Preprint
Article

Characterization of Lattices in Terms of (∈γ,∈γ∨qδ)-Fuzzy Ideals

Altmetrics

Downloads

36

Views

14

Comments

0

This version is not peer-reviewed

Submitted:

26 October 2024

Posted:

28 October 2024

You are already at the latest version

Alerts
Abstract
In this paper, $(\alpha,\beta)$-fuzzy sublattices and $(\alpha,\beta)$-fuzzy ideals of a lattice, where $\alpha\in\{ \in_{\gamma}, q_{\delta}, \in_{\gamma}\vee q_{\delta}\}$, $\beta\in\{ \in_{\gamma}, q_{\delta}, \in_{\gamma}\vee q_{\delta},\in_{\gamma}\wedge q_{\delta}\}$, are introduced and studied. In the special case, $(\in_{\gamma}, \in_{\gamma}\vee q_{\delta})$-fuzzy sublattices and $(\in_{\gamma}, \in_{\gamma}\vee q_{\delta})$-fuzzy ideals of a lattice are presented and their characterizations by three level sublattices and ideals are given.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics

MSC:  06D72

1. Introduction

Zadeh introduced the concept of fuzzy sets for the first time in [1]. After that different fuzzy structures have been introduced and investigated. Rosenfeld introduced fuzzy groups and subgroups in [2]. Wang [3] introduced the notion of fuzzy ring, and Kuroki studied fuzzy semigroups in [4]. The concepts of fuzzy sublattices and fuzzy ideals of a lattice were presented in [5]. Bhakas and Das [6,7] introduced the concept of ( α , β ) -fuzzy subgroup. Shabir and Ali [8,9] studied ( γ , γ q δ ) -fuzzy left (right, two-sided, interior) ideals of semigroups and characterized regular, intra-regular and semisimple semigroups by the properties of these fuzzy ideals.
In this paper, ( γ , γ q δ ) fuzzy ideals of a lattice is defined, and sublattices are characterized by the properties of the fuzzy ideals.

2. Preliminaries

In this section we recall some notations and terminology which will be used in the sequel.
The notions of lattice, sublattice and ideal of a lattice are well known and can be found in the books [10,11]. Recall that a subset I of a lattice L is an ideal in L if
(i) a , b I a b I ,
(ii) a I , b L and b a b I .
  • We denote by ( L , , ) (or simply by L) a lattice, by I an ideal in L, and by I ( L ) the set of all ideals of L. Notice that ( I ( L ) , , , ) is a distributive lattice. ( [ 0 , 1 ] , , ) is a complete lattice, where [0,1] is the unit segment of real numbers, and x y = max ( x , y ) , x y = min ( x , y ) .

2.1. Fuzzy Sublattices (Ideals) of a Lattice

A fuzzy subset μ of L is a function μ : L [ 0 , 1 ] . This function is called a membership function. The set of all fuzzy subsets of L is denoted by P ( L ) . Let μ , λ P ( L ) . The fuzzy subsets μ λ and μ λ are defined as follows:
( μ λ ) ( x ) = min { μ ( x ) , λ ( x ) } ;   ( μ λ ) ( x ) = max { μ ( x ) , λ ( x ) } .
We say that μ λ , if μ ( x ) λ ( x ) , for all x L .
If { μ s } i S is a family of fuzzy subsets of L, then for all x L , we define:
s S μ s ( x ) = i I { μ i ( x ) } ;   i I μ i ( x ) = i I { μ i ( x ) } .
Definition 2.1 
([12]). Let μ be a fuzzy subset in L. Then μ is called a fuzzy sublattice of L if for all x , y L ,
(i) μ ( x y ) μ ( x ) μ ( y ) ,
(ii) μ ( x y ) μ ( x ) μ ( y ) ,
  • or equivalently
μ ( x y ) μ ( x y ) μ ( x ) μ ( y ) , for all x , y L .
Definition 2.2 
([12]). Let μ be a fuzzy sublattice of L. Then μ is called a fuzzy ideal of L if x y μ ( x ) μ ( y ) for all x , y L .
Let L be a lattice and χ I be the characteristic function of a subset I of L. The χ I is a fuzzy sublattice if and only if I is a sublattice.
Definition 2.3. 
For α [ 0 , 1 ] , the set μ α = { x L , μ ( x ) α } is called α level subset of μ .
For any fuzzy subset μ of L, the set { x L , μ ( x ) > 0 } is called the support of μ , and is denoted by s u p p μ .
Definition 2.4. 
Let t [ 0 , 1 ] and x L . A fuzzy set μ in L is defined by
μ ( y ) = t , if x = y ; 0 , otherwise
  • for all y L , is called a fuzzy point and denoted by x t , where the point x is called its support point, and t is called its value.

2.2. ( , q ) -Fuzzy Sublattice and Ideal of a Lattice

A fuzzy point x t is said to belong to (resp., be quasi-coincident with) a fuzzy set μ , written as x t μ (resp., x t q μ ) if μ ( x ) t (resp. μ ( x ) + t > 1 ). If μ ( x ) t or x t q μ , then we write x t ( q ) μ . The symbol q ¯ means q does not hold.
Definition 2.5 
([13]). A fuzzy subset μ of a lattice L is said to be an ( , q ) -fuzzy sublattice of L if for all t , r ( 0 , 1 ] and x , y L ,
(i) x t , y r μ implies ( x y ) t r ( q ) μ .
(ii) x t , y r μ implies ( x y ) t r ( q ) μ .
μ is called an ( , q ) -fuzzy idealof L if μ is an ( , q ) -fuzzy sublattice of L and
(iii) x t μ and y x implies y t ( q ) μ .
([13]).Theorem 2.1 ( Conditions (i)-(iii) in the above definition are equivalent to the following conditions, respectively:
( 1 ) μ ( x ) μ ( y ) 0 . 5 μ ( x y ) ,
( 2 ) μ ( x ) μ ( y ) 0 . 5 μ ( x y ) ,
( 3 ) y x implies μ ( x ) 0 . 5 μ ( y )
for all x , y L .
Remark 2.1. 
1) ([14]) Not every fuzzy subset of L need be ( , q ) -fuzzy sublattice of L.
2) ([14]) Not every ( , q ) -fuzzy sublattice of L need be ( , q ) -fuzzy ideal of L.
3) ([14]) Any fuzzy ideal of L is an ( , q ) -fuzzy ideal of L.
4) ([13]) There is an , q ) -fuzzy ideal of L, which is not a fuzzy ideal.
Theorem 2.2 
([13]). Let μ is a fuzzy subset of L. μ t Ø is a sublattice (ideal) of L, for all 0 < t 0 . 5 , if and only if μ is an ( , q ) -fuzzy sublattice (ideal) of L.
Theorem 2.3 
([14]). A non-empty subset I of L is an ideal of L if and only if the characteristic function χ I is an ( , q ) -fuzzy ideal of L.

3. ( α , β ) -Fuzzy Sublattices and Ideals of a Lattice

This section gives information about ( α , β ) -fuzzy sublattices for α , β { γ , q δ , γ q δ , γ q δ } and α γ q δ (see the next definition).
Definition 3.1 
([8]). Let γ , δ , t [ 0 , 1 ] be such that γ < δ . For a fuzzy point x t and a fuzzy subset μ of L, we define:
1) x t γ μ if μ ( x ) t > γ ;
2) x t q δ μ if μ ( x ) + t > 2 δ ;
3) x t ( γ q δ ) μ If x t γ μ or x t q δ μ ;
4) x t ( γ q δ ) μ If x t γ μ and x t q δ μ ;
5) x t α ¯ if x t α μ does not hold for α { γ , q δ , γ q δ , γ q δ } .
In this paper, we will consider γ , δ [ 0 , 1 ] , where γ < δ and α , β { γ , q δ , γ q δ , γ q δ } and α γ q δ . It is worth noting that if x L and t [ 0 , 1 ] such that x t γ q δ μ , then μ ( x ) t > γ and μ ( x ) + t > 2 δ . Hence 2 δ < μ ( x ) + t μ ( x ) + μ ( x ) = 2 μ ( x ) . Consequently, μ ( x ) > δ .
Definition 3.2. 
A fuzzy subset μ of a lattice L is said to be an ( α , β ) -fuzzy sublattice of L if for all t , r ( 0 , 1 ] and x , y L the following hold;
(i) x t , y r α μ implies ( x y ) t r β μ .
(ii) x t , y r α μ implies ( x y ) t r β μ .
μ is called an ( α , β ) -fuzzy idealof L if μ is an ( α , β ) -fuzzy sublattice of L and
(iii) x t α μ and y x implies y t β μ .
Theorem 3.1. 
If 2 δ = 1 + γ and μ is an ( α , β ) -fuzzy sublattice (ideal) of L, then μ γ = { x L : μ ( x ) > γ } is a sublattice (ideal) of L.
Proof. 
Suppose x , y μ γ and x y μ γ or x y μ γ . Then
μ ( x y ) γ   or   μ ( x y ) γ .
Case 1.  α { γ , γ q δ } .
Define t = μ ( x ) and r = μ ( y ) . Hence x μ ( x ) α μ and y μ ( y ) α μ . It follows
μ ( x y ) γ < μ ( x ) μ ( y ) ( x y ) μ ( x ) μ ( y ) γ ¯ μ   or
μ ( x y ) γ < μ ( x ) μ ( y ) ( x y ) μ ( x ) μ ( y ) γ ¯ μ ,
and
μ ( x y ) + μ ( x ) μ ( y ) γ + μ ( x ) μ ( y ) γ + 1 = 2 δ ( x y ) μ ( x ) μ ( y ) q δ ¯ μ   or
μ ( x y ) + μ ( x ) μ ( y ) γ + μ ( x ) μ ( y ) γ + 1 = 2 δ ( x y ) μ ( x ) μ ( y ) q δ ¯ μ .
So, we have
( x y ) μ ( x ) μ ( y ) β ¯ μ   or   ( x y ) μ ( x ) μ ( y ) β ¯ μ
This contradicts our assumptions.
Case 2.  α = q δ and t = 1 .
Then then
μ ( x ) + 1 > γ + 1 = 2 δ x 1 q δ μ   and   μ ( y ) + 1 > γ + 1 = 2 δ y 1 q δ μ .
Hence,
μ ( x y ) + 1 γ + 1 = 2 δ ( x y ) 1 q δ ¯ μ ,
μ ( x y ) + 1 γ + 1 = 2 δ ( x y ) 1 q δ ¯ μ .
Also
μ ( x y ) γ < 1 ( x y ) 1 γ ¯ μ   or
μ ( x y ) γ < 1 ( x y ) 1 γ ¯ μ .
Therefore, ( x y ) 1 β ¯ μ or ( x y ) 1 β ¯ μ . This is again a contradiction.
Thus μ γ is a sublattice of L. □
The following theorem characterizes a sublattice (ideal) of a lattice.
Theorem 3.2. 
Let 2 δ = 1 + γ and A be a nonempty subset of L. Then A is a sublattice (ideal) of L if and only if the fuzzy subset μ of L defined by
μ ( x ) = t 1 [ δ , 1 ] , if x A ; t 2 [ 0 , γ ] , otherwise
is an ( α , γ q δ ) -fuzzy sublattice (ideal) of L.
Proof. (⇒) If A is a sublattice of L, then the following cases can occur.
Case 1.  α = γ .
We have
x t γ μ μ ( x ) t > γ   and   y r γ μ μ ( y ) r > γ
Therefore, according to the definition of, μ , we conclude x , y A . Since A is a sublattice, x y A and x y A , therefore, μ ( x y ) δ and μ ( x y ) δ . Now we have two possibilities (i) and (ii) below.
(i) t r δ .
Then
μ ( x y ) δ t r > γ   and   μ ( x y ) δ t r > γ
which implies
( x y ) t r γ μ   and   ( x y ) t r γ μ
(ii) t r > δ .
Then
μ ( x y ) + t r > δ + δ = 2 δ   and   μ ( x y ) + t r > δ + δ = 2 δ
which implies
( x y ) t r q δ μ   and   ( x y ) t r q δ μ .
We conclude from (i) and (ii) that
( x y ) t r γ q δ μ   and   ( x y ) t r γ q δ μ .
Therefore, μ is an ( γ , γ q δ ) -fuzzy sublattice.
Case 2.  α = q δ .
In this case we have
x t q δ μ μ ( x ) + t > 2 δ μ ( x ) > 2 δ t > 2 δ 1 = γ   and
y r q δ μ μ ( y ) + r > 2 δ μ ( y ) > 2 δ r > 2 δ 1 = γ .
As in Case 1 we conclude x , y A . Since A is a sublattice, x y A and x y A , hence μ ( x y ) δ and μ ( x y ) δ . We have again two possibiities.
(i) t r δ .
Then
μ ( x y ) δ t r > γ   and   μ ( x y ) δ t r > γ
which implies ( x y ) t r γ μ and ( x y ) t r γ μ .
(ii) t r > δ .
Now we have
μ ( x y ) + t r > δ + δ = 2 δ   and   μ ( x y ) + t r > δ + δ = 2 δ
which implies ( x y ) t r q δ μ and ( x y ) t r q δ μ .
From (i) and (ii) it follows ( x y ) t r γ q δ μ and ( x y ) t r γ q δ μ , i.e., in Case 2 we also conclude ghat μ is a ( q δ , γ q δ ) -fuzzy sublattice.
Case 3.  α = γ q δ .
We have
x t γ μ μ ( x ) t > γ   and
y r q δ μ μ ( y ) + r > 2 δ μ ( y ) > 2 δ r > 2 δ 1 = γ .
As in Cases 1 and 2 we conclude x y A and x y A , hence μ ( x y ) δ and μ ( x y ) δ . Then we obtain ( x y ) t r γ q δ μ and ( x y ) t r γ q δ μ . Therefore, in this case we finally have that μ is a ( γ q δ , γ q δ ) -fuzzy sublattice.
(⇐) Let μ be an ( α , γ q δ ) -fuzzy sublattice. Then it follows from A = μ γ = { x L : μ ( x ) > γ } and Theorems 2.3 and 3.1 that A is a sublattice of L .
Corollary 3.1. 
Let 2 δ = 1 + γ , and let A be a nonempty subset of L . Then A is a sublattice (ideal) of L if and only if the fuzzy subset χ I of L is an ( α , γ q δ ) -fuzzy sublattice (ideal) of L.
Theorem 3.3. 
The following assertions are satisfied:
( 1 ) Every ( γ q δ , γ q δ ) -fuzzy sublattice of L is an ( γ , γ q δ ) -fuzzy sublattice of L;
( 2 ) Every ( γ q δ , γ q δ ) -fuzzy ideal of L is an ( γ , γ q δ ) -fuzzy ideal of L.
Proof. 
We can use the fact x t γ μ imploes x t γ q δ μ to prove this theorem. □
Theorem 3.4. 
Let L be a lattice Then:
( 1 ) Every ( q δ , γ q δ ) -fuzzy sublattice of L is an ( γ , γ q δ ) -fuzzy sublattice of L;
( 2 ) Every ( q δ , γ q δ ) -fuzzy ideal of L is an ( γ , γ q δ ) -fuzzy ideal of L.
Proof. 
We prove only (1) because the proof of (2) is quite similar. Let μ be a ( q δ , γ q δ ) -fuzzy sublattice of L. Let x , y L and t , r ( γ , 1 ] be such that
x t γ μ ,   y r γ μ μ ( x ) t > γ   and   μ ( y ) r > γ .
Then we have
( x y ) t r γ q δ ¯ μ μ ( x y ) < t r ,   μ ( x y ) + ( t r ) 2 δ μ ( x y ) < δ ;
( x y ) t r γ q δ ¯ μ μ ( x y ) < t r ,   μ ( x y ) + ( t r ) 2 δ μ ( x y ) < δ .
Further,
μ ( x y ) ( μ ( x y ) ) < t r   and   γ < t r μ ( x ) μ ( y )
imply
μ ( x y ) ( μ ( x y ) ) γ < μ ( x ) μ ( y ) δ .
Choose k ( γ , 1 ] such that
2 δ μ ( x y ) γ > k 2 δ μ ( x ) μ ( y ) δ .
Then we have
2 δ μ ( x y ) 2 δ μ ( x y ) γ > k ( 2 δ μ ( x ) ) ( 2 δ μ ( y ) ) δ μ ( x ) + k 2 δ , μ ( y ) + k 2 δ , μ ( x y ) + k < 2 δ a n d μ ( x y ) < δ k x k q δ μ , y k q δ μ , ( x y ) k γ q δ ¯ μ .
This contradicts our assumption. Therefore,
( x y ) k γ q δ μ .
Similarly, we prove
( x y ) k γ q δ μ .
So, we conclude that μ is an ( γ , γ q δ ) -fuzzy sublattice of L. □
The above theorem shows that each ( α , β ) -fuzzy sublattice (ideal) of L is an ( α , γ q δ ) -fuzzy sublattice (ideal) of L, and each ( α , γ q δ ) -fuzzy sublattice (ideal) of L is an ( γ , γ q δ ) -fuzzy sublattice (ideal) of L.

4. ( γ , γ q δ ) -Fuzzy Sublattice and Ideal of a Lattice

In this section we study ( γ , γ q δ ) -fuzzy sublattices and ( γ , γ q δ ) -fuzzy ideals of a lattice L and characterize sublattices and ideals of L in terms of ( γ , γ q δ ) -fuzzy sublattices and ideals of L.
Theorem 4.1. 
For any fuzzy sublattice μ of a lattice L and for all x , y , z L and t , r ( γ , 1 ] the following hold:
( 1 )
μ is an ( γ , γ q δ ) -fuzzy sublattice of L if and only if x t γ μ , y r γ μ implies μ ( x y ) γ μ ( x ) μ ( y ) δ and μ ( x y ) γ μ ( x ) μ ( y ) δ .
( 2 )
μ is an ( γ , γ q δ ) [-fuzzy ideal of L if and only if x t γ μ implies μ ( x y ) γ μ ( x ) δ and μ ( x y ) γ μ ( x ) δ .
Proof. 
We prove (1); the proof of (2) is similar.
(⇒) Let μ be a ( γ , γ q δ ) -fuzzy sublattice of L and suppose, to the contrary, that there are x , y L such that
μ ( x y ) γ < μ ( x ) μ ( y ) δ   or   μ ( x y ) γ < μ ( x ) μ ( y ) δ .
If μ ( x y ) γ < μ ( x ) μ ( y ) δ , then we choose t ( γ , 1 ] such that μ ( x y ) γ < t μ ( x ) μ ( y ) δ , which implies
μ ( x ) t > γ ,   μ ( y ) t > γ ,   μ ( x y ) < t   and   μ ( x y ) + t < δ + δ = 2 δ .
It follows from here
x t γ μ ,   y t γ μ ,   ( x y ) t γ ¯ μ   and   ( x y ) t q δ ¯ μ ,
i.e. ( x y ) t γ q δ ¯ μ .
Similarly, we prove ( x y ) t γ q δ ¯ μ . However, the last two conclusions are in contradiction with our assumption.
(⇐) Let
μ ( x y ) γ μ ( x ) μ ( y ) δ ,   μ ( x y ) γ μ ( x ) μ ( y ) δ
and x t γ μ ,   y r γ μ .
Assume, to the contrary, that
( x y ) t r γ q δ ¯ μ   or   ( x y ) t r γ q δ ¯ μ .
Consider the first case, ( x y ) t r γ q δ ¯ μ . Then
( x y ) t r γ ¯ μ   and   ( x y ) t r q δ ¯ μ .
From here we have the following implications:
μ ( x y ) < t r   and   μ ( x y ) + t r 2 δ
μ ( x y ) < δ   and   μ ( x y ) < t r μ ( x ) μ ( y )
μ ( x y ) < t r μ ( x ) μ ( y ) δ ,   γ < δ
μ ( x y ) γ < μ ( x ) μ ( y ) δ .
Similarly one proves μ ( x y ) γ < μ ( x ) μ ( y ) δ . The last two conclusions contradict the assumption. □
Theorem 4.2. 
Let μ be a fuzzy subset of a lattice L and 2 δ = 1 + γ . Then μ t Ø is a sublattice (ideal) of L for all t ( γ , δ ] if and only if μ is an ( γ , γ q δ ) -fuzzy sublattice (ideal) of L.
Proof. (⇐) Let μ be an ( γ , γ q δ ) -fuzzy sublattice of L, and x , y μ t . Then we have
μ ( x ) t > γ   and   μ ( y ) t > γ μ ( x ) μ ( y ) t .
Also, by the above theorem, we have
μ ( x y ) γ μ ( x ) μ ( y ) δ μ ( x y ) γ t δ = t
μ ( x y ) t > γ x y μ t ,
and
μ ( x y ) γ μ ( x ) μ ( y ) δ μ ( x y ) γ t δ = t
μ ( x y ) t > γ x y μ t .
Therefore, μ t is a sublattice of L.
(⇒) Let μ t be a sublattice of L for all t ( γ , δ ] . We will prove that
μ ( x y ) γ μ ( x ) μ ( y ) δ   and   μ ( x y ) γ μ ( x ) μ ( y ) δ .
Let x t , y t γ μ and μ ( x y ) γ < μ ( x ) μ ( y ) δ . We choose t ( γ , δ ] such that μ ( x y ) γ < t μ ( x ) μ ( y ) δ . This implies
μ ( x ) t > γ , μ ( y ) t > γ   and   μ ( x y ) < t ,
which finally implies x , y μ t , but x y μ t . This is a contradiction showing that μ ( x y ) γ μ ( x ) μ ( y ) δ holds.
Similarly, we can prove that μ ( x y ) γ μ ( x ) μ ( y ) δ , which mens that μ is an ( γ , γ q δ ) -fuzzy sublattice of L. □
Definition 4.1. 
Let μ be a fuzzy subset of L. For all r ( γ , 1 ] we define:
μ r δ = { x L : x r q δ μ } = { x L : μ ( x ) + r > 2 δ } ;
[ μ ] r δ = { x L : x r γ q δ μ } = μ r μ r δ .
Theorem 4.3. 
Let μ be a fuzzy subset of L and 2 δ = 1 + γ . If μ r δ Ø is a sublattice (ideal) of L, for all r ( γ , 1 ] , then μ is an ( γ , γ q δ ) -fuzzy sublattice (ideal) of L.
Also, for r ( δ , 1 ] , if μ is an ( γ , γ q δ ) -fuzzy sublattice (ideal) of L, then μ r δ Ø is a sublattice (ideal) of L.
Proof. 
Let μ r δ Ø be a sublattice of L. We prove that
μ ( x y ) γ μ ( x ) μ ( y ) δ   and   μ ( x y ) γ μ ( x ) μ ( y ) δ .
We consider the following two cases:
Case 1.  r ( γ , δ ] .
If μ ( x y ) γ < μ ( x ) μ ( y ) δ , then we define r = μ ( x ) μ ( y ) δ , and obtain
μ ( x y ) γ < r μ ( x y ) < r μ ( x y ) + r < 2 r < 2 δ y μ r δ .
Similarly we get that if μ ( x y ) γ < μ ( x ) μ ( y ) δ , then x y μ r δ . Therefore, we have a contradiction.
Case 2.  r ( δ , 1 ] .
If μ ( x y ) γ < μ ( x ) μ ( y ) δ , then
2 δ ( μ ( x y ) γ ) > 2 δ ( μ ( x ) μ ( y ) δ )
( 2 δ μ ( x y ) ) ( 2 δ γ ) > ( 2 δ μ ( x ) ) ( 2 δ μ ( y ) ) δ .
Take now r ( δ , 1 ] such that
( 2 δ μ ( x ) ) ( 2 δ μ ( y ) ) δ < r ( 2 δ μ ( x y ) ) ( 2 δ γ ) .
Thus we have
2 δ μ ( x ) < r μ ( x ) + r > 2 δ x μ r δ ,
2 δ μ ( y ) < r μ ( y ) + r > 2 δ y μ r δ ,
2 δ μ ( x y ) r μ ( x y ) + r 2 δ x y μ r δ .
We have obtained a contradiction which shows μ ( x y ) γ μ ( x ) μ ( y ) δ .
Similarly, one obtains μ ( x y ) γ μ ( x ) μ ( y ) δ .
Conversely, let r ( δ , 1 ] . Let μ be an ( γ , γ q δ ) -fuzzy sublattice of L, and x , y μ r δ . Then we have
μ ( x ) + r > 2 δ μ ( x ) > 2 δ r 2 δ 1 = γ   and
μ ( y ) + r > 2 δ μ ( y ) > 2 δ r 2 δ 1 = γ .
It follows from here
μ ( x y ) γ μ ( x ) μ ( y ) δ > ( 2 δ r ) ( 2 δ r ) δ .
Since δ r 1 we have
δ 2 δ r 2 δ 1   and   ( 2 δ r ) ( 2 δ r ) δ = 2 δ r ,
which implies
μ ( x y ) > 2 δ r μ ( x y ) + r > 2 δ
which means x y μ r δ .
Similarly, we obtain x y μ r δ . Thus μ r δ is a sublattice of L. □
Theorem 4.4. 
Let μ be a fuzzy subset of L and 2 δ = 1 + γ . Then [ μ ] r δ Ø is a sublattice (ideal) of L, for all t ( γ , 1 ] , if and only if μ is an ( γ , γ q δ ) -fuzzy sublattice (ideal) of L.
Proof. (⇐) Let μ be an ( γ , γ q δ ) -fuzzy sublattice of L, and x , y [ μ ] r δ . Then we have
μ ( x ) + r > 2 δ μ ( x ) 2 δ r 2 δ 1 = γ   or   μ ( x ) r > γ ,   and
μ ( y ) + r > 2 δ μ ( y ) 2 δ r 2 δ 1 = γ   or   μ ( y ) r > γ .
Since μ is an ( γ , γ q δ ) -fuzzy sublattice of L, we have
μ ( x y ) γ μ ( x ) μ ( y ) δ   and
μ ( x y ) γ μ ( x ) μ ( y ) δ .
We consider the following two cases:
Case 1.  r ( γ , δ ] .
In this case we have
μ ( x y ) γ μ ( x ) μ ( y ) δ r r δ = r μ ( x y ) γ r > γ
which means ( x y ) r γ μ , i.e., x y [ μ ] r δ .
Similarly, we can prove x y [ μ ] r δ . Thus [ μ ] r δ is a sublattice of L.
Case 2.  r ( δ , 1 ] .
Then δ < r 1 implies δ > 2 δ r 2 δ 1 . Let x , y [ μ ] r δ . We have
μ ( x ) + r > 2 δ μ ( x ) > 2 δ r 2 δ 1 = γ   or   μ ( x ) r > γ ,   and
μ ( y ) + r > 2 δ μ ( y ) > 2 δ r 2 δ 1 = γ   or   μ ( y ) r > γ .
We conclude from here
μ ( x y ) γ μ ( x ) μ ( y ) δ > ( 2 δ r ) ( 2 δ r ) δ = 2 δ r ,
i . e .   μ ( x y ) > 2 δ r μ ( x y ) + r > 2 δ ,
or
μ ( x y ) γ μ ( x ) μ ( y ) δ > r r δ = δ ,
i . e .   μ ( x y ) + r > δ + r > 2 δ .
So, we conclude that ( x y ) r q δ μ , which implies x y [ μ ] r δ .
Similarly, we prove that x y [ μ ] r δ . Thus [ μ ] r δ is a sublattice of L.
(⇒) Let [ μ ] r δ Ø be a sublattice of L. We prove that
μ ( x y ) γ μ ( x ) μ ( y ) δ   and   μ ( x y ) γ μ ( x ) μ ( y ) δ .
Let, to the contrary, μ ( x y ) γ < μ ( x ) μ ( y ) δ . Then choose r ( γ , 1 ] such that
μ ( x y ) γ < r μ ( x ) μ ( y ) δ .
Then
μ ( x ) r > γ ,   μ ( y ) r > γ ,   μ ( x y ) < r   and   μ ( x y ) + r < δ + δ = 2 δ ,
which implies
x r γ μ ,   y r γ μ ,   ( x y ) r γ ¯ μ   and   ( x y ) r q δ ¯ μ .
This means ( x y ) r γ q δ ¯ μ .
Similarly, we get ( x y ) r γ q δ ¯ μ . The last two conclusions contradict the assumption. □
Theorem 4.5. 
Let λ and μ be ( γ , γ q δ ) -fuzzy sublattices (ideals) of L. Then λ μ is an ( γ , γ q δ ) -fuzzy sublattice (ideal) of L.
Proof. 
For any x , y L , we have
( λ μ ) ( x y ) γ = ( λ ( x y ) μ ( x y ) ) γ = ( λ ( x y ) γ ) ( μ ( x y ) γ ) .
By Theorems 2.3–3.3, we have
( λ ( x y ) γ ) ( μ ( x y ) γ ) ( λ ( x ) λ ( y ) δ ) ( μ ( x ) μ ( y ) δ ) = ( λ ( x ) μ ( x ) ) ( λ ( y ) μ ( y ) ) δ = ( λ μ ( x ) ) ( λ μ ( y ) ) δ ,
which means
( λ μ ) ( x y ) γ ( λ μ ) ( x ) ( λ μ ) ( y ) δ .
Similarly, we can prove
( λ μ ) ( x y ) γ ( λ μ ) ( x ) ( λ μ ) ( y ) δ .
Hence, λ μ is an ( γ , γ q δ ) -fuzzy sublattice of L. □
Remark 4.1. 
If { μ s } s s , S is an index set, is a family of ( γ , γ q δ ) -fuzzy sublattices (ideals) of L, then s S μ s is an ( γ , γ q δ ) -fuzzy sublattice (ideal) of L.

5. Conclusions

We introduced and studied ( α , β ) -fuzzy sublattices and ( α , β ) -fuzzy ideals of a lattice. In particular, ( γ , γ q δ ) -fuzzy sublattices and ( γ , γ q δ ) -fuzzy ideals are considered and characterized. we hope that this study can be extended to other mathematical structures.

Author Contributions

Conceptualization, A.F. and Lj. K.; methodology, A. F.; software, Lj.K.; formal analysis, A.F. and Lj.K.; investigation, A.F. and Lj.K.; resources, A.F.; writing—original draft preparation, A.F.; writing—review and editing, Lj.K.; visualization, Lj.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article and also are available from the authors.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zadeh L. A. Fuzzy sets, Inf. Cont. 1965, 8, 339–353. [CrossRef]
  2. Rosenfeld, A. Fuzzy subgroups, J. Math. Anal. Appl. 1971, 35, 512–517. [CrossRef]
  3. Liu W. J. Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets Syst. 1982, 21, 133-139. [CrossRef]
  4. Kuroki N. On fuzzy semigroups, Inf. Sci. 1991, 53, 203–236. [CrossRef]
  5. Bo Y.; Wu W. Fuzzy ideals on a distributive lattice, Fuzzy Sets Syst. 1990, 35, 231–240. [CrossRef]
  6. Bhakas S. K.; Das P. On the definitions of a fuzzy subgroup, Fuzzy Sets Syst. 1991, 51, 234–241. [CrossRef]
  7. Bhakas S. K.; Das P. (α,β)-fuzzy mappings, Fuzzy Sets Syst. 1993, 56, 89–95. [CrossRef]
  8. Shabir M.; Ali M. Characterizations of semigroups by the properties of their (ϵγ,ϵγqδ)-fuzzy ideals, Iranian J. Sci. Tech. 2013, 37, 117–131.
  9. Siripitukdet M.; Farajzadeh A.; Julatha P. Characterization of semigroup in terms of their γ-δ-fuzzy ideals, J. Alg. Num. Theo. Appl. 2017, 39, 815–842.
  10. Davey B. A.; Priestley H. A. Introduction to Lattices and Order, Second edition, Cambrige Univerity Press, 2002.
  11. Buris S.; Sankappanavar H. P. A Course in Universal Algebra, Graduate Texts in Mathematics, vol. 78, Springer, New York, 1981.
  12. Ajmal N.; Thomas K. V. Fuzzy lattices, Inf. Sci. 1994, 79, 271–291. [CrossRef]
  13. Davvaz B.; Kazanci O. A new kind of fuzzy sublattice (ideal, filter) of a lattice, Inter. J. Fuzzy Syst. 2011, 13, 55–63.
  14. Dhanani S. H.; Paway Y. S. (∈,∈∨q)-fuzzy ideals of lattice, Int. J. Algeba 2010, 4, 1277–1288.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated