturally  true  that  ∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ ൑ ∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ . What  needs  to  be  proven  is  that 

∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ ൑ ∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ.   
We prove that for all  𝑠 ∈ 𝑆  and for all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, it holds that, 

⟦𝜋,𝜑ଵ ⊔ 𝜑ଶ⟧ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷.    (1)

It suffices to prove that for all  𝑘 ∈ ℕ, 

⟦𝜋,𝜑ଵ ⊔௞ 𝜑ଶ⟧ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷.    (2)

When  𝑘 ൏ |𝑆| ,  the  Inequality  (2)  obviously  holds.  When  𝑘 ൌ |𝑆|  ,  ൳𝜋,𝜑ଵ ⊔|ௌ| 𝜑ଶ൷ ൑
൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷,the Inequality (2) also holds. Now, assume that the Inequality (2) holds when  𝑘 ൌ
𝑚 ൒ |𝑆|, i.e., 

⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷.    (3)
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We prove that the inequality (2) holds when  𝑘 ൌ 𝑚 ൅ 1. The discussion is divided into cases as 
follows: 

If there exists  0 ൑ 𝑡 ൏ 𝑚  where  𝜋௠ ൌ 𝜋௧, then,   
⟦𝜋,𝜑ଵ ⊔௠ାଵ 𝜑ଶ⟧ ൌ ⋁

଴ஸ௜ழ௠ାଵ
ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑ଶ⟧ሻ 

ൌ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ሺ ⋀
଴ஸ௝ழ௠

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௠∗ ሺ𝜋ሻ ∘ ⟦𝜋௠,𝜑ଶ⟧ሻ 

൑ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ሺ ⋀
଴ஸ௝ழ௠

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௧∗ሺ𝜋ሻ ∘ ⟦𝜋௧,𝜑ଶ⟧ሻ 

൑ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ሺ ⋀
଴ஸ௝ழ௧

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௧∗ሺ𝜋ሻ ∘ ⟦𝜋௧,𝜑ଶ⟧ሻ 

ൌ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧. 
Therefore, applying the induction hypothesis (Inequality (3)), we have 
⟦𝜋,𝜑ଵ ⊔௠ାଵ 𝜑ଶ⟧ ൑ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷. 
If for all  𝑡 ൏ 𝑚, where  𝜋௠ ് 𝜋௧, then since  𝑚൅ 1 ൐ |𝑆|,  there must exist  0 ൏ 𝑙 ൏ ℎ ൏ 𝑚  on the 

path  𝜋 ൌ 𝜋଴,𝜋ଵ,⋯ ,𝜋௠,⋯  , such  that  𝜋௟ ൌ 𝜋௛ ,  creating  a  loop.  By  removing  the  path  segment 

𝜋௟ାଵ,⋯ ,𝜋௛,   we  construct  a  new  path  𝜌 ൌ 𝜋଴,𝜋ଵ,⋯ ,𝜋௟,⋯𝜋௛ାଵ,⋯ ,𝜋௠,⋯ .  Relabeling  in  order, we 

obtain  𝜌 ൌ 𝜌଴,𝜌ଵ,⋯ ,𝜌௠ିሺ௛ି௟ሻ,⋯, where  for all 𝑖 ൑ 𝑙, 𝜌௜ ൌ 𝜋௜, and for all  𝑖 ൐ ℎ  𝜌௜ିሺ௛ି௟ሻ ൌ 𝜋௜.   
⟦𝜋,𝜑ଵ ⊔௠ାଵ 𝜑ଶ⟧ ൌ ⋁

଴ஸ௜ழ௠ାଵ
ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑ଶ⟧ሻ 

ൌ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௠

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௠∗ ሺ𝜋ሻ ∘ ⟦𝜋௠,𝜑ଶ⟧ሻ 

൑ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௠ିሺ௛ି௟ሻ

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௠∗ ሺ𝜋ሻ ∘ ⟦𝜋௠,𝜑ଶ⟧ሻ 

ൌ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௠ିሺ௛ି௟ሻ

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௠∗ ሺ𝜋ሻ ∘ ൳𝜌௠ିሺ௛ି௟ሻ,𝜑ଶ൷ሻ 

൑ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௠ିሺ௛ି௟ሻ

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௠ିሺ௛ି௟ሻ

∗ ሺ𝜋ሻ ∘ ൳𝜌௠ିሺ௛ି௟ሻ,𝜑ଶ൷ሻ 

ൌ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௠ିሺ௛ି௟ሻ

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௠ିሺ௛ି௟ሻ

∗ ሺ𝜌ሻ ∘ ൳𝜌௠ିሺ௛ି௟ሻ,𝜑ଶ൷ሻ 

൑ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ⋁
଴ஸ௜ழ௠ିሺ௛ି௟ሻାଵ

ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜌ሻ ∘ ⟦𝜌௜ ,𝜑ଶ⟧ሻሻ 

ൌ ⟦𝜋,𝜑ଵ ⊔௠ 𝜑ଶ⟧ ∨ ൳𝜌,𝜑ଵ ⊔௠ିሺ௛ି௟ሻାଵ 𝜑ଶ൷. 
Since  0 ൏ 𝑙 ൏ ℎ ൏ 𝑚, it follows that 𝑚െ ሺℎ െ 𝑙ሻ ൅ 1 ൑ 𝑚. According to the induction hypothesis 

(Inequality (3)), we have, 

൳𝜌,𝜑ଵ ⊔௠ିሺ௛ି௟ሻାଵ 𝜑ଶ൷ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷.    (4)

Combining Inequality (3) and (4), we obtain, 
⟦𝜋,𝜑ଵ ⊔௠ାଵ 𝜑ଶ⟧ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷. 

Thus, Inequality (2) holds, for all  𝑘 ∈ ℕ,  ⟦𝜋,𝜑ଵ ⊔௞ 𝜑ଶ⟧ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷. Therefore, 
⟦𝜋,𝜑ଵ ⊔ 𝜑ଶ⟧ ൑ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷. 

This completes the proof of Conclusion (1). 

The proof of Conclusion (2) is analogous to the proof of (1) and will not be repeated here. 

Next, we proceed to prove Conclusion (3). For all  𝑠 ∈ 𝑆, 

⟦𝑠,𝜑ଶ ∨ ሺ𝜑ଵ ∧ ∃◯∃ሺ𝜑ଵ ⊔ 𝜑ଶሻሻ⟧ 

ൌ ⟦𝑠,𝜑ଶ⟧ ∨ ሺ⟦𝑠,𝜑ଵ⟧ ∧ ⟦𝑠,∃◯∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ⟧ 

ൌ ⟦𝑠,𝜑ଶ⟧ ∨ ሺ⟦𝑠,𝜑ଵ⟧ ∧ ⋁
గ∈௉௔௧௛ሺ௦ሻ

⟦𝜋,◯∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ⟧ሻ 

ൌ ⟦𝑠,𝜑ଶ⟧ ∨ ሺ⟦𝑠,𝜑ଵ⟧ ∧ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺ⟦𝜋ଵ,∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ⟧ሻሻ 

ൌ ⟦𝑠,𝜑ଶ⟧ ∨ ሺ⟦𝑠,𝜑ଵ⟧ ∧ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺ ⋁
ఘ∈௉௔௧௛ሺగభሻ

⟦𝜌,𝜑ଵ ⊔ 𝜑ଶ⟧ሻሻ 

ൌ ⟦𝑠,𝜑ଶ⟧ ∨ ሺ⟦𝑠,𝜑ଵ⟧ ∧ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺ ⋁
ఘ∈௉௔௧௛ሺగభሻ

ሺ ⋁
଴ஸ௜ழ|ௌ|

ሺ൳𝜌௜ ,𝜑ଶ൷ ∧ ⋀
଴ஸ௝ழ௜

൳𝜌௝ ,𝜑ଵ൷ሻሻሻሻ 

ൌ ⟦𝑠,𝜑ଶ⟧ ∨ ሺ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺ ⋁
ఘ∈௉௔௧௛ሺగభሻ

ሺ ⋁
଴ஸ௜ழ|ௌ|

ሺ൳𝜌௜ ,𝜑ଶ൷ ∧ ⟦𝑠,𝜑ଵ⟧ ∧ ⋀
଴ஸ௝ழ௜

൳𝜌௝ ,𝜑ଵ൷ሻሻሻሻ 

ൌ ⟦𝑠,𝜑ଶ⟧ ∨ ሺ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺ ⋁
ଵஸ௜ழ|ௌ|ାଵ

ሺ൳𝜋௜ ,𝜑ଶ൷ ∧ ⋀
଴ஸ௝ழ௜

൳𝜋௝ ,𝜑ଵ൷ሻሻ 

ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺ⟦𝜋଴,𝜑ଶ⟧ ∨ ⋁
ଵஸ௜ழ|ௌ|ାଵ

ሺ൳𝜋௜ ,𝜑ଶ൷ ∧ ⋀
଴ஸ௝ழ௜

൳𝜋௝ ,𝜑ଵ൷ሻሻ 

ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺሺ⟦𝜋଴,𝜑ଶ⟧ ∧ 1ሻ ∨ ⋁
ଵஸ௜ழ|ௌ|ାଵ

ሺ൳𝜋௜ ,𝜑ଶ൷ ∧ ⋀
଴ஸ௝ழ௜

൳𝜋௝ ,𝜑ଵ൷ሻሻ 

ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺሺ⟦𝜋଴,𝜑ଶ⟧ ∧ ⋀
଴ஸ௝ழ଴

൳𝜋௝ ,𝜑ଵ൷ሻ ∨ ⋁
ଵஸ௜ழ|ௌ|ାଵ

ሺ൳𝜋௜ ,𝜑ଶ൷ ∧ ⋀
଴ஸ௝ழ௜

൳𝜋௝ ,𝜑ଵ൷ሻሻ 

ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

ሺ ⋁
଴ஸ௜ழ|ௌ|ାଵ

ሺ൳𝜋௜,𝜑ଶ൷ ∧ ⋀
଴ஸ௝ழ௜

൳𝜋௝ ,𝜑ଵ൷ሻሻ 

ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

൳𝜋,𝜑ଵ ⊔|ௌ|ାଵ 𝜑ଶ൷ 
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ൌ ⋁
గ∈௉௔௧௛ሺ௦ሻ

൳𝜋,𝜑ଵ ⊔|ௌ| 𝜑ଶ൷    (Based on Inequality (2)) 

ൌ ൳𝑠,∃ሺ𝜑ଵ ⊔|ௌ| 𝜑ଶሻ൷ 

ൌ ⟦𝑠,∃ሺ𝜑ଵ ⊔ 𝜑ଶሻ⟧.              (Based on Conclusion (1)) 

The proof of Conclusion (4) is similar to the proof of Conclusion (3) and will not be repeated 

here. This completes the proof of Theorem 3. □ 

4.2. Solution Algorithms and Complexity Analysis for the Model Checking Problem of QFCTL 

Below, we present the solution algorithm for the model checking problem of the QFCTL formula 

∃ሺ𝜑ଵ⨆𝜑ଶሻ. 

Algorithm 1 The Computation Algorithm of  ∃ሺ𝜑ଵ⨆𝜑ଶሻ. 
Input: A QFCTL formula ∃ሺ𝜑ଵ⨆𝜑ଶሻ, a FKS 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ, with the  information fusion operator  ∘∈ ሼ⋀,∙
,⨁ఒሽ. 
Solution process: 

1 Initialization: Fuzzy set  𝑣, 𝑣ᇱ: 𝑆 ⟶ ሾ0,1ሿ, ∀𝑠 ∈ 𝑆, 𝑣ሺ𝑠ሻ ൌ ⟦𝑠,𝜑ଶ⟧, 𝑣′ሺ𝑠ሻ ൌ ⟦𝑠,𝜑ଵ⟧. 
2 LOOP ∀s ∈ 𝑆, 𝐼ሺsሻ ൐ 0                     
3          𝛿∗ሺsሻ ൌ 𝐼ሺ𝑠ሻ; 
4          𝑓ሺsሻ ൌ 𝛿∗ሺ𝑠ሻ°𝑣ሺ𝑠ሻ;// Initialize the objective function value for the source state 𝑠. 
5          𝜇 ൌ 𝑠;// Label the current expanded state. 
6          LOOP from  𝑖 ൌ 1  to  𝑖 ൌ |𝑆| 

7                𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∨ ൬𝛿∗ሺ𝜇ሻ°𝑣′ሺ𝜇ሻ ∧ ⋁
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑣ሺ𝑠′ሻ൰ ;  // Update  the  object  tive  function 

value for the current state  𝜇. 
8                  𝛿∗ሺ𝜇ሻ ൌ 𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻ;// Update the reachability of the path. 
9                  𝑓ሺ𝑠ሻ ൌ 𝑓ሺ𝜇ሻ;// Update the objective function value for the source state 𝑠. 
10                𝜇 ൌ 𝑠′;// Update the current state. 
11        END 

12 END 

Output：Fuzzy set  𝑓.   

When computing  ⟦𝑠,∀ሺ𝜑ଵ⨆𝜑ଶሻ⟧, it suffices to modify the objective function update formula in 

Step 6 of Algorithm 1 to, 

𝑓ሺsሻ ൌ 𝑓ሺsሻ ∨ ൬𝛿∗ሺsሻ°𝑣′ሺ𝑠ሻ ∧ ⋀
௦ᇲ∈஼௛௜௟ௗሺ௦ሻ

ሺ𝛿∗ሺsሻ ∧ 𝛿ሺ𝑠, 𝑠′ሻሻ°𝑣ሺ𝑠′ሻ൰. 

To avoid confusion, we will use  𝑓∃  to denote  the computation result of  ∃ሺ𝜑ଵ⨆𝜑ଶሻ  and  𝑓∀  to 
denote the computation result of∀ሺ𝜑ଵ⨆𝜑ଶሻ.   

Theorem 3 guarantees the correctness of Algorithm 1. 

The  following  delineates  an  algorithm  aimed  at  addressing  the model‐checking  challenge 

pertinent to the QFCTL formula, specifically 𝑄௉ሺ◯𝜑ሻ. 
Algorithm 2, formulated explicitly in alignment with the stipulations of Definition 6 to directly 

compute 𝑄௉ሺ◯𝜑ሻ, exhibits a correctness that is patently obvious. 
Below  is presented an algorithm  for solving  the model checking problem of QFCTL  formula 

𝑄௉ሺ𝜑ଵ⨆𝜑ଶሻ. 
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Algorithm 2 The Computation Algorithm of 𝑄௉ሺ◯𝜑ሻ. 
Input: A QFCTL  formula 𝑄௉ሺ◯𝜑ሻ ,  a FKS 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ,  with  the  information  fusion operator  ∘∈ ሼ⋀,∙
,⨁ఒሽ. 
Solution process: 

1 LOOP ∀s ∈ 𝑆, 𝐼ሺsሻ ൐ 0                     

2          ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧=0; 

3          LOOP ∀s′ ∈ 𝐶ℎ𝑖𝑙𝑑ሺ𝑠ሻ, 𝛿ሺ𝑠, 𝑠′ሻ ൐ 0 

4             ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ ሺ 𝐼ሺ𝑠ሻ ∧ 𝛿ሺ𝑠, 𝑠′ሻሻ ∘ ⟦𝑠ᇱ,𝜑⟧; 

5                  IF  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ∈ 𝑃and  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧=0 

6                      ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧=1; 

7                END 

8                ELSE IF  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ∉ 𝑃and  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧=1     

9                      ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧=0.5; 

10                    BREAK;   

11              END   

12        END 

13 END 

Output：∀s ∈ 𝑆 output ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧. 
 

Algorithm 3 The Computation Algorithm of  𝑄௉ሺ𝜑ଵ⨆𝜑ଶሻ. 
Input: A QFCTL formula 𝑄௉ሺ𝜑ଵ⨆𝜑ଶሻ, an FKS 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ, with the information fusion operator  ∘∈ ሼ⋀,∙
,⨁ఒሽ. 
Solution process: 

1 Algorithm 1 is employed to obtain the fuzzy sets  𝑓∃  and  𝑓∀; 
2 LOOP ∀s ∈ 𝑆, 𝐼ሺsሻ ൐ 0                     
3          IF  𝑃 ൌ ሾ𝛼,𝛽ሿ   
4                      IF  𝑓∀ሺ𝑠ሻ ൐ 𝛽  or  𝑓∃ሺ𝑠ሻ ൏ 𝛼  THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0; 
5                      IF  𝛼 ൑ 𝑓∀ሺ𝑠ሻ ൑ 𝑓∃ሺ𝑠ሻ ൑ 𝛽    THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 1; 
6                      IF  𝑓∀ሺ𝑠ሻ ൏ 𝛼 ൑ 𝑓∃ሺ𝑠ሻ ൑ 𝛽 or 𝛼 ൑ 𝑓∀ሺ𝑠ሻ ൑ 𝛽 ൏ 𝑓∃ሺ𝑠ሻ  THEN  ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0.5; 
7          END 

8          IF  𝑃 ൌ ሺ𝛼,𝛽ሻ   
9                      IF  𝑓∀ሺ𝑠ሻ ൒ 𝛽  or  𝑓∃ሺ𝑠ሻ ൑ 𝛼  THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0; 
10                    IF  𝛼 ൏ 𝑓∀ሺ𝑠ሻ ൑ 𝑓∃ሺ𝑠ሻ ൏ 𝛽    THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 1; 
11                    IF  𝑓∀ሺ𝑠ሻ ൑ 𝛼 ൏ 𝑓∃ሺ𝑠ሻ ൏ 𝛽 or 𝛼 ൏ 𝑓∀ሺ𝑠ሻ ൏ 𝛽 ൑ 𝑓∃ሺ𝑠ሻ    THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0.5; 
12        END 

13        IF  𝑃 ൌ ሺ𝛼,𝛽ሿ   
14                    IF  𝑓∀ሺ𝑠ሻ ൐ 𝛽  or  𝑓∃ሺ𝑠ሻ ൑ 𝛼  THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0; 
15                    IF  𝛼 ൏ 𝑓∀ሺ𝑠ሻ ൑ 𝑓∃ሺ𝑠ሻ ൑ 𝛽    THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 1; 
16                    IF  𝑓∀ሺ𝑠ሻ ൑ 𝛼 ൏ 𝑓∃ሺ𝑠ሻ ൑ 𝛽 or 𝛼 ൏ 𝑓∀ሺ𝑠ሻ ൏ 𝛽 ൏ 𝑓∃ሺ𝑠ሻ    THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0.5; 
17        END 

18        IF  𝑃 ൌ ሾ𝛼,𝛽ሻ   
19                    IF  𝑓∀ሺ𝑠ሻ ൒ 𝛽  or  𝑓∃ሺ𝑠ሻ ൏ 𝛼  THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0; 
20                    IF  𝛼 ൑ 𝑓∀ሺ𝑠ሻ ൑ 𝑓∃ሺ𝑠ሻ ൏ 𝛽    THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 1; 
21                    IF  𝑓∀ሺ𝑠ሻ ൏ 𝛼 ൑ 𝑓∃ሺ𝑠ሻ ൏ 𝛽 or 𝛼 ൑ 𝑓∀ሺ𝑠ሻ ൏ 𝛽 ൑ 𝑓∃ሺ𝑠ሻ    THEN    ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧ ൌ 0.5; 
22        END 

23 END 

Output：∀s ∈ 𝑆 output ⟦𝑠,𝑄௉ሺ𝜓ሻ⟧. 

Theorem 2 and Corollary 1 guarantee the correctness of Algorithm 3. 

Theorem 4. Let  𝜑  be a QFCTL state  formula, 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be a FKS, and  𝑃 ⊆ ሾ0,1ሿ  be a quality 
predicate. Then, the time complexity of the model checking problem for  𝜑  on 𝑀  is  𝑂ሺ|𝜑| ∙ |𝑆𝑢𝑝𝑝ሺ𝐼ሻ|. ሺ|𝑆| ൅
|𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻሻ, and the space complexity is  𝑂ሺ|𝑆| ൅ |𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻ. 
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Proof: The primary  computational  time  is  spent on  evaluating  ∃ሺ𝜑ଵ⨆𝜑ଶሻ   and  ∀ሺ𝜑ଵ⨆𝜑ଶሻ   within 

Algorithm 1. The algorithm consists of two nested loops: the outer loop iterates over  |𝑆𝑢𝑝𝑝ሺ𝐼ሻ|, and 
the  inner  loop  iterates over  |𝑆| . Within  the  inner  loop,  there  is a nested operation of  supremum 

⋁
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑣ሺ𝑠′ሻ  (Step 7 of Algorithm 1). Since  ∑ ∑ 1௦ᇲ∈஼௛௜௟ௗሺ௦ሻ௦∈ௌ ൌ |𝑆𝑢𝑝𝑝ሺ𝛿ሻ|, a total 

of 3|𝑆𝑢𝑝𝑝ሺ𝛿ሻ|  operations are performed (One for each successor state  𝑠′, with three operations  ∧,∘
and ∨   each  executed  once).  Steps  8,  9,  and  10  of Algorithm  1  execute  a  total  of  4|𝑆|   operations 
(During Each  loop  iteration performs one minimum operation and  three assignment operations). 

Therefore,  the overall  time complexity of Algorithm 1  is 𝑂ሺ|𝑆𝑢𝑝𝑝ሺ𝐼ሻ|. ሺ|𝑆| ൅ |𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻሻ. The space 
overhead is used to store state and transition function values, which can be reused. Hence, the space 

complexity is  𝑂ሺ|𝑆| ൅ |𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻ. Consequently, the time complexity of the model checking problem 

for  𝜑    on  𝑀    is  𝑂ሺ|𝜑| ∙ |𝑆𝑢𝑝𝑝ሺ𝐼ሻ|. ሺ|𝑆| ൅ |𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻሻ  ,  and  the  space  complexity  is  𝑂ሺ|𝑆| ൅
|𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻ.□ 

5. QFCTL* and Its Model Checking 

To more precisely characterize the satisfaction of a QFCTL path formula  𝜓  on the set of paths 
originating from any state  𝑠, under the constraint of a quality predicate  𝑃, we introduce a quantifier 

characteristic predicate operator  𝑄௉∗ሺ. ሻ  into QFCTL, resulting in an Enhanced Fuzzy Computation 

Tree Temporal Logic with Quality Constraints, denoted as QFCTL*. Furthermore, we discuss  the 

logical properties and model checking techniques of QFCTL*. 

QFCTL* differs from QFCTL by incorporating an additional quantifier characteristic predicate 

operator  𝑄௉∗ሺ. ሻ  and discuss the associated logical properties and model checking algorithms related 

to it. 

Definition  8  [Semantics  of  the Operator  𝑸𝑷
∗ ሺ. ሻ ]  Let  𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ   be  an  FKS  (Fuzzy  Kripke 

Structure),  𝑃 ⊆ ሾ0,1ሿ  be a quality predicate, and  𝜓  be a QFCTL path formula. For all  𝑠 ∈ 𝑆, the semantics 
of the operator  𝑄௉∗ሺ. ሻ  is defined as follows: 

⟦𝑠,𝑄௉∗ሺ𝜓ሻ⟧ ൌ
|ሼ⟦𝜋,𝜓⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋,𝜓⟧ ∈ 𝑃ሽ|

|ሼ⟦𝜋,𝜓⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ|
  (5)

𝑄௉ሺ𝜓ሻ   qualitatively  characterizes  the  satisfaction  of  the property  formula  𝜓   on  𝑃𝑎𝑡ℎሺ𝑠ሻ   in 
terms of three scenarios: fully satisfied, fully unsatisfied, or partially satisfied.  𝑄௉∗ሺ. ሻ  provides a more 

granular  characterization  of  the  satisfaction  of  the  property  formula  𝜓   on  𝑃𝑎𝑡ℎሺ𝑠ሻ ,  specifically 
quantifying the proportion of paths in  𝑃𝑎𝑡ℎሺ𝑠ሻ  that satisfy the constraint  𝑃  with respect to  𝜓. 

Example 3 (Continuing from Example 2). The QFCTL* formula  𝜑ଵ଴ ൌ 𝑄வ଴.଺
∗ ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ  represents the 

proportion of all treatment plans during the course of treatment that maintain the patientʹs condition with a 

necessity of at least ʺfineʺ (with a threshold of 0.5) until there is a transition to ʺexcellentʺ with a possibility 

greater  than 0.6. For  instance,  if    ⟦𝑠଴,𝑄வ଴.଺
∗ ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ ൌ 0.2,  this  signifies  that 20% of  the  treatment 

plans  fulfill  the  criterion where  the patientʹs  condition  remains with  a necessity  of  at  least  ʺfineʺ  (with  a 

threshold of 0.5) throughout the treatment process until there is a transition to ʺexcellentʺ with a likelihood 

exceeding 0.6. 

The following explains that the sets in both the numerator and the denominator of formula (5) 

are finite sets, indicating that Definition 8 is well‐defined. 

For all  𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, 𝑛 ∈ ℕ൅, denote  𝜋ሺ𝑛ሻ ൌ 𝜋଴,𝜋ଵ,⋯ ,𝜋௡ିଵ  as the prefix path of π with length 

𝑛. We define the semantics of QFCTL path formula  𝜑ଵ⨆𝜑ଶ  on  𝜋ሺ𝑛ሻ  as follows:   

⟦𝜋ሺ𝑛ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⋁
଴ஸ௜ழ௡

ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑ଶ⟧ሻ.  (6)

Lemma 1. Let 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be an FKS  (Finite Kripke Structure), 𝑃 ⊆ ሾ0,1ሿ  be a quality constraint 
predicate, and 𝜓  is a QFCTL path formula. Then, for all  𝑠 ∈ 𝑆,   

ሼ⟦𝜋,𝜓⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ ൌ ሼ⟦𝜌ሺ|𝑆|ሻ,𝜓⟧|𝜌 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ. 
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Proof: When 𝜓  is a QFCTL state formula (where a state formula is a special type of path formula 

with  semantics  defined  at  𝜋଴ ൌ 𝑠 ),  the  conclusion  holds. We  consider  two  cases:  𝜓 ൌ◯𝜑   and 
𝜓 ൌ 𝜑ଵ⨆𝜑ଶ. 

When 𝜓 ൌ ◯𝜑, we have  ⟦𝜋,◯𝜑⟧ ൌ ሺ𝐼ሺ𝜋଴ሻ ∧ 𝛿ሺ𝜋଴,𝜋ଵሻሻ ∘ ⟦𝜋ଵ,𝜑⟧, where  ⟦𝜋,◯𝜑⟧  depends only 
on  𝜋଴  and  𝜋ଵ. Therefore, the conclusion holds. 

When  𝜓 ൌ 𝜑ଵ⨆𝜑ଶ, based on Definition 6 and Formula (6), we derive the following conclusion: 

⟦𝜋,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⋁
௡ஹ|ௌ|

⟦𝜋ሺ𝑛ሻ,𝜑ଵ⨆𝜑ଶ⟧.  (7)

We prove that for all  𝑛 ൒ |𝑆|, there exists a path 𝜌 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ  such that, 

⟦𝜋ሺ𝑛ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൑ ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧.  (8)

When  𝑛 ൌ 𝑘 ൌ |𝑆|, taking  𝜌 ൌ 𝜋, Inequality (8) holds. 
Assume that Equation (8) holds when  𝑛 ൌ 𝑘 ൒ |𝑠|. That is, there exists a path  𝜌  in  𝑃𝑎𝑡ℎሺ𝑠ሻ  such 

that: 

⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൑ ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧.  (9)

Then, when  𝑛 ൌ 𝑘 ൅ 1, the classification discussion is as follows: 

If there exists a  𝑡 ∈ ℕ  such that  0 ൑ 𝑡 ൏ 𝑘  and  𝜋௞ ൌ 𝜋௧, then, 
⟦𝜋ሺ𝑘 ൅ 1ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⋁

଴ஸ௜ழ௞ାଵ
ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑ଶ⟧ሻ 

ൌ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௞

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௞

∗ሺ𝜋ሻ ∘ ⟦𝜋௞,𝜑ଶ⟧ሻ 

ൌ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௞

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௞

∗ሺ𝜋ሻ ∘ ⟦𝜋௧,𝜑ଶ⟧ሻ 

൑ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௧

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௧∗ሺ𝜋ሻ ∘ ⟦𝜋௧ ,𝜑ଶ⟧ሻ 

൑ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋁
଴ஸ௜ழ௞

ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑ଶ⟧ሻ 

൑ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ 

ൌ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൑ ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜌ሺ|𝑠|ሻ,𝜑ଵ⨆𝜑ଶ⟧    (Inductive Hypothesis (9)) 

If for all  𝑡 ൏ 𝑘, we have  𝜋௞ ് 𝜋௧, then since  𝑘 ൅ 1 ൐ |𝑆|, there must exist  0 ൏ 𝑙 ൏ ℎ ൏ 𝑘  on the 
path  𝜋ሺ𝑘 ൅ 1ሻ  before the state  𝜋௞, such that  𝜋௟ ൌ 𝜋௛, forming a loop. By removing the path segment 

𝜋௟ାଵ,⋯ ,𝜋௛ିଵ,𝜋௛  from the path, we construct a new path  𝜌  as follows: 

𝜌 ൌ 𝜋଴,𝜋ଵ,⋯ ,𝜋௟ ,𝜋௛ାଵ,⋯ ,𝜋௞,⋯. 

Numbering sequentially, we obtain: 

𝜌 ൌ 𝜌଴,𝜌ଵ,⋯ ,𝜌௞ିሺ௛ି௟ሻ,⋯. 

Where  𝜌଴ ൌ 𝜋଴ ൌ s, for all  𝑖 ൑ 𝑙,  𝜋௜ ൌ 𝜌௜  and for all  𝑖 ൐ ℎ, 𝜋௜ ൌ 𝜌௜ିሺ௛ି௟ሻ. 
⟦𝜋ሺ𝑘 ൅ 1ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀

଴ஸ௝ழ௞
𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௞

∗ሺ𝜋ሻ ∘ ⟦𝜋௞,𝜑ଶ⟧ሻ 

൑ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௞ିሺ௛ି௟ሻ

𝛿௝
∗ሺ𝜌ሻ ∘ ൳𝜌௝ ,𝜑ଵ൷ ∧ 𝛿௞

∗ሺ𝜋ሻ ∘ ⟦𝜋௞,𝜑ଶ⟧ሻ 

൑ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௞ିሺ௛ି௟ሻ

𝛿௝
∗ሺ𝜌ሻ ∘ ൳𝜌௝ ,𝜑ଵ൷ ∧ 𝛿௞ିሺ௛ି௟ሻ

∗ ሺ𝜌ሻ ∘ ൳𝜌௞ିሺ௛ି௟ሻ,𝜑ଶ൷ሻ 

൑ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋁
଴ஸ௜ழ௞

ሺ ⋀
଴ஸ௝ழ௞

𝛿௝
∗ሺ𝜌ሻ ∘ ൳𝜌௝ ,𝜑ଵ൷ ∧ 𝛿௞

∗ሺ𝜌ሻ ∘ ⟦𝜌௞,𝜑ଶ⟧ሻሻ 

ൌ ⟦𝜋ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜌ሺ𝑘ሻ,𝜑ଵ⨆𝜑ଶ⟧ 

൑ ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧      (Inductive Hypothesis (9)) 

In this way, we have proven Inequality (8). 

Furthermore, it is evident that for all  𝑛 ൌ 𝑘 ൒ |𝑠|,  ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൑ ⟦𝜋ሺ𝑛ሻ,𝜑ଵ⨆𝜑ଶ⟧. Combining 

this with Inequality (8), we have: 

For all  𝑛 ൒ |𝑆|, there exists a path 𝜌 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, such that , 

⟦𝜋ሺ𝑛ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧. 

Furthermore, combining this with Equation Inequality (7), we obtain: 

⟦𝜋,𝜑ଵ⨆𝜑ଶ⟧ ∈ ሼ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧|𝜌 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ.  (10)
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For  all  s ∈ 𝑆 ,  let us  arbitrarily  choose  any 𝜌ሺ|𝑆|ሻ ൌ 𝜌଴, 𝜌ଵ,⋯ ,𝜌|ௌ|ିଵ,   (𝜌଴ ൌ 𝑠 ).  For  any  𝜌|ௌ| ∈
𝐶ℎ𝑖𝑙𝑑൫𝜌|ௌ|ିଵ൯, construct  𝜌ሺ|𝑆| ൅ 1ሻ ൌ 𝜌଴,𝜌ଵ,⋯ ,𝜌|ௌ|ିଵ,𝜌|ௌ|. It is evident that  ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൑ ⟦𝜌ሺ|𝑆| ൅
1ሻ,𝜑ଵ⨆𝜑ଶ⟧. Continuing the discussion as follows: 

If there exists a  𝑡  such that  0 ൑ 𝑡 ൏ |𝑆|  and  𝜌|ௌ| ൌ 𝜌௧.   
⟦𝜌ሺ|𝑆| ൅ 1ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀

଴ஸ௝ழ|ௌ|
𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜌௝ ,𝜑ଵ൷ ∧ 𝛿|ௌ|

∗ ሺ𝜋ሻ ∘ ൳𝜌|௦|,𝜑ଶ൷ሻ 

൑ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋀
଴ஸ௝ழ௧

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜌௝ ,𝜑ଵ൷ ∧ 𝛿௧∗ሺ𝜋ሻ ∘ ⟦𝜌௧,𝜑ଶ⟧ሻ 

൑ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⋁
଴ஸ௜ழ|ௌ|

ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜌௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜌௜ ,𝜑ଶ⟧ሻሻ 

ൌ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∨ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧. 
In  this way, we obtain, ൳𝜌ሺ|𝑆|ሻ,𝜑1⨆𝜑2൷ ൌ ൳𝜌ሺ|𝑆| ൅ 1ሻ,𝜑1⨆𝜑2൷. By repeating  this process, we 

can derive that,   

⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ 𝑙𝑖𝑚
௡→ஶ

⟦𝜌ሺ𝑛ሻ,𝜑ଵ⨆𝜑ଶ⟧.  (11)

Denote the limit as  𝑙𝑖𝑚
௡→ஶ

 𝜌ሺ𝑛ሻ ൌ 𝜋, and we obtain that, 

⟦𝜌ሺ|𝑠|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⟦𝜋,𝜑ଵ⨆𝜑ଶ⟧.  (12)

If for all  𝑡 ൏ |𝑆|, it holds that  𝜌|ௌ| ് 𝜌௧, then there must exist  0 ൏ 𝑙 ൏ ℎ ൏ |𝑆|, such that  𝜌௟ ൌ 𝜌௛, 
generating a cycle. After traversing the path segment  𝜋௟ାଵ,⋯ ,𝜋௛ିଵ,𝜋௛  𝑤  times, we obtain the path 

segment: 

 𝜌ሺ|𝑆| ൅ 𝑤ሺℎ െ 𝑙ሻሻ ൌ 𝜌0, 𝜌1,⋯ , 𝜌𝑙, ሺ𝜌𝑙൅1
,⋯ , 𝜌ℎെ1, 𝜋

ℎ
ሻ𝑤𝜌ℎ൅1,⋯ , 𝜌|𝑆|. 

The following conclusion is readily apparent on  𝜌ሺ|𝑆| ൅𝑤ሺℎ െ 𝑙ሻሻ. 

⟦𝜌ሺ|𝑆| ൅𝑤ሺℎ െ 𝑙ሻሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⟦𝜌ሺ|𝑠|ሻ,𝜑ଵ⨆𝜑ଶ⟧.  (13)

Denote  lim
௪→ஶ

𝜌൫|𝑆| ൅ 𝑤ሺℎ െ 𝑙ሻ൯ ൌ 𝜋′. We have proven that, 

⟦𝜌ሺ|𝑠|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ ⟦𝜋′,𝜑ଵ⨆𝜑ଶ⟧.  (14)

From Equations (12) and (14), we obtain that, 

⟦𝜌ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∈ ሼ⟦𝜋,𝜑ଵ⨆𝜑ଶ⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ.  (15)

By synthesizing the conclusions (10) and (15), we can deduce that the conclusion of Lemma 1 

holds. □ 

Theorem 5 [Decision Theorem for the Operator  𝑸𝑷
∗ ሺ. ሻ] Let 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be an FKS, where  𝑃 ⊆

ሾ0,1ሿ  is a quality predicate, and  𝜓  is a QFCTL path formula. For all  𝑠 ∈ 𝑆, it holds that, 

⟦𝑠,𝑄௉∗ሺ𝜓ሻ⟧ ൌ
|ሼ⟦𝜋ሺ|𝑆|ሻ,𝜓⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋ሺ|𝑆|ሻ,𝜓⟧ ∈ 𝑃ሽ|

|ሼ⟦𝜋ሺ|𝑆|ሻ,𝜓⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ|
  (16)

Based on Lemma  1  and Definition  8, Theorem  5  is  established. Theorem  5  clarifies  that  the 

semantic of the operator  𝑄௉∗ሺ. ሻ  is well‐defined, and it also furnishes a foundation for model checking 

the operator  𝑄௉∗ሺ. ሻ.   

Proposition 3  [The  fundamental properties of quantified  characteristic predicate operators] Let 

𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ   be  an  FKS,  𝜓   be  a QFCTL  path  formula,  and  𝑃 ⊆ ሾ0,1ሿ be  a  quality  predicate.  Let 
𝑃ത   denotes the complement of  𝑃  in [0,1]. Then, 
(1) 𝑄௉∗ሺ𝜓ሻ ൅ 𝑄௉ത

∗ሺ𝜓ሻ ൌ 1,𝑄௉∗ሺ൓𝜓ሻ ൌ 𝑄௉ത
∗ሺ𝜓ሻ; 

(2) 𝑄௉∗ሺ𝜓ሻ ൌ 0  if and only if 𝑄௉ሺ𝜓ሻ ൌ 0; 
(3) 𝑄௉∗ሺ𝜓ሻ ൌ 1  if and only if  𝑄௉ሺ𝜓ሻ ൌ 1. 

The proof of Conclusion (1) of Proposition 3 is similar to the proof of Conclusion (1) of Theorem 

2. The proofs of Conclusion (2) and Conclusion (3) of Proposition 3 are evident. 

Next,  we  present  the model‐checking  algorithm  for  𝑄௉
∗ሺ𝜓ሻ . We  only  need  to  provide  the 

algorithm for the case when 𝜓 ൌ 𝜑ଵ⨆𝜑ଶ, as other cases are either trivial and can be directly computed 

based on Definition 6 and Theorem 5, or they can be reduced to the case of 𝜓 ൌ 𝜑ଵ⨆𝜑ଶ 
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Algorithm 4 Computing  𝑄௉
∗ሺ𝜑ଵ⨆𝜑ଶሻ./𝜓 ൌ 𝜑ଵ⨆𝜑ଶ 

Input：A QFCTL  formula 𝑄௉
∗ሺ𝜑ଵ⨆𝜑ଶሻ, an FKS 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ, with  the  information  fusion operator  ∘∈

ሼ⋀,∙,⨁ఒሽ. 
Solution process: 

1 Initialize：Fuzzy sets  𝑣, 𝑣ᇱ: 𝑆 ⟶ ሾ0,1ሿ, ∀𝑠 ∈ 𝑆, 𝑣ሺ𝑠ሻ ൌ ⟦𝑠,𝜑ଶ⟧, 𝑣′ሺ𝑠ሻ ൌ ⟦𝑠,𝜑ଵ⟧. 
2 LOOP ∀s ∈ 𝑆, 𝐼ሺsሻ ൐ 0                     
3          𝛿∗ሺsሻ ൌ 𝐼ሺ𝑠ሻ; 

4          𝑓ሺsሻ ൌ 𝛿∗ሺ𝑠ሻ°𝑣ሺ𝑠ሻ;// Initialize the objective function value for the source state 𝑠. 

5         𝑁𝑢ሺsሻ= 𝐷𝑒ሺsሻ ൌ ∅;// 𝑁𝑢ሺsሻ  represents the set in the numerator of Equation (16), while  𝐷𝑒ሺsሻ  represents 
the set in the denominator of Equation (16). 

6         𝐷𝑒𝑝𝑡ℎሺsሻ ൌ 0; // 𝐷𝑒𝑝𝑡ℎሺ𝑠ሻ‐count represents the depth of the extension for  s. 
7          Initialize  empty  stack OPEN  and  table  TREE  //The  stack OPEN  is  utilized  for  depth‐prioritized 

expansion of 𝑀  originating from node  s, whereas the TREE table meticulously archives the resultant 

tree generated from  s  as its root, ensuing from the expansion of 𝑀. 

8          Push  𝑠  onto stack OPEN;   

9          𝑠.𝐹𝑎𝑡ℎ𝑒𝑟 ൌTREE.head; //𝑠  is the root node of TREE. 
10        𝐶𝑛ሺTREE. headሻ=0;// Record the number of child nodes of TREE.head. 

11      LOOP    stack OPEN is not empty. 

12            The top element  𝜇  is popped from stack OPEN. 

13            𝜇.𝐹𝑎𝑡ℎ𝑒𝑟.𝐶ℎ𝑖𝑙𝑑ሾ𝐶𝑛ሺ 𝜇.𝐹𝑎𝑡ℎ𝑒𝑟ሻሿ ൌ  𝜇// Store node  𝜇  in table TREE. 
14            𝐶𝑛ሺ𝜇ሻ=0;//  𝐶𝑛ሺ𝜇ሻ  record the number of child nodes of node  𝜇. 
15              IF 𝐷𝑒𝑝𝑡ℎሺ𝜇ሻ ൏ |𝑆|// The maximum search depth is  |𝑆| െ 1. 
16                    LOOP    for all  𝑠ᇱ ∈ 𝐶ℎ𝑖𝑙𝑑ሺ𝜇ሻ 
17                         𝑓ሺ𝑠ᇱሻ ൌ 𝑓ሺ𝜇ሻ ∨ ሺ𝛿∗ሺ𝜇ሻ°𝑣′ሺ𝜇ሻ ∧ ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑣ሺ𝑠′ሻሻ;//Update the objective 

function value for the state 𝑠′. 
18                            𝛿∗ሺ𝑠ᇱሻ ൌ 𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻ;// Calculate the path reachability from the root node 

to node  𝑠′. 
19                            𝜇 ∙ 𝐶ℎ𝑖𝑙𝑑ሾ𝐶𝑛ሺ𝜇ሻሿ ൌ 𝑠′;// Node  𝑠′, as a child node of node  𝜇  in the spanning 

tree, is stored in table TREE. 

20                            𝐶𝑛ሺ𝜇ሻ ൅ ൅;//   The count of  𝜇ʹs child nodes is incremented by one. 

21                            𝑠ᇱ.𝐹𝑎𝑡ℎ𝑒𝑟 ൌ 𝜇;// Set the parent node pointer of  𝑠ᇱ  to point to node  𝜇, in   
preparation for expanding  𝑠ᇱ  in TREE. 

22                            Push  𝑠′onto stack OPEN.; 

23                           𝐷𝑒𝑝𝑡ℎሺ𝑠′ሻ ൌ 𝐷𝑒𝑝𝑡ℎሺ𝜇ሻ ൅ 1; 
24                    END 

25            END 

26            ELSE IF 𝐷𝑒𝑝𝑡ℎሺ𝜇ሻ ൌ |𝑆|// Reach the deepest level of the search. 
27                  IF  𝑓ሺ𝜇ሻ ൐ 0  THEN 𝐷𝑒ሺ𝑠ሻ ൌ 𝐷𝑒ሺsሻ ∪ ሼ𝑓ሺ𝜇ሻሽ;//A path   𝜋ሺ|𝑆|ሻ ൌ 𝑠,⋯ , 𝜇  is found. 
28                  IF  𝑓ሺ𝜇ሻ ∈ 𝑃  THEN 𝐷𝑢ሺ𝑠ሻ ൌ 𝐷𝑢ሺsሻ ∪ ሼ𝑓ሺ𝜇ሻሽ; 

//𝑓ሺ𝜇ሻ ∈ ሼ⟦𝜋ሺ|𝑆|ሻ,𝜓⟧ ∈ 𝑃|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ.   
29            END 

39      END 

31      𝑞ሺ𝑠ሻ ൌ |𝐷𝑢ሺ𝑠ሻ|/|𝐷𝑒ሺ𝑠ሻ|; 
32 END 

Output：∀s ∈ 𝑆, 𝐼ሺsሻ ൐ 0, output  𝑞ሺ𝑠ሻ.   

Theorem 6 Let 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be an FKS, where 𝑃 ⊆ ሾ0,1ሿ  is a quality predicate, and 𝜓 ൌ 𝜑ଵ⨆𝜑ଶ  is a 

QFCTL path formula. For all  𝑠 ∈ 𝑆, 𝐼ሺ𝑠ሻ ൐ 0  , the output of Algorithm 4 ensures 𝑞ሺ𝑠ሻ ൌ ൳𝑠,𝑄𝑃
∗ ሺ𝜑1⨆𝜑2ሻ൷. 

The  time  complexity  of model  checking 𝑄௉∗ሺ𝜑ଵ⨆𝜑ଶሻ   is  𝑂ሺ𝑠𝑢𝑢𝑝ሺ𝐼ሻ ∙ |𝑆||ௌ|ିଵሻ ,  and  the  space  complexity  is 
𝑂ሺ|𝑆||ௌ|ିଵሻ. 

Proof: Algorithm 4 employs a bounded depth‐first search algorithm with a maximum search depth 

of  |𝑆| െ 1 .  Starting  from  each  initial  state  𝑠 ,  it  produces  a  specific  path  that  begins  at  s with 

𝐷𝑒𝑝𝑡ℎሺsሻ ൌ 0  and terminates at a state  𝜇 with 𝐷𝑒𝑝𝑡ℎሺ𝜇ሻ ൌ |𝑆| െ 1, as detailed below,   

𝜋ሺ|𝑆|ሻ ൌ 𝑠, 𝑠ᇱ,⋯ , 𝜇ᇱ, 𝜇. 

During  the  iterative search process,  the objective  function  𝑓ሺ𝑠ሻ  is continuously evaluated  (as 
specified in step 17 of Algorithm 4), making it straightforward to obtain the following results, 
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𝑓ሺ𝑠ሻ ൌ 𝐼ሺ𝑠ሻ°𝑣ሺ𝑠ሻ ∨ ሺ𝛿∗ሺ𝑠ሻ°𝑣′ሺ𝑠ሻ ∧ ሺ𝛿∗ሺ𝑠ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑣ሺ𝑠′ሻሻ ∨ ⋯

∨ ሺ𝛿∗ሺ𝜇ᇱሻ°𝑣′ሺ𝜇ᇱሻ ∧ ሺ𝛿∗ሺ𝜇ᇱሻ ∧ 𝛿ሺ𝜇ᇱ,𝜇ሻሻ°𝑣ሺ𝜇ሻሻ 
ൌ ⋁

଴ஸ௜ழ|ௌ|
ሺ ⋀
଴ஸ௝ழ௜

𝛿௝
∗ሺ𝜋ሻ ∘ ൳𝜋௝ ,𝜑ଵ൷ ∧ 𝛿௜

∗ሺ𝜋ሻ ∘ ⟦𝜋௜ ,𝜑ଶ⟧ሻ 

ൌ ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧. 
Step 27: If  ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ 𝑓ሺ𝑠ሻ ൐ 0, then  𝐷𝑒ሺ𝑠ሻ ൌ 𝐷𝑒ሺ𝑠ሻ ∪ ሼ𝑓ሺ𝜇ሻሽ; 
Step 28: If  ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ൌ 𝑓ሺ𝑠ሻ ∈ 𝑃, then 𝐷𝑢ሺ𝑠ሻ ൌ 𝐷𝑢ሺ𝑠ሻ ∪ ሼ𝑓ሺ𝜇ሻሽ. 
Consequently, it is straightforward to derive the following: 
𝐷𝑒ሺ𝑠ሻ ൌ ሼ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻሽ; 

𝐷𝑢ሺ𝑠ሻ ൌ ሼ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠ሻ, ⟦𝜋ሺ|𝑆|ሻ,𝜑ଵ⨆𝜑ଶ⟧ ∈ 𝑃ሽ. 
Therefore,  𝑞ሺ𝑠ሻ ൌ ⟦𝑠,𝑄௉∗ሺ𝜑ଵ⨆𝜑ଶሻ⟧. The correctness of Algorithm 4 is thereby established. 
During the search process, for each node generated, the seven main computations from Step 17 

to Step 23 are executed, and the resulting nodes are continuously stored in the generated tree, TREE. 

The primary time and space costs associated with generating TREE are both linearly related to the 

number of nodes in TREE. Specifically, TREE has 1 node at level 0, at most  |𝑆|  nodes at level 1, at 
most |𝑆|ଶ nodes at level 2, ..., and at most |𝑆||ௌ|ିଵ nodes at the deepest level  |𝑆| െ 1. Therefore, the 
number of nodes in TREE is given by  ሺ|𝑆||ௌ| െ 1ሻ/ሺ|𝑆| െ 1ሻ. The number of elements in the sets 𝐷𝑒ሺ𝑠ሻ 
and 𝐷𝑢ሺ𝑠ሻ  does not exceed the number of leaf nodes in TREE, which is |𝑆||ௌ|ିଵ. Consequently, the 

time complexity for computing 𝐷𝑒ሺ𝑠ሻ and 𝐷𝑢ሺ𝑠ሻ is 𝑂ሺ|𝑆||ௌ|ିଵሻ. Since this search process needs to 
be  repeated  for  all  𝑠 ∈ 𝑆, 𝐼ሺ𝑠ሻ ൐ 0 ,  the  overall  time  complexity  becomes  𝑂ሺ𝑠𝑢𝑢𝑝ሺ𝐼ሻ ∙ |𝑆||ௌ|ିଵሻ . 
However, the space occupied by TREE, 𝐷𝑒ሺ𝑠ሻ  and 𝐷𝑢ሺ𝑠ሻ  can be reused, so the space complexity is 

determined by the size of TREE, which is 𝑂ሺ|𝑆||𝑆|െ1ሻ. □ 

Theorem 7 Let 𝑀 ൌ ሺ𝑆, 𝐼, 𝛿,𝐴𝑃, 𝐿ሻ  be an FKS, 𝜑  be a QFCTL* state  formula, and 𝑃 ⊆ ሾ0,1ሿ  be a quality 

predicate.  The  time  complexity  of  QFCTL*  model  checking  is  𝑂ሺ|𝜑| ∙ 𝑠𝑢𝑢𝑝ሺ𝐼ሻ ∙ |𝑆||𝑆|െ1ሻ ,  and  the  space 
complexity is 𝑂ሺ|𝑆||ௌ|ିଵሻ. 

Based  on Theorem  6, when  considering  an  arbitrary QFCTL*  formula  𝜑 ,  the  complexity  of 

model checking is the product of the length of 𝜑  (denoted as  |𝜑|) and the complexity of Algorithm 

4. Therefore,  the  time complexity of QFCTL* model checking  is 𝑂൫|𝜑| ∙ 𝑠𝑢𝑢𝑝ሺ𝐼ሻ ∙ |𝑆||ௌ|൯. The space 

complexity remains 𝑂ሺ|𝑆||𝑆|െ1ሻ  due to the reusable nature of the space. 

6. Illustrative Examples   

Up  to  this  point, we  have  expounded  on  the  theoretical  underpinnings  of  QFCTL model 

checking. In this section, we will elucidate the modeling advantages of QFCTL, and the efficacy of 

our model  checking  techniques  through a  series of  illustrative examples. All  the model‐checking 

examples provided herein are executed within the FKS depicted in Figure 1. 
First, we present the outcomes of evaluating QFCTL formulas 𝜑ଵ  through 𝜑଺  from Example 2 

using Algorithm 1. The information fusion operator ʺ∘ʺ is instantiated as ʺ⊕଴.ଷʺ. 

The computation of  ⟦𝑠଴,𝜑ଵ⟧ ൌ ൳𝑠଴,∃◇ሺ0.8௖௙ሺ𝑒ሻሻ൷  requires  |𝑆| ൌ 3  iterations, where  𝑠଴  denotes 
the initial state, and  |𝑆|  indicates the cardinality of the state space  𝑆. 

The  initial  value  is  given  by  𝑓ሺ𝑠଴ሻ ൌ  𝐼ሺ𝑠଴ሻ ⊕଴.ଷ 𝑠଴ ቀ0.8௖௙ሺ𝑒ሻቁ ൌ 0.3 ൅ 0 ൌ 0.3.  Furthermore, 

𝛿∗ሺ𝑠଴ሻ ൌ 𝐼ሺ𝑠଴ሻ ൌ 1. 
Let  𝜇 ൌ 𝑠଴; the first iteration proceeds as follows: 

𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∨ ⋁
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ0.8௖௙ሺ𝑒ሻሻ  (17)

ൌ 0.3 ∨ ሺሺ𝐼ሺ𝑠଴ሻ ∧ 𝛿ሺ𝑠଴, 𝑠଴ሻሻ ⊕଴.ଷ 𝑠଴ሺ0.8௖௙ሺ𝑒ሻሻሻ 

∨ ሺሺ𝐼ሺ𝑠଴ሻ ∧ 𝛿ሺ𝑠଴, 𝑠ଵሻሻ ⊕଴.ଷ 𝑠ଵሺ0.8௖௙ሺ𝑒ሻሻ ∨ ሺሺ𝐼ሺ𝑠଴ሻ ∧ 𝛿ሺ𝑠଴, 𝑠ଶሻሻ⊕଴.ଷ 𝑠ଶሺ0.8௖௙ሺ𝑒ሻሻሻ 

ൌ 0.3 ∨ ሺ0.3 ⊕଴.ଷ 0ሻ ∨ ሺ0.8 ⊕଴.ଷ 0.8 ൈ 0.5ሻ ∨ ሺ0.2 ⊕଴.ଷ 0.8 ൈ 1ሻ ൌ 0.62. 

𝛿∗ሺ𝜇ሻ ൌ 𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠ଵሻ ൌ 0.8,𝑓ሺ𝑠ሻ ൌ 𝑓ሺ𝜇ሻ ൌ 0.62, 𝜇 ൌ 𝑠ଵ. 
The second iteration proceeds as follows: 
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𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∨ ⋁
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ0.8௖௙ሺ𝑒ሻሻ 

ൌ 0.62 ∨ ሺ0.8 ∧ 𝛿ሺ𝑠ଵ, 𝑠଴ሻሻ ⊕଴.ଷ 𝑠଴ሺ0.8௖௙ሺ𝑒ሻሻሻ 

∨ ሺሺ0.8 ∧ 𝛿ሺ𝑠ଵ, 𝑠ଵሻሻ ⊕଴.ଷ 𝑠ଵሺ0.8௖௙ሺ𝑒ሻሻ ∨ ሺ0.8 ∧ 𝛿ሺ𝑠ଵ, 𝑠ଶሻሻ ⊕଴.ଷ 𝑠ଶሺ0.8௖௙ሺ𝑒ሻሻሻ 

ൌ 0.62 ∨ ሺ0.4 ⊕଴.ଷ 0ሻ ∨ ሺ0.7 ⊕଴.ଷ 0.8 ൈ 0.5ሻ ∨ ሺ0.7 ⊕଴.ଷ 0.8 ൈ 1ሻ ൌ 0.77. 

𝛿∗ሺ𝜇ሻ ൌ 𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠ଶሻ ൌ 0.7,𝑓ሺ𝑠ሻ ൌ 𝑓ሺ𝜇ሻ ൌ 0.77,𝜇 ൌ 𝑠ଶ. 
The third iteration proceeds as follows: 

𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∨ ⋁
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ0.8௖௙ሺ𝑒ሻሻ 

ൌ 0.77 ∨ ሺ0.7 ∧ 𝛿ሺ𝑠ଶ, 𝑠଴ሻሻ ⊕଴.ଷ 𝑠଴ሺ0.8௖௙ሺ𝑒ሻሻሻ 

∨ ሺሺ0.7 ∧ 𝛿ሺ𝑠ଶ, 𝑠ଵሻሻ ⊕଴.ଷ 𝑠ଵሺ0.8௖௙ሺ𝑒ሻሻ ∨ ሺ0.7 ∧ 𝛿ሺ𝑠ଶ, 𝑠ଶሻሻ ⊕଴.ଷ 𝑠ଶሺ0.8௖௙ሺ𝑒ሻሻሻ 

ൌ 0.62 ∨ ሺ0 ⊕଴.ଷ 0ሻ ∨ ሺ0.5 ⊕଴.ଷ 0.8 ൈ 0.5ሻ ∨ ሺ0.7 ⊕଴.ଷ 0.8 ൈ 1ሻ ൌ 0.77. 

𝛿∗ሺ𝜇ሻ ൌ 𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠ଶሻ ൌ 0.7,𝑓ሺ𝑠ሻ ൌ 𝑓ሺ𝜇ሻ ൌ 0.77,𝜇 ൌ 𝑠ଶ. 
Ultimately, the evaluation yields,  ⟦𝑠଴,𝜑ଵ⟧ ൌ 𝑓ሺ𝜇ሻ ൌ 0.77. 
When  computing  ⟦𝑠଴,𝜑ଶ⟧ ൌ ൳𝑠଴,∀◇ሺ0.8௖௙ሺ𝑒ሻሻ൷ ,  one merely needs  to  substitute Formula  (17) 

with the following Formula (18). 

𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∧ ⋁
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ0.8௖௙ሺ𝑒ሻሻ.  (18)

Following three iterations, the computed value is  ⟦𝑠଴,𝜑ଶ⟧ ൌ 0.3. 
When computing  ⟦𝑠଴,𝜑ଷ⟧ ൌ ⟦𝑠଴,∃□ሺ𝑓⨁଴.ସ𝑒ሻ⟧, where  𝑓ሺ𝑠଴ሻ ൌ  𝐼ሺ𝑠଴ሻ ⊕଴.ଷ 𝑠଴ሺ𝑓⨁଴.ସ𝑒ሻ, one merely 

needs to substitute Formula (17) with the following Formula (19). 

𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∨ ⋀
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ𝑓⨁଴.ସ𝑒ሻ.  (19)

Upon completing another trio of iterations, the calculated outcome is  ⟦𝑠଴,𝜑ଷ⟧ ൌ 0.328. 
In  computing  ⟦𝑠଴,𝜑ସ⟧ ൌ ⟦𝑠଴,∀□ሺ𝑓⨁଴.ସ𝑒ሻ⟧  ,  where  𝑓ሺ𝑠଴ሻ ൌ  𝐼ሺ𝑠଴ሻ ⊕଴.ଷ 𝑠଴ሺ𝑓⨁଴.ସ𝑒ሻ  ,  replace 

Formula (17) with the following Formula (20). 

𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∨ ⋀
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ𝑓⨁଴.ସ𝑒ሻ.  (20)

After undergoing three iterations, the solution obtained is  ⟦𝑠଴,𝜑ସ⟧ ൌ 0.088. 
Upon completing another trio of iterations, the calculated outcome is  ⟦𝑠଴,𝜑ଷ⟧ ൌ 0.328. 
In computing  ⟦𝑠଴,𝜑ହ⟧ ൌ ⟦𝑠଴,∃ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ , where  𝑓ሺ𝑠଴ሻ ൌ  𝐼ሺ𝑠଴ሻ ⊕଴.ଷ 𝑠଴ሺ𝑒ሻ ,  replace Formula 

(17) with the following Formula (21). 

𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∨ ⋀
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺሺ𝛿∗ሺ𝜇ሻ°𝜇ሺ0.5௡௘ሺ𝑓ሻሻሻ ∧ ሺሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ𝑒ሻሻሻ.  (21)

After undergoing three iterations, the solution obtained is  ⟦𝑠଴,𝜑ହ⟧ ൌ 0.685. 
In computing  ⟦𝑠଴,𝜑଺⟧ ൌ ⟦𝑠଴,∀ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ , where  𝑓ሺ𝑠଴ሻ ൌ  𝐼ሺ𝑠଴ሻ ⊕଴.ଷ 𝑠଴ሺ𝑒ሻ ,  replace Formula 

(17) with the following Formula (22). 

𝑓ሺ𝜇ሻ ൌ 𝑓ሺ𝜇ሻ ∧ ⋀
௦ᇲ∈஼௛௜௟ௗሺఓሻ

ሺሺ𝛿∗ሺ𝜇ሻ°𝜇ሺ0.5௡௘ሺ𝑓ሻሻሻ ∧ ሺሺ𝛿∗ሺ𝜇ሻ ∧ 𝛿ሺ𝜇, 𝑠′ሻሻ°𝑠′ሺ𝑒ሻሻሻ.  (22)

After undergoing three iterations, the solution obtained is  ⟦𝑠଴,𝜑଺⟧ ൌ 0.3. 
We tabulate the model checking outcomes for properties 𝜑ଵ  to 𝜑଺  in Model 𝑀  as follow. 

Table 1. Model Checking Results for Properties 𝝋𝟏  to 𝝋𝟔  in Model 𝑀. 

𝝋𝒊  ∃◇ሺ𝟎.𝟖𝒄𝒇ሺ𝒆ሻሻ ∀◇ሺ𝟎.𝟖𝒄𝒇ሺ𝒆ሻሻ ∃□ሺ𝒇⨁𝟎.𝟒𝒆ሻ  ∀□ሺ𝒇⨁𝟎.𝟒𝒆ሻ  ∃ሺ𝟎.𝟓𝒏𝒆ሺ𝒇ሻ⨆𝒆ሻ ∀ሺ𝟎.𝟓𝒏𝒆ሺ𝒇ሻ⨆𝒆ሻ

⟦𝑠଴,𝜑௜⟧  0.77  0.3  0.328  0.088  0.685  0.3 

In the literature [20,21], PoCTL is studied, which solely utilizes the classical max–min operation 

for information synthesis, excluding quality constraint operators such as  𝜆௖௙ሺ∙ሻ,  𝜆௡௘ሺ∙ሻ, and ⨁ఒ. As a 

result, it cannot express the more nuanced properties like 𝜑ଵ to 𝜑଺  in QFCTL. We have computed 

the satisfaction values of the PoCTL formulas 𝜙ଵ ൌ ∃◇𝑒, 𝜙ଶ ൌ ∀◇𝑒, 𝜙ଷ ൌ ∃□ሺ𝑓 ∧ 𝑒ሻ, 𝜙ଷ ൌ ∃□ሺ𝑓 ∧
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𝑒ሻ ,  𝜙ସ ൌ ∀□ሺ𝑓 ∧ 𝑒ሻ ,  𝜙ହ ൌ ∃ሺ𝑓 ⊔ 𝑒ሻ   and  𝜙଺ ൌ ∃ሺ𝑓 ⊔ 𝑒ሻ ,  which  correspond  to  these  six  QFLTL 

formulas, on the KFS in the example regarding the patient treatment process. The calculation results 

are presented in Table 2 to facilitate comparison and analysis between QFCTL and PoCTL. 

Table 2. Model Checking Results for PoCTL formulas 𝝓𝟏  to 𝝓𝟔  in Model 𝑀. 

𝝓𝒊  ∃◇𝒆  ∀◇𝒆  ∃□ሺ𝒇 ∧ 𝒆ሻ  ∀□ሺ𝒇 ∧ 𝒆ሻ  ∃ሺ𝒇⨆𝒆ሻ  ∀ሺ𝒇⨆𝒆ሻ 

⟦𝑠଴,𝜑௜⟧  0.7  0  0  0  0.1  0 

By conducting a comparative analysis of Tables 1 and 2, we arrive at the following conclusions: 

(1) QFCTL demonstrates  superior expressivity  in  comparison  to PoCTL. PoCTL  is unable  to 

articulate  temporal  properties  that  incorporate  qualitative  constraints,  such  as  𝜑ଵ   to  𝜑଺ , which 

specify  concrete quality  constraints. QFCTL  enables a more precise and quantitative portrayal of 

system attributes, as exemplified by the second row of the two tables, showcasing the diversity of 

satisfaction  values  achieved  by  the  corresponding  formulas within  the  system. Evidently, under 

identical systems, QFCTL formulas differentiate values with greater granularity, whereas PoCTL is 

relatively coarser. 

(2) PoCTL may  lead  to  the  loss of  information  from either  side of  the path  reachability and 

property formula satisfaction levels. However, QFCTL avoids this deficiency. PoCTL simply employs 

the  ʺ∧ʺ operator  to amalgamate  the values of path  reachability and property  formulas, ultimately 

opting for the lesser value as the satisfaction gauge. For instance, in Table 2, the bold figures represent 

the  path  reachability,  whereas  the  non‐bold  values  correspond  to  property  formula  values. 

Conversely,  QFCTL  in  Table  1  perpetually  integrates  information  from  both  domains,  thereby 

overcoming the information loss in PoCTL. 

(3) PoCTL is incapable of distinguishing between the relative importance of sub‐formulas within 

a property formula, nor does it differentiate between the significance of the property formula itself 

and path reachability. On the other hand, QFCTL adroitly discriminates between such information 

types. For  example, both  the PoCTL  formulas  𝜙ଷ   and 𝜙ସ ,  and  the QFCTL  formulas  𝜑ଷ   and 𝜑ସ , 
require simultaneous occurrences of  𝑓  and  𝑒  along the path. However, 𝜙ଷ  and 𝜙ସ  select the lesser 
value of  𝑓  and  𝑒, whereas 𝜑ଷ  and 𝜑ସ  unify  𝑓  and  𝑒 with a weight ratio of 0.4:0.6, signifying the 

greater importance attributed to  𝑒. In the fusion of path reachability and property satisfaction, PoCTL 
solely  picks  the  minimal  value,  whereas  QFCTL  formulas  can  blend  the  two  using  the  ⊕଴.ଷ 

operation, applying a weight ratio of 0.3:0.7, indicating QFCTL places greater emphasis on property 

formula satisfaction over path reachability. 

(4) PoCTL might  induce asynchrony between property  formula values and path‐reachability 

information,  whereas  QFCTL  invariably  ensures  these  two  aspects  of  information  remain 

synchronized. As  seen  in Table  2,  the  truth  values  of  𝜙ଷ   and  𝜙ସ   are  always  ʺ0,ʺ  resulting  from 

computations within 𝑀  where,  irrespective of  the path  taken  from  𝑠଴ ,  the value of  the property 
formula  𝑓 ∧ 𝑒  is always ʺ0.ʺ Therefore, regardless of the current path reachability level, taking the 
minimum with the property formula satisfaction value of ʺ0ʺ results in ʺ0.ʺ This clearly instigates a 

mismatch  between  path  reachability  and  property  formula  satisfaction  values.  The  valuation 

processes of QFCTL formulas 𝜑ଷ  and 𝜑ସ, as evident from Table 1 and the examples, illustrate the 

remediation of information asynchrony in QFCTL. 

Proceeding  forth, Algorithm 2 will be applied  to conduct model checking  for  temporal  logic 

properties 𝜑଻  through 𝜑ଽ. 
The temporal logic property is articulated as 𝜑଻ ൌ 𝑄ஹ଴.ଷሺ0.8௖௙ሺ𝑒ሻሻ, while the quality predicate 

𝑃଻  is delineated within the interval  ሾ0.3,1ሻ. 
Having  previously  determined  via  Algorithm  1  that  ൳𝑠଴,∀◇ሺ0.8௖௙ሺ𝑒ሻሻ൷ ൌ 0.3    and 

൳𝑠଴,∃◇ሺ0.8௖௙ሺ𝑒ሻሻ൷ ൌ 0.77, it follows that,  

0.3 ൑ ቘ𝑠଴,∀◇ቀ0.8௖௙ሺ𝑒ሻቁ቙ ൑ ቘ𝑠଴,∃◇ቀ0.8௖௙ሺ𝑒ሻቁ቙ ൏ 1. 

Consequently,  ൳𝑠଴,𝑄ஹ଴.ଷሺ0.8௖௙ሺ𝑒ሻሻ൷ ൌ 1. 
This result elucidates  that across all  therapeutic pathways,  the criterion which stipulates  ʺthe 

patientʹs physical condition being maximally in an ‘excellent’ state with a possibility of 0.8 occurs with 
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a likelihood of no less than 0.3ʺ is fully satisfied. This affirms that our treatment protocols adhere to 

the possibility standards for achieving a high level of clinical efficacy. 

The  temporal  logic property  𝜑଼ ൌ 𝑄வ଴.ହሺ𝑓⨁଴.ସ𝑒ሻ , with  the quality predicate  𝑃    delineated as 
ሺ0.5,1ሻ. 

Owing  to  the  fact  that  ⟦𝑠଴,∃□ሺ𝑓⨁଴.ସ𝑒ሻ⟧ ൌ 0.328 ൑ 0.5  ,  it  logically  follows  that 
⟦𝑠଴,𝑄வ଴.ହሺ𝑓⨁଴.ସ𝑒ሻ⟧ ൌ 0. 

This  finding  elucidates  that  across  every  conceivable  therapeutic  trajectory,  the  proposition 

stating ̋ the patientʹs health status continuously meets the criteria of being ‘fine’ with a 40% stipulation 

and ‘excellent’ with a 60% stipulation with a likelihood exceeding 0.5ʺ is not upheld. Consequently, it 

is affirmed that our current therapeutic paths do not fulfill the possibility threshold for concurrently 

maintaining these health standards at the specified frequencies. 

The  temporal  logic property  𝜑ଽ ൌ 𝑄வ଴.଺ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ , complemented by  the quality predicate 

𝑃ଽ defined as (0.6,1). 
Previously determined, we have  ⟦𝑠଴,∀ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ ൌ 0.3  and, 
⟦𝑠଴,∃ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ ൌ 0.685. 
Given  that  ⟦𝑠଴,∀ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ ൑ 0.6 ൏ ⟦𝑠଴,∃ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ ൏ 1  ,  it  is  deduced  that 

⟦𝑠଴,𝑄வ଴.଺ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ ൌ 0.5. 
This reveals that some, but not all, therapeutic courses satisfy the property that ʺthe patient’s 

health status, being maximally under a necessity of 0.5 to be  ‘fine’, until transitioning to  ‘excellent’, 

does  so with  a possibility  greater  than  0.6ʺ. This  indicates  a mixed  fulfillment  of  the possibility 

condition across different treatment pathways. 

Proceeding with Algorithm  4, we  conduct model  checking  on  the QFCTL*  formula  𝜑ଵ଴ ൌ
𝑄வ଴.଺
∗ ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ. The generation tree TREE, produced by the FKS 𝑀 with the unique initial state 

𝑠଴  as the root node, as depicted in Figure 7 corresponding to what was shown in Figure 1, illustrates 

the values calculated for the objective function  𝑓ሺ𝜇ሻ  upon the creation of node  𝜇, which are placed 

to the right or below each node  𝜇  in the tree diagram. 

 

Figure 7. The TREE generated by 𝑀  in Figure 1. 

In TREE,  there exist 8 paths of  length  |𝑆| ൌ 3 , among which 3 highlighted  in  red satisfy  the 

following conclusions: 

⟦𝜋ሺ3ሻ, 0.5௡௘ሺ𝑓ሻ⨆𝑒⟧ ∈ 𝑃ଵ଴ ൌ ሺ0.6,1ሻ; 

ሼ⟦𝜋ሺ3ሻ, 0.5௡௘ሺ𝑓ሻ⨆𝑒⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠଴ሻሽ ൌ 𝐷𝑢ሺ𝑠଴ሻ; 

ൌ ሼ0.3, 0.445, 0.475, 0.59, 0.625, 0.685, 0.685ሽ; 

ሼ⟦𝜋ሺ3ሻ, 0.5௡௘ሺ𝑓ሻ⨆𝑒⟧|𝜋 ∈ 𝑃𝑎𝑡ℎሺ𝑠଴ሻ, ⟦𝜋ሺ3ሻ, 0.5௡௘ሺ𝑓ሻ⨆𝑒⟧ ∈ 𝑃ଵ଴ሽ ൌ 𝐷𝑒ሺ𝑠଴ሻ 

ൌ ሼ0.625, 0.685, 0.685ሽ. 

⟦𝑠଴,𝑄வ଴.଺
∗ ሺ0.5௡௘ሺ𝑓ሻ⨆𝑒ሻ⟧ ൌ 𝑞ሺ𝑠଴ሻ ൌ |𝐷𝑒ሺ𝑠଴ሻ|/|𝐷𝑢ሺ𝑠଴ሻ| ൌ 3/8 ൌ 0.375. 
It  indicates  that 37.5% of  the  treatment regimens meet  the criterion of  the patientʹs condition 

being maximally at ʹfineʹ with a necessity of 0.5 throughout the treatment course, until transitioning 

to ʹexcellentʹ with a likelihood greater than 0.6.   

These examples illustrate that PoCTL lacks formulas akin to the qualitative QFCTL formulas 𝜑଻ 
and 𝜑଼, which describe the qualitative fulfillment status of property formulas. Similarly, it does not 
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possess formulas like the quantitative QFCTL* formula 𝜑ଽ, capable of delineating the quantitative 
satisfaction  condition  of  property  formulas.  This  unequivocally  demonstrates  that  QFCTL  and 

QFCTL* exhibit superior expressive power over PoCTL, enabling a more refined formal description 

of  temporal  system properties. This  enhanced  capability  facilitates a deeper analysis and a more 

detailed modeling of system temporal behaviors.   

These model‐checking  instances, first and  foremost,  substantiate  the  rich expressiveness and 

practical applicability of QFCTL and QFCTL* proposed  in  the article,  capable of  elaborately and 

accurately depicting the temporal properties of uncertain systems. Secondly, these examples affirm 

the  effectiveness of  the model‐checking algorithm put  forward,  enabling automated and efficient 

formal verification of uncertain systems. 

7. Conclusions and Future Work 

This  paper  introduces  quality  constraint  functions  and  quality  predicates  into  Possibility 

Computation Tree Logic (PoCTL), proposing Fuzzy Computation Tree Logic with quality Constraints 

(QFCTL). We explore the logical characteristics of QFCTL and present model checking algorithms for 

QFCTL on Fuzzy Kripke Structure Systems (FKS). Key contributions include: 

(1)  Section  2  elaborates  on  QFCTL  syntax  in  section  2.1,  defines  its  semantics  in  2.2,  and 

demonstrates QFCTLʹs expressive power and practical applicability through illustrative examples in 

2.3. 

(2)  In  section  3, we discuss QFCTLʹs  logical  features,  encompassing  equivalences of QFCTL 

formulas  (Theorem  1),  partial  order  relations  (Proposition  2),  and  a  complete  set  of  functional 

operators for QFCTL (Proposition 1). Special focus is given to the basic properties and determination 

of  the  Quality  Predicate  Operator  𝑄௉ሺ∙ሻ   (Theorem  2,  Corollary  1),  which  signifies  formula 

satisfaction under the constraints of predicate  𝑃  on relevant paths, yielding truth values of either ʺ1ʺ 
for full satisfaction, ʺ0ʺ for none, or ʺ0.5ʺ indicating partial satisfaction. 

(3)  Section  4  delineates  a  model  checking  algorithm  for  QFCTL  on  FKS,  reducing  the 

computation of QFCTL formulas from infinite to finite paths. Model‐checking algorithms (Algorithm 

1, 2, and 3) are provided with a time complexity proportional to the product of the formulaʹs length 

and the scale of the FKS (𝑂ሺ|𝜑| ∙ |𝑆𝑢𝑝𝑝ሺ𝐼ሻ|. ሺ|𝑆| ൅ |𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻሻሻ, and space complexity dependent on 

FKS  size  ( 𝑂ሺ|𝑆| ൅ |𝑆𝑢𝑝𝑝ሺ𝛿ሻ|ሻሻ .  Rigorous  proofs  of  the  algorithmʹs  validity  (Theorem  3)  and 
complexity analysis (Theorem 4 ) are provided. 

(4)  Section  5  advances  by  introducing  a  quantitative  quality  predicate  operator  𝑄௉∗ሺ. ሻ 
(Definition 8), characterizing property formula 𝑄௉∗ሺ𝜓ሻ  satisfaction under predicate  𝑃 based on the 
ratio of satisfied paths among those fulfilling 𝜓. The well‐definedness of operator 𝑄௉∗ሺ. ሻ  is proven 
(Theorem 5). Logical traits of QFCTL* are explored alongside the relationship between operators 𝑄௉ሺ∙
ሻ  and 𝑄௉∗ሺ. ሻ  (Proposition 3). An algorithm for model checking QFCTL* (Algorithm 4) is presented, 

accompanied by complexity analysis (Theorem 11). 

(5) Section 6 provides ten exemplary QFCTL and QFCTL* formulas(𝜑ଵ~𝜑ଵ଴) applied in model 

checking  scenarios  involving patient  treatment processes on FKS,  as  illustrated  in  literature  [24]. 

These cases attest to the robust expressiveness and practical utility of QFCTL and QFCTL*. They also 

affirm the automation and effectiveness of our proposed model checking algorithms. 

Subsequent primary research efforts will encompass: 

(1)  The  complexity  of  the QFCTL* model  checking  algorithm  is  exponential. We  anticipate 

reducing  the  complexity  of  the  QFCTL*  model  checking  algorithm  through  formal  reduction 

methods such as possibility bisimulation and partial‐order reduction. 

(2) Integrating fuzzy temporal constraints [22,25], path reachability information, and property 

satisfaction values in a biased, synchronized manner. We aim to investigate fuzzy temporal logic with 

dual  constraints  of  fuzzy  time  and  quality  attributes,  thereby  enhancing  the  completeness  and 

accuracy of information representation. 

(3) The search and decision problems within QFCTL based on possible decision processes [25,26] 
remain  a  domain  requiring  further  exploration.  This  endeavor  will  focus  on  advancing 

methodologies  to  address  these  issues,  contributing  to  the  fieldʹs mathematical,  academic,  and 

readability standards. 

These research directions not only aim to tackle existing challenges but also to pave the way for 

future advancements in the field of fuzzy temporal logic and model checking algorithms. 
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