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Abstract: The dynamic nature of quadrotor flight introduces significant uncertainty in system parameters, such

as thrust and drag factor. Consequently, operators grapple with escalating challenges in implementing real-

time control actions. This study delves into an approach for estimating the model of quadrotor Unmanned

Aerial Vehicles using Physics-Informed Neural Networks (PINNs) when you have a limited amount of data

available. PINNs offer the potential to tackle issues like heightened non-linearities in low-inertia systems, elevated

measurement noise, and constraints on data availability. The effectiveness of the estimator is showcased in a

simulation environment with real data and juxtaposed with a state-of-the-art technique, such as the Extended

Kalman Filter (EKF).
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1. Introduction

One of the main challenges in control theory consists in realizing a dynamic model of the physical
system under study to understand and predict its behavior over time. This may lead to a highly com-
plex mathematical description of the considered system, also requiring to yield dedicated experiments
to estimate the unknown model parameters [1]. This is particularly true for complex systems, such
as, for instance, Unmanned Aerial Vehicle (UAVs), since they are considered unstable multiple-input
and multiple-output (MIMO) dynamics systems. When actual real data are not available (e.g., due
to the lack of reliable knowledge about the system behavior or the lack of or inaccuracy of measure-
ments), an efficient alternative is the so-called system identification, which relies on obtaining the
mathematical models of a dynamic system from measured data of its input and output parameters.
Two approaches can be adopted for system identification, namely, grey box model, also known as
semi-physical model (i.e., when the constructed model still has a number of unknown free parameters
that are estimated through system identification) and black box model (i.e., when no prior model is
available) [2]. Regardless of the adopted model, system identification strategies consist in designing
and conducting an identification experiment to collect data, selecting the structure of the dynamic
system also specifying which parameters are to be identified, and fitting the model parameters to
the obtained data; the overall quality of the resulting model is then evaluated through a validation
procedure [1].

Research on systems identification has garnered considerable attention in recent decades, starting
from 50s, and has become a vital discipline in various applications within the field of automatic control.
This includes areas such as robotics, industrial processes, reduced-order modeling, and model testing.

In recent decades, as researchers and engineers have gained access to larger amounts of data, one
of the most widely used methods for system identification has been the Least Squares Method. This
approach can be considered the foundation of data-driven system modeling.
In [3], a classification of models identification is presented based on the applied methodologies. The
classification includes Fuzzy Logic Theory, Genetic Algorithm, Neural Network, Swarm Intelligence
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Optimization Algorithms, Auxiliary Model Identification Method, Hierarchical Method, and Stochastic
Theory [4].

Referring to the last method, in [5] crucial principles of realization theory were introduced, par-
ticularly emphasizing controllability and observability concepts. Their focus was on linear systems
identification, with a special emphasis on establishing the minimal state-space representation to define
the subspace within which the system dynamics evolves. They pioneered the concept of state-variable
equations, which facilitates the realization of an external description through an equivalent internal
description of a dynamical system. A second algorithm addressing the same problem was simultane-
ously presented by Kalman (see [6]), utilizing the principles of controllability and observability and
necessitating linear algebra-type computations. State-space models are particularly well-suited for
this approach as they lend themselves to linear algebra techniques, robust numerical simulation, and
modern control design methods. A few years later, Ho and Kalman [5] approached the same problem
from a new perspective. They demonstrated that the minimum realization problem is equivalent to a
representation problem involving a sequence of real matrices known as Markov parameters (pulse
response samples).

During the 90s, expanding upon the foundational work by Gilbert and Kalman, various methods
were developed to identify the most observable and controllable subspace of a system based on given
input-output (I/O) data. Some years later, at NASA, Juang devised an approach to concurrently
ascertain a linear state-space model and the corresponding Kalman filter using noisy input-output
measurements (see [7] for details). Referred to as the Observer/Kalman Identification Algorithm
(OKID) and exclusively formulated in the time domain, this method computes the Markov parameters
of a linear system. Subsequently, both the state-space model and a corresponding observer are
determined simultaneously from these parameters. The Kalman Filter was therefore a reference point
for identification in the case of linear systems and its parameters. Subsequently, the theory was
extended to nonlinear systems through the Extended Kalman Filter (EKF) in various versions (see, e.g.,
the work in [8] for the polynomial one), starting from a series of measurements subject to noise, and
was successful in any application that can be linked to control theory.
In this regard, it is worth noting that, an interesting comparison among modern methods for parameter
estimation of aircrafts is presented in [9]. In particular, by using real flight data, the authors find that
the performance of Filter Error Methods (FEMs), such as Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF), prevail over Equation Error Methods (EEMs) and Output Error Methods (OEMs),
particularly in the presence of turbulence and noise.

More recently, the use of many machine learning tools for control problems is gaining attention.
The technology of artificial neural networks has undergone significant development since the late 20th
century. Over time, neural networks have found applications in various fields, particularly for cyber-
physical systems, with notable contributions in intelligent control, nonlinear optimization, computer
vision, biomedical engineering, robotics, and system identification. Neural network identification
leverages the structure of a nonlinear system, enabling the simulation of input-output relationships
through the network’s ability to approximate any nonlinear mapping. It employs the self-adaptation
and self-learning capabilities of neural networks to implement simple learning algorithms in engineer-
ing, ultimately achieving the forward or inverse model of the system through training. This method
exhibits the following characteristics:

1. No need to establish the model structure of the actual system, as the neural network itself serves
as a model for network identification.

2. It is capable of identifying any linear or nonlinear model.
3. The neural network not only serves as a model but is also an actual system achievable through

physics.

However, it comes with certain limitations:

1. Local minimum problem.
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2. Lengthy training time and slow learning speed.
3. Difficulty in extracting ideal training samples.
4. Challenges in optimizing the network structure.
5. Difficulty in completely solving the convergence problem theoretically for the neural network

algorithm.

To address these limitations, numerous researchers have proposed improved neural network
identification methods, resulting in favorable identification outcomes (see, e.g., [10,11]).
In the above described context, the main contribution of this paper is to exploit the power in the
management and use of a limited amount of data available data in Neural Networks with the physical
laws of the flight dynamics of a quadcopter. In particular, we use Physics-Informed Neural Networks
(PINNs), also known as Theory-Trained Neural Networks, to estimate the drone model. In fact, in the
last decade, aerial robots, and particularly small UAVs and drones, have witnessed a continuously
increasing use in a wide range of services (see, e.g., [12]). As a consequence, the identification and
control (and hence the system parameters estimation) of these systems is of paramount importance
from different point of view (see [13,14]).

We conclude this section highlighting that the use of PINNs for system identification is recently
reaching relevant interest in the research community. As an example, the work in [15] proposes the
use of PINNs for non-linear system identification for power system dynamics. In particular, the final
aim of this contribution is to discover the frequency dynamics of future power systems. To assess the
performance of the presented model and validate their proposal, the authors compare the estimator
against the UKF. PINNS are also used in [16] to discover the ordinary differential equation (ODE)
of a rotor system from noise measurements and assess the healthy/faulty machine condition. The
validation is performed on a test bench. System identification of structural systems with a multiphysics
damping model through PINNs is presented in [17], while in [18] they are adopted to estimate motion
and identify system parameters of a moored buoy under different sea states. To the best of authors
knowledge, a first attempt in the use of PINNs for quadrotor dynamical modeling is proposed in [19],
where a comparison with other existing approaches is performed, showing that PINNs outperform
linearized mathematical models and classical black-box approaches based on Deep Neural Networks
(DNNs) in terms of test error, while also exhibiting better capability of underlying existing relationships
between parameters. In particular, in [19] the orientation estimation of a quadrotor is dealt with, while
in the present paper we focus on all the state variables, therefore also the spatial ones.

The reminder of the paper is organized as follows. In Section 2 the drone dynamics model is
recalled. Section 3 illustrates the two methodologies chosen to compare system model identification: a
quick recall of the Extended Kalman Filter and then the idea on which PINNs are based is described.
Section 4 shows the simulation and comparison results between the methods mentioned above. Some
final considerations and future research ideas conclude the paper.

2. Mathematical Model of a Quadrotor

The quadrotor analyzed in this study is composed of a rigid structure with four rotors (for more
details, refer to [20,21]). The propellers produce a force Fi = b · ω2

p,i, which is proportional to their
angular velocity ωp,i, for i = 1, 2, 3, 4. Propellers 1 and 3 spin counterclockwise, while propellers 2 and
4 spin clockwise. In the following discussion, the quadrotor’s orientation will be described using Euler
angles. The frames RC(O, e1, e2, e3) and RΓ(Ω, ε1, ε2, ε3)) represent the reference systems fixed to the
Earth and the quadrotor, respectively, with Ω located at the quadrotor’s center of mass (see Figure 1).
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Figure 1. Quadrotor orientation using Euler angles.

The quadrotor’s position in RC is represented by p = (x, y, z)T , while its orientation is defined
by the Euler angles α = (ϕ, θ, ψ)T , where ϕ ∈ [−π/2, π/2), θ ∈ (−π/2, π/2), and ψ ∈ [−π, π)

correspond to the roll, pitch, and yaw angles, respectively. The 3–2–1 sequence is utilized here, as in
[22]. Furthermore, v = (vx, vy, vz)T and ω = (ω1, ω2, ω3)

T denote the linear and angular velocities of
the quadrotor’s center of mass, expressed in RC and RΓ, respectively. The quadrotor’s translational
dynamics are expressed in RC, while its rotational dynamics are expressed in RΓ:

ṗ = v

v̇ =
1
m

(
fp + fg

)
α̇ = M(α)ω

ω̇ = J−1
(
− ω̃ Jω + τp + τgy

)
(1)

where m represents the mass of the quadrotor, fp = R(α)φp is the force exerted by the propellers in
RC (φp is the same force, but expressed in RΓ), and J (a positive definite symmetric matrix in R3×3,
expressed in RΓ) is the quadrotor’s inertia matrix, and

ω̃ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2)

is the so-called dyadic representation of ω. Furthermore,

φp =

 0
0

up

, up =
4

∑
i=1

Fi, fg =

 0
0

−mg

 (3)

τp =

 τ1

τ2

τ3

 =

 ℓ b(ω2
p,2 − ω2

p,4)

ℓ b(ω2
p,3 − ω2

p,1)

c(ω2
p,1 − ω2

p,2 + ω2
p,3 − ω2

p,4)

 (4)
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are the input forces (as shown in 3) and moments (as shown in 4) generated by the propellers (expressed
in RΓ), where ℓ is the distance from the center of mass CG to the rotor shaft, and b (with units [b]= N,s2

rad2 )

and c (with units [c]= N,s2,m
rad2 ) are the thrust and drag coefficients, respectively. It is evident that:


F1

F2

F3

F4

 =


1 1 1 1
0 ℓ 0 −ℓ

−ℓ 0 ℓ 0
c −c c −c


−1

up

τ1

τ2

τ3

,


ω2

p,1

ω2
p,2

ω2
p,3

ω2
p,4

 =


1
4b 0 −1

2bℓ
1
4c

1
4b

1
2bℓ 0 −1

4c
1
4b 0 1

2bℓ
1
4c

1
4b

−1
2bℓ 0 −1

4c




up

τ1

τ2

τ3

,

(5)

ωp,i =

√
Fi
b

, 0 ≤ Fi ≤ Fi,max, 0 ≤ ωp,i ≤ ωp,i,max

with i = 1, 2, 3, 4, where Fi,max and ωp,i,max represent the maximum forces and angular velocities for
each propeller, constrained by physical limitations. Additionally, fg in (3) refers to the gravitational
force, expressed in RC. Vectors expressed in RΓ are converted into vectors in RC using the rotation
matrix

R(α) =

 cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ

 (6)

where c⋆ = cos(⋆), s⋆ = sin(⋆), ⋆ = ϕ, θ, ψ. The angular velocity dynamics are expressed using the
following matrix:

M(α) =

 1 sϕtgθ cϕtgθ

0 cϕ −sϕ

0 sϕscθ cϕscθ


where tg⋆ = tan(⋆) and sc⋆ = sec(⋆) with ⋆ = ϕ, θ, ψ.Assuming small angles for ϕ (roll) and θ

(pitch), which is reasonable for a quadrotor performing non-aggressive maneuvers, this matrix can
be approximated by the identity matrix, i.e.,M(α) ≃ I3x3[23]. Therolling torque τ1 is generated by
the forces F2 and F4, while the pitching torque τ2 is generated by the forces F1 and F3. According to
Newton’s third law, the propellers exert a yawing torque τ3 on the quadrotor body in the direction
opposite to the propeller rotation. Furthermore, the gyroscopic torque arising from the propeller
rotations is given by

τgy =
4

∑
i=1

(−1)i Jp,iωp,iω̃ϵ3 (7)

where Jp,i, for i = 1, 2, 3, 4, represents the moment of inertia of the ith motor and propeller about its
axis of rotation. Finally, the gyroscopic torque can also be expressed as

τ◦
gy =

4

∑
i=1

(−1)i J◦pωp,iω̃ϵ3 = J◦pωp

 ω2

−ω1

0

 (8)
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where ωp = −ωp,1 +ωp,2 −ωp,3 +ωp,4 is referred to as the rotor relative speed. Given these conditions,
the mathematical model (1) of the quadrotor can be rewritten as:

ẋ(t) = vx(t), ẏ(t) = vy(t), ż(t) = vz(t)

v̇x(t) =
(

cϕ(t)sθ(t)cψ(t) + sϕ(t)sψ(t)

)up(t)
m

v̇y(t) =
(

cϕ(t)sθ(t)sψ(t) − sϕ(t)cψ(t)

)up(t)
m

v̇z(t) = −g + cϕ(t)cθ(t)
up(t)

m
ϕ̇(t) = ω1(t), θ̇(t) = ω2(t), ψ̇(t) = ω3(t)

ω̇1(t) =
J2 − J3

J1
ω2(t)ω3(t) +

Jp

J1
ωp(t)ω2(t) +

1
J1

τ1(t)

ω̇2(t) =
J3 − J1

J2
ω1(t)ω3(t)−

Jp

J2
ωp(t)ω1(t) +

1
J2

τ2(t)

ω̇3(t) =
J1 − J2

J3
ω1(t)ω2(t) +

1
J3

τ3(t).

(9)

where the state space vector is [x y z vx vy vz ϕ θ ψ ω1 ω2 ω3], the control input are [up τ1 τ2 τ3].
Given the aims of the research, it is assumed that we have a limited amount of data available in
the form input-output (state). Moreover, the system identification methods that will be presented
in Section 3 are in discrete form, Thus, the quadrotor system equations (9) will be implemented in
discrete form by keeping the functions constant over each time interval [ti, ti+1), where ti+1 − ti = ∆t
for i = 0, . . . , imax − 1, and timax = t f represents the final mission time. This discrete-time formulation
allows for accurate modeling within each interval, enhancing the overall performance of the UAV
system. The digitalization is obtained by a first-order discretization.

3. System Identification Methods

3.1. Extended Kalman Filter

The EKF ([24]) is an adaptation of the standard Kalman filter designed for use when the system
and/or measurement models are nonlinear. The approach underlying the extended Kalman filter is
based on the following procedure. Given the system type:

sk = f (sk−1, µk−1) + n1,k

zk = h(xk) + n2,k
(10)

where sk is the state space vector, zk is the output and µk−1 is the control input, it approximates the
nonlinear functions of the system xk and zk, through a Taylor series expansion stopped at the first order
around the current estimate, thus making the system linear. The noise vectors n1,k and n2,k represent
disturbances affecting the state and measurements, respectively, and are assumed to be uncorrelated
with each other. Given a random variable s we want to know the probability density of the variable y
obtained from the transformation of the variable s. Moments up to first order are studied.

s ∼ N(ŝ, σ2
s ) = ŝ + δs with δs ∼ N(0, σ2

s ) (11)

y = f (s) = f (ŝ + δs) (12)

whose development is y = f (ŝ) + λ f δs +
1
2 ∆2 f δ2

s . Then, Jh
s = [ ∂h

∂s ]s=ŝk|k is defined as the Jacobian

matrix of the function h with respect to s and J f
s = [ ∂ f

∂s ]s=ŝk|k is the Jacobian matrix of f respect to s.
Moreover, the conditional probability function is assumed to be Gaussian. Using these approximations

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2024 doi:10.20944/preprints202410.2275.v1

https://doi.org/10.20944/preprints202410.2275.v1


7 of 15

the system turns out to be linear, so the Kalman filter can be applied, obtaining the following recursive
equations (respectively referred to the prediction and the correction):

ŝk|k−1 = f (sk|k−1, µk)

Pk|k−1 = J f
s Pk−1|k−1 J f T

s + Q
(13)

n2,k = zk − h(ŝk|k−1)

Sk = Jh
s Pk|k−1 JhT

s + Rk

Kk = Pk|k−1 JhT

s S−1
k

sk|k = sk|k−1 + Kkn2,k

Pk|k = (I − Kk Jh
s )Pk|k−1

(14)

where the matrices Q and R have the same properties as in the linear Kalman filter. However, there
are no assurances regarding the quality of the estimates produced, and the extended Kalman filter is
highly sensitive to the accuracy of the initial estimates (see [24]).

3.2. Physics-Informed Neural Networks

PINNs are introduced to integrate physical laws, typically described by Ordinary Differential
Equations (ODEs), into Deep Neural Networks (DNNs) (see [25]). This approach trains DNNs in a
supervised fashion to comply with given physical laws, enabling the automatic discovery of data-
driven solutions for ODEs, as demonstrated in the application under consideration (Equation (9)). The
core idea behind PINNs is to incorporate the differential equation into the loss function, as illustrated
in Figure 2, enhancing the network’s robustness and facilitating accurate approximations even in data-
scarce scenarios. In this study, we focus on parametrized and nonlinear partial differential equations
in the general form:

∂tŷ + N[ŷ; λ] = 0. t ∈ [0, T] (15)

where ŷ(t, x) represents the latent (hidden) solution or the state of the dynamic system, and N[·]
denotes a nonlinear differential operator parametrized by λ. We define l(t, x) as the expression on the
left-hand-side of Equation (15), i.e.:

l := ∂ŷ + N[ŷ] (16)

and then, we continue by modeling ŷ(t, x) using a deep neural network. In this context, ŷ serves as
the output of a layered architecture neural network, denoted by lw(t), where ŷ = lw(t), let lw denotes
the mapping function learned by a deep network with adaptive weights w. In this context, the neural
network is expected to learn the solution of a specified ODE as a function of continuous time t.

By using automatic differentiation and the chain rule, we can derive a neural network representing
ŷ(t, x). Importantly, this network shares the same parameters as the one representing ŷ(t, x), but may
employ different activation functions due to the influence of the differential operator N. Assuming an
autonomous system, we train a neural network ŷ(t) by optimizing its shared parameters with those of
ŷ(t, x) and l(t, x). Our goal is to minimize a Mean Squared Error (MSE) cost function.

MSE = MSEŷ + γMSEl . (17)

where:

MSEŷ =
1

Nŷ

Nŷ

∑
i=1

1
Nt

Nt

∑
j=1

|ŷi(tj)− ŷj
i,re f |

2 (18)
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MSEl =
1

Nŷ

Nŷ

∑
i=1

1
Nl

Nl

∑
j=1

|l(ŷi(tk))|2 (19)

being 0 ≤ γ ≤ 1 a hyper-parameter that should reflect how confident we are in the physical constraints
of our system, Nt represent the total number of training data samples, Nl the number of collocation
points, and Nŷ the number of outputs produced by the neural network. For each output i, we

denote the network’s prediction as ŷi(·). Given a data pair (tj, ŷj
i,re f ), where j indexes the pair and

ŷj
i,re f is the desired output, we can compare it to the network’s prediction ŷi(·). In particular, the

outputs of the system equations (9) in the application considered are enclosed in the following vector
ŷ = [x y z ϕ θ ψ].

The initial loss term MSEŷ is associated with the conventional regression cost function applied to

the acquired training data (tj, ŷj
i,ref)

Nt

j=1
, typically used to establish the boundary (initial or terminal)

conditions of ODEs during their solution. The second loss term, MSEl , penalizes deviations in the
behavior of ŷ(t) as measured by l(ŷ). This ensures that the solution adheres to the required physical
properties, as defined by l(ŷ), at a specific set of randomly chosen collocation points {tk}Nl

k=1. The
experimental findings indicate a substantial reduction in the needed training data size Nt to learn
specific dynamical behaviors. This reduction is attributed to the a priori information incorporated
from MSEl . Considering the assumed representation of the differential equation of the physical system
as l(ŷ) = 0, the term MSEl serves as an indicator of how effectively the PINN conforms to the solution
of the physical model. The physics-informed method outlined in this study offers a unified framework
that combines a pre-existing theoretical model, potentially approximate, with measured data from
processes. This framework is intended to address shortcomings in the theoretical model or increase
the effectiveness of sample data in process modeling.

ŷ

ŷ

∂ŷ
∂t

u

l

DNN PHYSICAL LAWS

u

MSE

t

ŷ(0) = x̂(0)

Figure 2. PINN architecture. It functions by employing its own output prediction as the initial state.

4. Simulation Results

In this part, we execute some computer simulations to validate the proposed approach and
theoretical findings.

4.1. PINNs Hyperparameters Tuning

Hyperparameter tuning involves selecting the best values for a neural network’s hyperparameters,
which are parameters set before training that significantly impact the model’s performance. This
process is crucial for enhancing the accuracy and efficiency of the model, helping to achieve optimal

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2024 doi:10.20944/preprints202410.2275.v1

https://doi.org/10.20944/preprints202410.2275.v1


9 of 15

results. For instance, the learning rate controls the speed at which the model learns. If this value is too
high or too low, the model may not fit the data effectively. Therefore, finding the right combination of
hyperparameters is key to ensuring good model performance.

There are various methods for hyperparameter tuning such as grid search, random search,
and Bayesian optimization. Grid search involves defining a range of hyperparameter values and
systematically evaluating the model for every possible combination. In contrast, random search selects
random combinations of hyperparameter values to evaluate the model, which can be more efficient
since it doesn’t require testing all combinations. Bayesian optimization, a more sophisticated approach,
uses a probabilistic model that relates hyperparameters to performance metrics, helping to predict
which hyperparameter values are likely to improve the model’s performance. A broad review of
tuning algorithms is available in [26], which also explores a genetic approach. The fundamental
hyperparameters to adjust include the number of layers, the number of neurons per layer, the learning
rate, and the batch size for the neural network. For Physics-Informed Neural Networks (PINNs), there
is an additional hyperparameter called lambda, which controls the balance between the data and the
model. Future research will likely focus on a deeper theoretical investigation of this specific parameter.

In this study, the random search method was employed for hyperparameter tuning.

4.2. Model and Performance Comparison

To assess the effectiveness of the proposed Physics-Informed Neural Networks method and to
make a comparison with the Extended Kalman Filter-based model identification approach outlined in
Section 3, a simulation of the quadrotor system described in Section 2 was conducted using Simulink
from MATLAB®. We want to underline that we have available measured data in limited quantities
that link the input and output (corresponding to the state). This makes the problem difficult and a
hybrid approach between the use of neural networks and impositions of physical laws represents an
excellent compromise between results obtained and computational load. In Table 1 the values of the
known and unknown model parameters are reported.

An important factor to take into account and which is a strong point of PINNs is that for them
every system parameter is assumed to be unknown, while for the EKF it is assumed that some trivial
parameters, such as the mass and the distance of the motors from the center of mass, are known.
Furthermore, at the simulation level, noise is added to all measured available data in order to make
the simulation more realistic. The considered network is comprised of four layers, with each hidden
layer featuring 80 neurons activated by the hyperbolic tangent function.

Table 1. Actual parameter values.

Parameter Value Units Known Known
for EKF for PINNs

m 0.65 kg YES NO
d 0.165 m YES NO
Jx 0.03 kg · m2 NO NO
Jy 0.025 kg · m2 NO NO
Jz 0.045 kg · m2 NO NO
b 3.50 N/rad/s NO NO
k 0.06 N · m/rad/s NO NO

To evaluate the performance of two proposed system estimators in some missions, various
metrics including Mean Absolute Error (MAE), Mean Square Error (MSE), Integral Squared Error
(ISE), Integral Absolute Error (IAE), and Integral Time–weighted Absolute Error (ITAE) have been
utilized as comparative indicators for system identification. The performance indices are defined for
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the output state variables ŷ (the same reasoning applies to other variables) concerning the reference
yre f that needs to be tracked across N sampling instances. They are defined as follows:

MAE =
∑N

i=1[yre f ,i − yi]

N
, MSE =

1
N

N

∑
i=1

(yre f ,i − yi)
2

ISE =
∫
(yre f − y)2dt, IAE =

∫
| yre f − y | dt

ITAE =
∫
(t | yre f − y |)dt

where yre f ,i and yi respectively are the values of the variables yre f and y at sampling time i, and ISE,
IAE, and ITAE integrate over time. Furthermore, the gains in the EKF and the architecture, some
parameters of the neural network as well as a weight on the two cost functionals considered to calculate
MSE in the PINNs assume an important value for evaluating the results. Some preliminary findings
are reported in Tables 2–7, illustrating the disparity between the EKF and PINNs estimators in each
performance metric of the monitored variables for the x position (Table 2), y position (Table 3), z
position (Table 4), ϕ roll angle (Table 5), θ pitch angle (Table 6), and ψ yaw angle (Table 7).

Table 2. Performance indices for the x model errors expressed in meters.

MAE MSE ISE IAE ITAE

EKF 0.0514 0.0039 5.8711 77.17 599.94
PINNs 0.0367 0.0022 3.3427 55.07 432.52

Table 3. Performance indices for the y model errors expressed in meters.

MAE MSE ISE IAE ITAE

EKF 0.0533 0.0047 7.0927 79.96 638.23
PINNs 0.0426 0.0033 4.8822 64 543.46

Table 4. Performance indices for the z model errors expressed in meters.

MAE MSE ISE IAE ITAE

EKF 0.0198 5.85e-04 0.8786 29.71 229.05
PINNs 0.0135 2.99e-04 0.4491 20.3 147.99

Table 5. Performance indices for the ϕ model errors expressed in radians.

MAE MSE ISE IAE ITAE

EKF 0.0133 4.4527e-04 0.4204 20.02 163.38
PINNs 0.0103 2.801e-04 0.2656 15.44 128.97

Table 6. Performance indices for the θ model errors expressed in radians.

MAE MSE ISE IAE ITAE

EKF 0.0107 1.81e-04 0.2718 16.11 130.64
PINNs 0.0085 1.27e-04 0.1838 12.78 102.45
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Table 7. Performance indices for the ψ model errors expressed in radians.

MAE MSE ISE IAE ITAE

EKF 0.0234 8.92e-04 0.7541 35.07 269.87
PINNs 0.0149 5.53e-04 0.5828 22.39 170.66

Figures 3–7 show the trends of the Extended Kalman Filter and PINNs to approximate the real
system respectively for position x, y z, and the angles ϕ, θ, and ψ. Both methods will achieve excellent
results considering the type of maneuver presented here, the disturbances present. But it is evident
that the PINNs outperform the EKF, with the additional strength of requiring a reduced computational
effort, despite they require training prior to their use or during the simulation.

Figure 3. Position x-axis and corresponding error.

Figure 4. Position y-axis and corresponding error.
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Figure 5. Position z-axis and corresponding error.

Figure 6. Roll angle ϕ and corresponding error.
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Figure 7. Pitch angle θ and corresponding error.

Figure 8. Yaw angle ψ and corresponding error.

5. Conclusions

In this research work we investigated the praticatability of employing a physics-informed machine
learning technique, specifically physics-informed neural networks (PINNs), for nonlinear system
model identification in the context of a quadrotor when input-output available real data are limited.
Our discussion centered around the potential of PINNs to replace intricate nonlinear dynamics
with a more computationally efficient approximation. Leveraging automatic differentiation, PINN
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approximations enable a cost-effective and straightforward computation of derivatives of the state.
The technique is compared on experimental data with the extended Kalman filter, which according
to previous literature is the method that has always obtained the best performance. The simulation
comparison is performed on both spatial and orientation variables and shows excellent performances
from both techniques, but PINNs are better both at the error level with respect to real data and at the
computational level, but with a greater preliminary workload, at a higher training level.

Future research extensions will involve analyzing the results concerning a comparative computa-
tional analysis and variations in some identification parameters like γ to understand the performance
moving from an hybrid weighted approach data driven-model based.
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