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Review

Time-Refraction and Spacetime Optics
J. Tito Mendonça

GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
titomend@tecnico.ulisboa.pt

Abstract: A review of recent advances in spacetime optics is given, with special emphasis on time-
refraction. This is a basic optical process, occurring at a temporal discontinuity or temporal boundary,
that is able to produce various different effects, such as frequency shifts, energy amplification, time-
reflection and photon emission. If, instead of a single discontinuity, we have two reverse temporal
boundaries, we can form a temporal beam-splitter, where temporal interferences can occur. It will
also be shown that, in the presence of an axis of symmetry, such as a magnetic field, the temporal
beam-splitter can induce a rotation of the initial polarization state, similar to a Faraday rotation. Recent
work on time-crystals, superluminal fronts and superfluid light will be reviewed. Time-gates, based
on spacetime optical effects will be discussed. We also mention recent work on optical metamaterials.
Finally, the quantum properties of time-refraction, which imply the emission of photon from vacuum,
are considered, while similar problems in high energy QED associated with electron-positron pairs are
briefly mentioned.
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1. Introduction
Temporal effects in optics, and the corresponding spacetime symmetries, have been considered

for a long time [1,2], but in recent years this area seems to observe a kind of explosion. The concept of
time-refraction, which is an essential ingredient of what is now called spacetime optics, only emerged
in recent years. It became one of the central pieces of our understanding of what is a new area of
optics, in both the classical and quantum regimes. This concept was formulated in classical terms by
several authors [3–7]. New theoretical approaches, such as generalized matrix methods to solve wave
scattering by temporal structures [9], have been implemented. In quantum optics, time-refraction
was formulated by [8], and more implicit terms by [10]. Application of these concepts to quantum
cosmology was also explored [11]. Recent work shows an increase of interest on the quantum aspects
of temporal optics [12–14].

Experimental observation of time-refraction has been reported in several domains and in different
configurations, well before the explicit formulation of the concept. The first possible observation was
reported by Yablonovich in 1974 [15], using laser-breakdown experiments. At that time, this was
simply described as a self-blue shift of the incident laser spectrum. It was clearly due to the sudden
ionization of a neutral gas by the incoming laser beam, and was characterized by a spectral shift of
the incident light spectrum towards the high frequencies, in other words, a blue shift of the laser
spectrum. Similar effects were later observed in laser and microwave ionization experiments [16,17]
and it became a regular experimental evidence in intense laser-plasma interaction experiments. More
recently, time-refraction was reported in experiments using microwaves in metamaterials [18] and
infrared subcycle pulses in epsilon near-zero optical conditions [19]. Finally, it was reported in acoustic
experiments, where the electromagnetic radiation is replaced by sound waves [20]. Time-refraction in
spin waves has also been considered [21].

This concept is therefore a general process, associated with any kind of wave propagating in a
background non-stationary media. It opened the door to a new and increasingly active field. This
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topic is particularly relevant in the context of metallic thin films and metamaterials, as shown by a
large number of recent publications [22,29–37], as well as short [38] and long reviews [39]. It can be
used to manipulate the properties of metasurfaces, leading to the development of new optical devices,
such as those to control wavefront shapes [40]. Of particular relevance is the use of highly-doped
semi-conductors, showing reduced dissipation and remarkable optical properties in the near infrared,
such as a negative refraction [41] and a near-zero refractive index (see [42] for an overview). It should
be added that, in magnetized media, the occurrence of temporal boundaries can eventually induce
Faraday rotation [43], and more generally, the generation of photon angular momentum.

An important property of time-refraction is that it is a first-order effect, which concerns every
photon propagating in the medium, in the same way as the usual space-refraction. For that reason,
it can easily be observed at the macroscopic classical level, using a photon beams of arbitrarily low
intensities. Several manifestations of time-refraction have indeed been identified. In the classical
regime there are mainly two: frequency shift and time-reflection. Light amplification by successive
time-refraction events is also possible. The use of light amplification in temporal optics has been
emphasised by several researchers (see, for instance, the references [44–46]). We should also add the
emission of photon-pairs, which is only relevant in the quantum regime.

Here we review time-refraction in classical and quantum regimes and describe its main physical
features, including frequency shifts, temporal Snell’s and Fresnels laws, temporal Bragg effect and
amplification. A first version of this review appeared as a conference paper [47]. The cases of i) a single
temporal boundary, ii) a temporal beam-splitter made of two consecutive temporal boundaries, iii)
generalization to time-crystals made of a succession of temporal beam-splitters, and more general
temporally modulated media, are considered. A relevant aspect of these configurations is that they
reveal the importance of temporal interference, which has been explored in the temporal version of
Young’s double-slit experiment, discussed in [48].

A quantum-optical description of these processes is also possible and reveals the creation of
photon pairs in quantum vacuum. This photon pair creation is indeed very similar to that of the
dynamical Casimir effect, and in some sense, time-refraction generalizes the dynamical Casimir picture
because no spatial boundary conditions are necessary. But there are differences. Time-refraction is a
first-order optical process, that exists in both classical and quantum regimes. It affects all photons in
the medium and is independent of boundaries. In contrast, the dynamical Casimir is usually identified
as a second-order quantum effect, which depends on the existence of oscillating boundaries, although
classical analogues can be envisaged.

Finally, we consider the strong field regime, associated with intense laser pulses, where temporal
optical effects are related to possible electron-positron pair creation. This new regime is the so-called
intense field or high energy QED. In order to illustrate it, we briefly mention the temporal Klein
model, which is a temporal version of the well-known Klein paradox. This model describes a kind of
time-refraction of the Dirac field and explains the creation of particle pairs in a non-stationary vacuum.
This is ultimately related to the predicted vacuum breakdown at ultrahigh laser intensities.

2. Spacetime Boundaries
The simplest way to understand the main differences between space and time boundaries is to

consider photon propagation across a moving boundary, where both the frequency (or energy) ω and
the wavevector (or momentum) k change across the boundary. We assume a sharp boundary between
two media with refractive indices n0 and n1, moving with an arbitrary velocity v along an arbitrary axis
Ox (see Figure 1). (More complicated scenarios, including two or more boundaries, moving at different
velocities, could be envisaged. They would produce wedges in spacetime, as recently discussed in
[49]. Here, we limit our discussion to a single boundary, for formal consistency). The sharpness of the
boundary is not a fundamental issue and only simplifies our discussion.
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propagating in the opposite direction, →k, the reflection and transmission coefficients are 121

given by [28] 122
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, (2)

where α = n0/n1 is the ratio between the initial and the final refractive index of the optical 123

medium. These expressions can be called the temporal Fresnel’s laws. In particular, they 124

predict total reflection due to a temporal boundary, T = 0, when the two initial field 125

amplitudes satisfy the relation E↓
0/E0 = (α + 1)/(1 → α). Similarly, we can have total 126

transmission, R = 0, when E↓
0/E0 = (1 → α)/(1 + α). Total transmission is the temporal 127

analogue of the Brewster’s angle and defines a temporal Brewster’s angle in the spacetime 128

plan (x, t). The concept was recently explored in [29]. Of course, we can also have E↓
0, and 129

the above expressions reduce to 130

R =
α

2
(α → 1) , T =

α

2
(α + 1) , (3)

Notice that there is no energy conservation in time-refraction, and an exchange of energy 131

always occurs between the electromagnetic field and the optical medium. 132

3. Temporal Rotations 133

We review the concept of temporal rotation, leading to a change in the angular mo- 134

mentum of light. This includes temporally induced Faraday rotation and Cotton-Mouton 135

effects, which are first and second order polarimetric effects. Another temporal process 136

leading to a variation of the orbital angular momentum of light is due to non-uniform 137

refractive index variations. 138

4. Time-refraction in Metamaterials 139

Brief review of recent work on temporal optics using metamaterials. 140

5. Temporal Beam-Splitters 141

As a natural extension of the basic time-refraction process described above, we can 142

consider the temporal beam-splitter, which is the temporal analogue of the well-known 143

optical beam-splitter. It is defined in the following way. We assume that, at t = 0 the 144

refractive index suddenly changes from its initial value n0 to a different value n1, and then, 145

after a time interval τ, the refractive index returns to its initial value n0. This time interval is 146

the analogue of the width of the optical beam-splitters. Of course, the main difference is that 147

there are three independent directions in space, with only a single direction in time. Using 148

the two consecutive continuity relations, as above, we can derive the time-transmitted and 149

time-reflected coefficients in the form [28] 150
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2
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i
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(
1 → α2

)
sin(ε1τ) exp(→iε0τ) , (4)

and 151

T2 ↑ E2
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=

[
cos(ε1τ) → i

2α

(
1 + α2

)
sin(ε1τ)

]
exp(+iε0τ) , (5)

where E2 and E↓
2 are the final transmitted and reflected field amplitudes, after the two 152

consecutive temporal discontinuities. For simplicity, we have assumed that no reflected 153

signal is initially present, E↓
0 = 0, as in eq. (3). But the general case with E↓

0 ↔= 0 can be 154

equally defined. We clearly see that these coefficients oscillate as a function of the temporal 155

width τ. This is obviously a result of interferences created by the two temporal surfaces. 156

As before, the maximum values of these coefficients are defined by the ratio between the 157

two refractive indices, α. Notice that, when α ↗ 0, or n0 ↘ 0, the maximum reflected and 158
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Figure 1. Spacetime refraction: (a) boundary moving with velocity v along the x-axis, (b) boundary at rest, v = 0.
We represent the (x, t) plane, where two optical media with different refractive indices, n0 to n1, are separated
by a moving boundary (oblique line in the plane). The angles represent the photon velocity in the two media,
tan(α0,1) = n0,1. For the particular case of (b) where the boundary is at rest, we get a simpler picture, where the
boundary coincides with the x-axis. In this case we include two initial beams moing with the same frequency but
in opposite directions.

Using geometric optics or a more exact full wave description, it is then possible to derive a generalised
Snell’s law, that follows from the existence of two independent invariants of the form [3,50]

n0 sin θ0 =

(
ω1

ω0

)
n1 sin θ1 , ω1 = ω0

1 − βn0 cos θ0

1 − βn1 cos θ1
, (1)

where θ0,1 are the angles of propagation in the two media with respect to the axis Ox, and β = v/c.
Notice that the frequencies ω0 and ω1 are, in general, different from each other. For a boundary at
rest, β = 0, we are reduced to pure space-refraction, described by the historical Snell’s law, n0 sin θ0 =

n1 sin θ1, and no frequency shift is observed, ω0 = ω1 This is associated with a space symmetry
breaking, where the presence of a boundary destroys translation invariance and introduces a change
of the photon momentum but not its energy.

Another relevant situation corresponds to an infinite velocity of the boundary, β → ∞, where we
are reduced to a purely temporal process because the refractive index changes everywhere at the same
time in the medium. In this case, we have θ0 = θ1 and ω1 = (n1/n0)ω0. By analogy with the previous
space-refraction, we call it time-refraction. In this case, the photon frequency changes, but momentum
is conserved. Notice that we can use proper Lorentz transformations to reduce the case of a finite
velocity to these two extreme cases. The subliminal cases, β < 1, can be reduced to space-refraction,
while the superluminal cases, β > 1, can be reduced to time-refraction.

As previously mentioned, the first reported observation of a frequency shift associated with the
temporal change of the medium was probably made in 1974 [15], when a CO2 laser pulse was used to
ionize Nitrogen and Helium gas jets. In these early experiments, the observed spectrum of the laser
radiation was considerably blue-shifted after ionization. For that reason, the process was initially
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named self-blue shift. It is now currently reported in laser pulse interactions with matter (see, for
instance, [51–55]). Recent experiments on time-refraction, not related to ionization but to solid state
materials, have also been reported [18,19].

A full wave description can be used to extend the Fresnel formulae onto the temporal domain. For
that purpose, we use the temporal continuity equations for the electromagnetic field. More specifically,
the displacement and magnetic fields, D(t) and B(t), will have to stay valid for all times, including the
discontinuity time, t = 0, in order to guarantee the validity of Maxwell’s equations [8]. It is important to
note that, in general conditions, these field continuity conditions imply the existence of a reflected signal.
Therefore, time-refraction also necessarily (and surprisingly!) implies reflection in space. The emission of
this reflected signal due to a temporal change of the medium can be called time-reflection [4].

We therefore assume that, prior to time-discontinuity t = 0, two beams of the same frequency
are present in the medium, and propagate in opposite directions. Defining E0 as the amplitude of
beam propagating with wavevector k, and E′

0 as the amplitude of beam propagating in the opposite
direction, −k, the reflection and transmission coefficients resulting from a temporal discontinuity are
given by [56]

R ≡ E′
1

E0
=

α

2

[
(α − 1) + (α + 1)

E′
0

E0

]
, T ≡ E1

E0
=

α

2

[
(α + 1) + (α − 1)

E′
0

E0

]
, (2)

where α = n0/n1 is the ratio between the initial and the final refractive index of the optical medium.
These expressions can be called the temporal Fresnel’s laws. It should be noticed that they predict the
occurrence of total reflection, T = 0, when the two initial field amplitudes satisfy the relation E′

0/E0 =

(α + 1)/(1 − α). Similarly, we can have total transmission, R = 0, when E′
0/E0 = (1 − α)/(1 + α).

Total transmission is the temporal analogue of the Brewster’s angle and defines a temporal Brewster’s
angle in the spacetime plan (x, t). The concept was recently explored in [60]. For isotropic media, there
is no dependence of the field polarization direction, but this is not necessarily true for anisotropic
media, as discussed below.

Notice that there is no energy conservation in time-refraction, and an exchange of energy always
occurs between the electromagnetic field and the optical medium. This is associated with the fact that,
in order to satisfy momentum conservation, the emission of a reflected signal implies the increase of
momentum in the transmitted direction. As a result, if the frequency increases, there is an increase
of the total electromagnetic energy. In order to illustrate this property we represent in Figure 2 the
quantities T2 and R2, as a function of α, for different values of the ratio E′

0/E0.
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propagating in the forward direction, with no photons in the backward direction, as defined 124
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Notice that these coefficients satisfy the hyperbolic relation A2 ↑ B2 = 1, characteristic of a 132

bosonic field. Obviously, the (n + s) photons propagating in the forward direction, with 133

wavevector k, correspond to the transmitted signal, while the s photons propagating in 134

the backward direction ↑k correspond to the reflected signal. Given the final value n1 of 135

the refractive index, both signals propagate in the new medium with a shifted frequency, 136

determined by ω1 = |k|c/n1. 137
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We review the concept of temporal rotation, leading to a change in the angular mo- 139
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effects, which are first and second order polarimetric effects. Another temporal process 141

leading to a variation of the orbital angular momentum of light is due to non-uniform 142

refractive index variations. 143
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Figure 2. T2 (red curves) and R2 (blue curves): as a function of the ratio E′
0/E0, for α = 0.75 and α = 1.25 (dashed).
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Of course, in the simple case of a single initial mode, such that E′
0 = 0, the above expressions

reduce to
R =

α

2
(α − 1) , T =

α

2
(α + 1) , (3)

In this case, total reflection and total transmission are completely absent, except in the trivial case of
α = 1.

3. Quantum Time-Refraction
Although most of our present review is based on classical optics, it is useful to briefly consider

the case of quantum optics. The concept of time-refraction can easily be transposed from classical to
quantum optics, also sometimes called optical QED . Here, the field amplitudes have to be replaced by
field operators, and similar continuity relations can be established for these operators. This quantum
theory confirms the effects of frequency shift and time-reflection already known from the classical
model, but a new effect also appears, which is the emission of photons from vacuum. This is an
intrinsic quantum effect.

To understood this new effects, let us consider a Fock state of n photons with frequency ω0

propagating in the forward direction, with no photons in the backward direction, as defined by the
state vector |n, 0⟩. It can than be shown that, after a time-refraction event at t = 0, we observe states
with both forward and backward photons, defined by the new state vector |n + s, s⟩, where s is the
number of photon-pairs created by the temporal discontinuity. This photon-pair creation process can
be described by [8,56]

|n, 0⟩1 =
∞

∑
s=0

bs(n)|n + s, s⟩2 , (4)

where the probability for the occurrence of different photon states P(n + s, s) = |bs(n)|2 is determined
by

P(n + s, s) ≡ |bs(n)|2 =
(n + s)!

n!s!

(
Bs

An+s+1

)2
, (5)

where the two coefficients A and B are defined by

A =
(1 + α)

2
√

α
, B =

(1 − α)

2
√

α
. (6)

Notice that these coefficients satisfy the hyperbolic relation A2 − B2 = 1, characteristic of a bosonic field.
Obviously, the (n + s) photons propagating in the forward direction, with wavevector k, correspond
to the transmitted signal, while the s photons propagating in the backward direction −k correspond to
the reflected signal. Given the final value n1 of the refractive index, both signals propagate in the new
medium with a shifted frequency, determined by ω1 = |k|c/n1. For recent discussions on quantum
time-refraction, see [57–59,70].

4. Temporal Beam-Splitters
As a natural extension of the basic time-refraction process described above, we can consider a

temporal beam-splitter, which is the temporal analogue of the well-known optical beam-splitter. This
is defined in the following way. We assume that, at t = 0 the refractive index suddenly changes from
its initial value n0 to a different value n1, and then, after a time interval τ, the refractive index returns
to its initial value n0. This time interval is the analogue of the width of an optical beam-splitters.
Of course, the main difference is that there are three independent directions in space, with only a
single direction in time. Using the two consecutive continuity relations, as above, we can derive the
time-transmitted and time-reflected coefficients in the form
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R2 ≡ E′
2

E0
=

i
2α

(
1 − α2

)
sin(ω1τ) exp(−iω0τ) , (7)

and

T2 ≡ E2

E0
=

[
cos(ω1τ)− i

2α

(
1 + α2

)
sin(ω1τ)

]
exp(+iω0τ) , (8)

where E2 and E′
2 are the final transmitted and reflected field amplitudes, after the two consecutive

temporal discontinuities, as indicated in Figure 3. For simplicity, we have assumed in these expressions
that no reflected signal is initially present, E′

0 = 0, as in Equation (3). But the general case with E′
0 ̸= 0

can be equally defined [56].
We clearly see that these coefficients oscillate as a function of the temporal width τ. This is

obviously a result of interferences created by the two temporal surfaces. As before, the maximum
values of these coefficients are defined by the ratio between the two refractive indices, α. Notice that,
in the limit α → 0, or n0 → 0, the maximum reflected and transmitted fields can grow indefinitely,
showing an unlimited increase of the total energy of the radiation field.

α0

ct

x
n1

n0

α0
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propagating in the opposite direction, →k, the reflection and transmission coefficients are 121

given by [28] 122

R ↑ E↓
1

E0
=

α

2

[
(α → 1) + (α + 1)

E↓
0

E0

]
, T ↑ E1

E0
=

α

2

[
(α + 1) + (α → 1)

E↓
0

E0

]
, (2)

where α = n0/n1 is the ratio between the initial and the final refractive index of the optical 123

medium. These expressions can be called the temporal Fresnel’s laws. In particular, they 124

predict total reflection due to a temporal boundary, T = 0, when the two initial field 125

amplitudes satisfy the relation E↓
0/E0 = (α + 1)/(1 → α). Similarly, we can have total 126

transmission, R = 0, when E↓
0/E0 = (1 → α)/(1 + α). Total transmission is the temporal 127

analogue of the Brewster’s angle and defines a temporal Brewster’s angle in the spacetime 128

plan (x, t). The concept was recently explored in [29]. Of course, we can also have E↓
0, and 129

the above expressions reduce to 130

R =
α

2
(α → 1) , T =

α

2
(α + 1) , (3)

Notice that there is no energy conservation in time-refraction, and an exchange of energy 131

always occurs between the electromagnetic field and the optical medium. 132

3. Temporal Rotations 133

We review the concept of temporal rotation, leading to a change in the angular mo- 134

mentum of light. This includes temporally induced Faraday rotation and Cotton-Mouton 135

effects, which are first and second order polarimetric effects. Another temporal process 136

leading to a variation of the orbital angular momentum of light is due to non-uniform 137

refractive index variations. 138
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Brief review of recent work on temporal optics using metamaterials. 140
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after a time interval τ, the refractive index returns to its initial value n0. This time interval is 146

the analogue of the width of the optical beam-splitters. Of course, the main difference is that 147

there are three independent directions in space, with only a single direction in time. Using 148

the two consecutive continuity relations, as above, we can derive the time-transmitted and 149

time-reflected coefficients in the form [28] 150

R2 ↑ E↓
2

E0
=

i
2α

(
1 → α2

)
sin(ε1τ) exp(→iε0τ) , (4)

and 151

T2 ↑ E2

E0
=

[
cos(ε1τ) → i

2α

(
1 + α2

)
sin(ε1τ)

]
exp(+iε0τ) , (5)

where E2 and E↓
2 are the final transmitted and reflected field amplitudes, after the two 152

consecutive temporal discontinuities. For simplicity, we have assumed that no reflected 153

signal is initially present, E↓
0 = 0, as in eq. (3). But the general case with E↓

0 ↔= 0 can be 154

equally defined. We clearly see that these coefficients oscillate as a function of the temporal 155

width τ. This is obviously a result of interferences created by the two temporal surfaces. 156

As before, the maximum values of these coefficients are defined by the ratio between the 157

two refractive indices, α. Notice that, when α ↗ 0, or n0 ↘ 0, the maximum reflected and 158
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plan (x, t). The concept was recently explored in [30]. Of course, we can also have E→
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the above expressions reduce to 114
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consecutive temporal discontinuities. For simplicity, we have assumed that no reflected 137

signal is initially present, E→
0 = 0, as in eq. (3). But the general case with E→

0 ↔= 0 can be 138

equally defined. We clearly see that these coefficients oscillate as a function of the temporal 139

width τ. This is obviously a result of interferences created by the two temporal surfaces. 140

As before, the maximum values of these coefficients are defined by the ratio between the 141

two refractive indices, α. Notice that, when α ↗ 0, or n0 ↘ 0, the maximum reflected and 142

transmitted fields can grow indefinitely, showing an increase of the total energy of the 143

radiation field. 144

This concept of temporal beam-splitter was recently revisited, for short pulse propaga- 145

tion in metamaterials [13], where the above analytical results were confirmed by numerical 146

simulations, and more complicated cases were also numerically solved. It should however 147

be noticed that analytical solutions can also be derived for pulses with arbitrary tempo- 148

ral shape. This analytical approach is based on the analogy with wave propagation in 149

inhomogeneous optical media, such as, in stratified media. It is actually quite easy to 150

derive time-transmission and time-reflection coefficients for propagation in a generic non- 151

stationary medium, where the refractive index is an arbitrary function of time, n(t). This 152
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inhomogeneous optical media, such as, in stratified media. It is actually quite easy to 150

derive time-transmission and time-reflection coefficients for propagation in a generic non- 151

stationary medium, where the refractive index is an arbitrary function of time, n(t). This 152

Figure 3. Temporal beam-splitter, made of two successive time-refraction events: First, at t = 0 the refractive
index suddenly changes, from n0 to n1, and then at t = τ > 0, the refractive index returns to its initial value n0.
Incident, reflected and transmitted rays across the temporal slab of duration τ are represented.

This concept of temporal beam-splitter was recently revisited, for short pulse propagation in
metamaterials [30], where the above analytical results were confirmed by numerical simulations, and
more complicated temporal processes were also numerically solved. However, it should be noticed that
analytical solutions can also be derived for pulses with an arbitrary temporal shape. This analytical
approach is based on the analogy with wave propagation in inhomogeneous optical media, such as, in
stratified media. It is actually quite easy to derive time-transmission and time-reflection coefficients for
propagation in a generic non-stationary medium, where the refractive index is an arbitrary function
of time, n(t). This leads to the following expressions for the transmitted and reflected electric field
amplitudes [61]

dE
dt

= − 1
2n

dn
dt

[
3E + E′ exp(+iφ(t′))

]
, (9)

and
dE′

dt
= − 1

2n
dn
dt

[
3E′ + E exp(−iφ(t))

]
, (10)
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where the phase φ(t) is defined by

φ(t) = 2
∫ t

0
ω(t′)dt′ , ω(t) =

kc
n(t)

. (11)

Here, the time-dependent wave frequency ω(t) is determined by the instantaneous wave dispersion
relation, assumed as locally valid, as indicated. But more intricate relations with nonlinear and nonlocal
dispersion terms can also be derived. It is particularly useful to consider the case of a slowly varying
medium, where the incident wave is always dominant, and we have |E′| ≪ |E|. In this case, the
time-reflection and time-transmission coefficients are then given by

R(t) ≡ E′(t)
E(0)

= −
∫ t

0

1
2n

dn
dt′

exp
[
−iφ(t′)

]
dt′ , (12)

and

T(t) ≡ E(t)
E(0)

= exp
[
−3

∫ t

0

1
2n

dn
dt′

dt′
]

. (13)

It is interesting to notice that these equations are the exact temporal analogues of the reflection and
transmission coefficients defined in stationary inhomogeneous media, where the refractive index varies
in space and not in time, as discussed in several books (see, for instance, [62,63]).

5. Temporal Rotations
We review the concept of temporal rotation, leading to a change in the angular momentum of

light, in the presence of an axis of symmetry, as a static magnetic field. This includes temporally
induced Faraday and Cotton-Mouton effects, which are first and second order polarimetric effects
for propagation along and across the magnetic field. They could occur when a sudden change of the
refractive index of the medium takes place in the presence of a static magnetic field. This means that
temporal optics could be used to produce optical isolators. We limit our discussion here to the Faraday
effect.

It should be noticed that we need two consecutive time boundaries, as in a temporal beam-splitter,
to achieve rotation. An isolated time-boundary would only produce two distinct frequency shifts to
the two modes polarized in orthogonal directions, such that we could not speak of a temporal rotation.
This can be easily understood, if we consider a wave with frequency ω0 propagation along the static
magnetic field B0 = B0ez, represented by a linearly polarized electric field E0 = E0(e+ + e−), where
e± = (ex ± iey) are the circular polarization states. If the refractive index suddenly changes from
n0 = 1 to n±, for instance due to ionization of the medium, for t > 0 we have according to Equation (3)
a new electric field of the form

E1 = E+
1 e+ + E−

1 e− , E±
1 = E0T± = E0

α±
2
(α± + 1), . (14)

The quantities α± can be represented as

α± ≃ 1√
ϵ±

, ϵ± = 1 −
ω2

p

ω±(ω± ± ωc)
, (15)

where ωp is the plasma frequency, and ωc = eB0/m is the electron cyclotron frequency. We can see
that the two orthogonal field components are no longer identical, E+

1 ̸= E−
1 , and the initial linear

polarization would be modified. But at the same time, the frequencies of these two components
are no longer identical, according to ω± = n±ω0, which means that for t > 0 two separate spectral
components propagate independently from each other. We therefore cannot talk about the polarization
of a single wave mode.
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Only when, after some interval τ, the initial refractive index is recovered, as it occurs in a temporal
beam-splitter as discussed above, can we talk again of a single wave mode and derive a Faraday
rotation. This rotation (which is generally accompanied of a change in helicity) will be determined by
the final field E2, emerging from the temporal beam-splitter with the initial frequency ω0, which can
be written as

E2 = E+
2 e+ + E−

2 e− , E±
2 = E0T±

2 , (16)

where, using Equation (8) for the two orthogonal modes, we have

T±
2 =

[
cos(ω±τ)− i

2α±

(
1 + α2

±
)

sin(ω±τ)

]
exp(+iω0τ) , (17)

with ω± = n±ω0. Other temporal process leading to the creation of photon angular momentum are
due to spacetime non-uniformities of the refractive index, and not to optical anisotropy. This topic,
related to both spin and orbital angular momentum, is phenomenologically very rich, and will be
developed elsewhere.

6. Time-Crystals
Time-refraction and temporal beam-splitter are also intimately related with the concept of time-

crystal. This concept was initially imagined as a result of spontaneous symmetry breaking, leading
a physical system to its lowest energy state [64], in a way similar to (space) crystallization. In its
final state, the system would spontaneously oscillate in time, in analogy with the periodic space
arrangements of the ordinary crystals. However, it was soon realized that time crystalization cannot
spontaneously occur, because it needs to be driven by an external energy source [65], therefore is not
a property of isolated systems. Subsequently, many different configurations of driven time crystals
have been proposed in different media (see for a review [66]), such as in ultra-cold atomic matter
[68]. Temporal multilayer structures, and their relation with non-Abelian gauge fields have recently
been considered [70]. Another way of describing this process is to consider multiple collisions of an
optical pulse with a temporal boundary [97]. A perturbation theory for spacetime periodic media has
also been developed [98]. Of particular interest in this context are the so-called photonic time-crystals
[69,71–74], which are a natural extension of the previous concepts.

A closely related process is known as the dynamical Casimir effect [23–25], which was developed
quite independently. It is however physically distinct from a generic time-crystal because, while
time-crystals can occur in unbounded time-varying media, the dynamical Casimir effect requires the
existence of an oscillating boundary. In a more general field theory, these two concepts eventually
coalesce, while keeping their specific identities. Historically, the dynamical Casimir is an extension
of the original model associated with the Casimir force [26,27,50], which is a property of quantum
vacuum limited by static boundaries. Its dynamical version, was first studied by Moore [23] and others
[24], and considered an oscillating instead of a static boundary. This property of photon-pair emission
is a common property associated to time-refraction and as well as to the dynamical Casimir.

In contrast with classical effects, such as frequency shift and refraction, the quantum properties
of time-refraction in a time-varying medium only concern a small number of photons, due to a very
low emission probability. The same occurs for the dynamical Casimir effect associated with a moving
boundary, which is a closely connected process. For that reason, the quantum manifestations of
time-refraction are much more difficult to find. We should, however, mention that observation of the
dynamical Casimir effect has be claimed in superconducting circuits [28].

The simplest way to obtain a time-crystal is to superpose a large number N ≫ 1, of identical and
equally spaced temporal beam-splitters, distant from each other by a duration ∆T, as represented in
Figure 4. In alternative, we could assume periodic modulations of a continuously varying medium,
where the influence of space boundaries can once more be forgotten. For this purpose, we consider an
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optical medium where the refractive index oscillates at a given frequency ωosc = 1/∆T, as described
by

n(t) = n0[1 + ϵc cos(ωosct)] , (18)

where ϵc is the amplitude of the oscillation. Applying the quantum formulation for non-stationary
media [61], we can conclude that the number of photon pairs emitted in two opposite wavevector
modes k and −k with the same frequency, is given by

⟨Nk(t)⟩ = sinh2
(∫ t∣∣η(t′)

∣∣dt′
)

, (19)

where the quantity η(t) is defined as

η(t) =
ϵcωosc

2
sin(ωosct)∑

ν

Jν(ϵc) exp[−i(2ω + νωosc)t)] , (20)

where Jν(ϵc) are Bessel functions. The main contribution to the emission of photon pairs is clearly
given by the constant part of the function η(t), because the integral of the oscillating terms over a long
time interval in Equation (19) will be averaged to zero. This constant part is defined by the condition

ω =
1
2
(ν ± 1)ωosc . (21)

This formula defines what can be seen as a temporal Bragg diffraction, which is the condition to attain
a maximum value of backscattered (or time reflected) light. Recent developments on temporal Bragg
diffraction can be found in [75]. But, due to the need to satisfy total momentum conservation, it also
corresponds to a maximum of time transmitted light. These peaks of the back and forward scattered
signals occur when the frequency ratio (ω/ωosc) takes the value of 1/2, for (ν = 0), which is the
well-known dynamical Casimir condition, and more generally of (ν ± 1)/2, for ν integer. This shows
that a time-crystal is intimately related with the dynamical Casimir effect, as it is associated with a
temporal oscillation of the optical path in the medium. Still, we are very far from the usual model of
the dynamical Casimir effect, based on the oscillating mirror.
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Figure 1.3: Temporal beam-splitter, made of two successive time-refraction events: First, at t = 0 the refractive
index suddenly changes, from n0 to n1, and then at t = ⌧ > 0, the refractive index returns to its initial value n0.
Incident, reflected and transmitted rays across the temporal slab of duration ⌧ are represented.

propagation in inhomogenious optical media. It is actually quite easy the derive time-transmission and
time-reflection coe�cients for propagation in a medium where the refractive index is an arbitrary function
of time, n(t). In particular, for a slowly varying medium where T (t) ' 1, we have the time-reflection
coe�cient given by [?]

R(t) ⌘ E0(t)
E(0)

= � 1

/2

Z t

0

d ln n

dt0
exp(�i'(t0))dt0 , (1.9)

where the phase '(t) is defined by

'(t) = 2

Z t

0

!(t0)dt0 , !(t) =
kc

n(t)
. (1.10)

Here, the time-dependent wave frequency !(t) is simply determined by the instantaneous photon disper-
sion relation, as indicated. Notice that eq. (??) is the exact temporal analogue of the reflection coe�cient
in stationary inhomogenious media (see, for instance, [?,?]).

1.4 Time-Crystals

The simplest way to built what could be called a temporal-cavity, or a time-crystal, is to superpose a
number N � 1 of identical temporal beam-splitters, distant from each other by a duration �T . The case
N = 2 can easily be

Figure 1.4: Time-crystal, made of N > 1 successive temporal beam-splitters events.
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transmission, R = 0, when E→
0/E0 = (1 ↑ α)/(1 + α). Total transmission is the temporal 111

analogue of the Brewster’s angle and defines a temporal Brewster’s angle in the spacetime 112

plan (x, t). The concept was recently explored in [30]. Of course, we can also have E→
0, and 113

the above expressions reduce to 114

R =
α

2
(α ↑ 1) , T =

α

2
(α + 1) , (3)

Notice that there is no energy conservation in time-refraction, and an exchange of energy 115

always occurs between the electromagnetic field and the optical medium. 116

3. Temporal Rotations 117

We review the concept of temporal rotation, leading to a change in the angular mo- 118

mentum of light. This includes temporally induced Faraday rotation and Cotton-Mouton 119

effects, which are first and second order polarimetric effects. Another temporal process 120

leading to a variation of the orbital angular momentum of light is due to non-uniform 121

refractive index variations. 122

4. Time-refraction in Metamaterials 123

Brief review of recent work on temporal optics using metamaterials. 124

5. Temporal Beam-Splitters 125

As a natural extension of the basic time-refraction process described above, we can 126

consider the temporal beam-splitter, which is the temporal analogue of the well-known 127

optical beam-splitter. It is defined in the following way. We assume that, at t = 0 the 128

refractive index suddenly changes from its initial value n0 to a different value n1, and then, 129

after a time interval τ, the refractive index returns to its initial value n0. This time interval is 130

the analogue of the width of the optical beam-splitters. Of course, the main difference is that 131

there are three independent directions in space, with only a single direction in time. Using 132

the two consecutive continuity relations, as above, we can derive the time-transmitted and 133

time-reflected coefficients in the form [29] 134

R2 ↓ E→
2

E0
=

i
2α

(
1 ↑ α2

)
sin(ε1τ) exp(↑iε0τ) , (4)

and 135

T2 ↓ E2

E0
=

[
cos(ε1τ) ↑ i

2α

(
1 + α2

)
sin(ε1τ)

]
exp(+iε0τ) , (5)

where E2 and E→
2 are the final transmitted and reflected field amplitudes, after the two 136

consecutive temporal discontinuities. For simplicity, we have assumed that no reflected 137

signal is initially present, E→
0 = 0, as in eq. (3). But the general case with E→

0 ↔= 0 can be 138

equally defined. We clearly see that these coefficients oscillate as a function of the temporal 139

width τ. This is obviously a result of interferences created by the two temporal surfaces. 140

As before, the maximum values of these coefficients are defined by the ratio between the 141

two refractive indices, α. Notice that, when α ↗ 0, or n0 ↘ 0, the maximum reflected and 142

transmitted fields can grow indefinitely, showing an increase of the total energy of the 143

radiation field. 144

This concept of temporal beam-splitter was recently revisited, for short pulse propaga- 145

tion in metamaterials [13], where the above analytical results were confirmed by numerical 146

simulations, and more complicated cases were also numerically solved. It should however 147

be noticed that analytical solutions can also be derived for pulses with arbitrary tempo- 148

ral shape. This analytical approach is based on the analogy with wave propagation in 149

inhomogeneous optical media, such as, in stratified media. It is actually quite easy to 150

derive time-transmission and time-reflection coefficients for propagation in a generic non- 151

stationary medium, where the refractive index is an arbitrary function of time, n(t). This 152
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Figure 1.3: Temporal beam-splitter, made of two successive time-refraction events: First, at t = 0 the refractive
index suddenly changes, from n0 to n1, and then at t = ⌧ > 0, the refractive index returns to its initial value n0.
Incident, reflected and transmitted rays across the temporal slab of duration ⌧ are represented.

propagation in inhomogenious optical media. It is actually quite easy the derive time-transmission and
time-reflection coe�cients for propagation in a medium where the refractive index is an arbitrary function
of time, n(t). In particular, for a slowly varying medium where T (t) ' 1, we have the time-reflection
coe�cient given by [?]

R(t) ⌘ E0(t)
E(0)

= � 1

/2

Z t

0

d ln n

dt0
exp(�i'(t0))dt0 , (1.9)

where the phase '(t) is defined by

'(t) = 2

Z t

0

!(t0)dt0 , !(t) =
kc

n(t)
. (1.10)

Here, the time-dependent wave frequency !(t) is simply determined by the instantaneous photon disper-
sion relation, as indicated. Notice that eq. (??) is the exact temporal analogue of the reflection coe�cient
in stationary inhomogenious media (see, for instance, [?,?]).

1.4 Time-Crystals

The simplest way to built what could be called a temporal-cavity, or a time-crystal, is to superpose a
number N � 1 of identical temporal beam-splitters, distant from each other by a duration �T . The case
N = 2 can easily be

Figure 1.4: Time-crystal, made of N > 1 successive temporal beam-splitters events.

t

Figure 4. Time-crystal, made of N ≫ 1 successive temporal beam-splitters events with the same duration τ, and
the same refractive index n1, on a background of refractive index n0, separated by a time interval ∆T.
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7. Superluminal Fronts
Until now, we have only considered the case of temporal changes in unbounded media. But, if

we assume the simultaneous effects of space and time variations, we can have access to new kinds of
phenomena, such as photon acceleration (mainly studied in plasmas) and self-phase modulation (in
nonlinear optics), which have been mainly discussed in the frame of classical physics. There are some
particular cases, however, where simple quantum descriptions have been proposed. This is the case of
perturbations moving with superluminal velocity, such as superluminal ionization fronts [76] (see also
the related work [84,85]), that we will now briefly discuss.

Relativistic ionization fronts usually move with velocities below the speed of light, and have been
studied theoretical and experimentally for very long time [17,86]. They can be described by sharp
boundary layers between a neutral and an ionized gas. The basic principle of ionization fronts is that
of an optical boundary with relativistic velocity, produced by an intense laser pulse, in the absence of
motion of atoms and charged particles. This relativistic boundary separates the plasma region from
the neutral gas region. On one side of the front we have free electrons and ions, while on the other side
we only have neutral atoms. The motion of this boundary is similar to that of a fire front, which can
move very fast in a forest, even if the trees are immobile and attached to the ground. The behaviour of
a probe beam with frequency ωi crossing this boundary can be described by a refractive index n(r, t)
of the form

n(r, t) =

[
1 −

ω2
p(r, t)

ω2
i

]1/2

. (22)

The plasma frequency ωp is determined by the free electron density, and varies abruptly across the
front. It can be described by an expression of the form

ω2
p(r, t) =

1
2

ω2
p0

{
1 + tanh

[
k f q(x, t)

]}
, q(x, t) = k f (x − ut) , (23)

where we have assumed a front velocity moving along an arbitrary x-axis, with velocity u = uex. The
quantity k f defines the width of the front, and ωp0 is a constant determining the maximum value of the
plasma frequency attained behind the front. Chirp effects associated with the frequency distribution
inside the pulse interacting with a moving boundary are very important for the final state of the
transmitted pulse [87,88]. But, for simplicity, we only discuss here single frequency processes.

Superluminal fronts, with u > c, although not easy to create, are possible because these are
optical boundaries, not related to any actual particle motion. There are several ways to produce these
superluminal fronts in the laboratory, in particular, using the flying focus concept [89,90]. This concept
has recently been explored and is mainly based on the use of short laser pulses with a broad spectrum,
combined with chromatic optical components. For instance, the use of a chromatic lens with a focal
distance that depends on the frequency. When a short pulse is focused by such lenses, the different
parts of the spectrum will focus at different positions and, if sufficiently intense, they will ionize the
neutral gas at different instants and different locations, eventually creating an ionization front that
moves with an arbitrarily velocity. Such optical arrangements have been explored by different groups
in simulations and experiments, and are not in contradiction with special relativity.

Apart from a pioneering work based on geometric optics [76], superluminal fronts have also
been theoretically described in the frame of quantum optics, several years before the appearance of
these recent flying focus devices, see [61,91]. Such theoretical models have shown that superluminal
fronts can be reduced to a purely temporal process, identical to time-refraction, if we use an adequate
reference frame. Making a Lorentz transformation to a moving frame S′, such that it moves with
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respect the laboratory frame S with an appropriate velocity V, and considering the well-known velocity
transformation formula [93], we have

u =
u′ + V

1 + Vu′/c2 . (24)

We realize that, for u > c, the front velocity in the new frame will diverge, u′ → ∞, if we choose
V = c2/u < c. Noting that the plasma frequency ωp is a relativistic invariant, we can easily conclude
that, in the coordinates (r′, t′) of the moving frame, this quantity only depends on time, and will be
described by

ω2
p(t

′) =
ω2

p0

2

[
1 + tanh(ν′f t′)

]
, ν′f = k f γ(V − u) , (25)

where γ = 1/
√

1 − β2, with β = V/c. Notice that ν′f is negative, because the front is superluminal,
u > V. This expression shows that the superluminal front is reduced to a time-refraction event,
occurring at t′ = 0. Applying the above results for time-refraction to this new configuration, and
transforming the frequency of the transmitted and reflected signals, ωt and ωr back to the laboratory
frame S, we are then led to the following results [92]

ω2
t = ω2

i
(1 + sβn′)2

(1 + sβ)2 + ω2
p0 , ω2

r = ω2
i
(1 − sβn′)2

(1 − sβ)2 + ω2
p0 (26)

where ωi is the frequency of the incident signal, and s = ±1 pertains for parallel and anti-parallel
propagation, such that ki = skiex and ki = ωi/c. This shows that, in contrast to the previous time-
refraction process occurring in the laboratory frame, the two frequencies of the transmitted and
reflected signals can now be very different. This is related to the fact that superluminal fronts break
the symmetry of both space and time, and not just time. The physical consequences of this result are
quite dramatic, because, for β ∼ 1 one of these two frequencies becomes very large, according to the
sign of s. This means that superluminal fronts can considerably enhance the time-refraction process, in
terms of frequency and energy upshifts.

6 CHAPTER 1. SHORT TITLE
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Figure 1.3: Temporal beam-splitter, made of two successive time-refraction events: First, at t = 0 the refractive
index suddenly changes, from n0 to n1, and then at t = ⌧ > 0, the refractive index returns to its initial value n0.
Incident, reflected and transmitted rays across the temporal slab of duration ⌧ are represented.

propagation in inhomogenious optical media. It is actually quite easy the derive time-transmission and
time-reflection coe�cients for propagation in a medium where the refractive index is an arbitrary function
of time, n(t). In particular, for a slowly varying medium where T (t) ' 1, we have the time-reflection
coe�cient given by [?]

R(t) ⌘ E0(t)
E(0)

= � 1

/2

Z t

0

d ln n

dt0
exp(�i'(t0))dt0 , (1.9)

where the phase '(t) is defined by

'(t) = 2

Z t

0

!(t0)dt0 , !(t) =
kc

n(t)
. (1.10)

Here, the time-dependent wave frequency !(t) is simply determined by the instantaneous photon disper-
sion relation, as indicated. Notice that eq. (??) is the exact temporal analogue of the reflection coe�cient
in stationary inhomogenious media (see, for instance, [?,?]).

1.4 Time-Crystals

The simplest way to built what could be called a temporal-cavity, or a time-crystal, is to superpose a
number N � 1 of identical temporal beam-splitters, distant from each other by a duration �T . The case
N = 2 can easily be

Figure 1.4: Time-crystal, made of N > 1 successive temporal beam-splitters events.

Figure 1.4: Time-crystal, made of N > 1 successive temporal beam-splitters events with the same duration ⌧v
and the same refractive index n1, separated by a time interval �T .

photon acceleration and self-phase modulation, which are well-known and have been mainly discussed in
classical optics. There are some particular cases, however, where a simple quantum description can be
found. This is the case of superluminal perturbations, such as superluminal ionization fronts.

Ionization fronts, some basic references...
Superluminal fronts become possible with the flying focus concept...
Superluminal fronts were first discussed in classical [?] and quantum optics [?]...

Figure 1.5: Superluminal front: Normalized plasma frequency !2
p(x)/!p0: (a) in the lab frame S, and (b) in the

time frame S0, moving with velocity V = c2/u < c with respect to S.

1.6 Time-Refraction Without Time

Superfluid light has been identified in nonlinear optics, and occurs when a photon beam (laser) propagates
in a nonlinear Kerr medium [?,?,?]. The di↵raction processes occurring in the transverse beam direction
medium are very similar to those of a Bose-Einstein condensate, if we identify the axis of propagation
as an e↵ective temporal direction. This means that two transverse sections of the photon beam can
be associated with two di↵erent instants of time. When such a description is possible, the photon
beam behaves as a two-dimensional superfluid light. This opens new opportunities to study superfluid
phenomena replacing the Bose-Einstein condensate experiments by much simpler nonlinear optic circuits.

An interesting version of time-refraction was recently identified in superfluid light, where it is possible
to consider a photon beam propagation in a steady-state nonlinear Kerr medium [22]. While photons
propagate in a stationary beam along the medium, the existence of a sharp boundary between two regions

of the medium with two di↵erent nonlinear susceptibilities, �
(3)
1 and �

(3)
2 leads to the possible excitation

of di↵raction waves in the perpendicular plane of the beam. These di↵raction waves satisfy a dispersion
relation that is formally identical to that of Bogolioubov oscillations in a Bose-Einstein condensate, and
can therefore be called bogolons. This is represented in Figure 1.6. The sharp spatial boundary between
the two nonlinear regions can then be percieved as a temporal boundary, where the time variable is
nothing but the axial variable z multiplied by the velocity of light.
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behaviour of a probe beam with frequency ωi crossing this boundary can be described by a 236

refractive index n(r, t) of the form 237

n(r, t) =

[
1 →

ω2
p(r, t)

ω2
i

]1/2

. (15)

The plasma frequency ωp is determined by the free electron density, and varies abruptly 238

across the front. It can be described by an expression of the form 239

ω2
p(r, t) =

1
2

ω2
p0

{
1 + tanh

[
k f q(x, t)

]}
, q(x, t) = k f (x → ut) , (16)

where we have assumed a front velocity moving along an arbitrary x-axis, with velocity 240

u = uex. The quantity k f defines the width of the front, and ωp0 is a constant determining 241

the maximum value of the plasma frequency attained behind the front. 242

Superluminal fronts, with u > c, although not easy to create, are possible because these 243

are optical boundaries, not related with any actual particle motion. There are several ways 244

to produced these superluminal fronts in the laboratory, in particular, using the flying focus 245

concept [49,50]. This concept has recently been explored and is mainly based on the use of 246

short laser pulses with a broad spectrum, combined with chromatic optical components. 247

For instance, the use of a chromatic lens with a focal distance that depends on the frequency. 248

When a short pulse is focused by such lenses, the different parts of the spectrum will focus 249

at different positions and, if sufficiently intense, they will ionize the neutral gas at different 250

instants and different locations, eventually creating an ionization front that moves with an 251

arbitrarily velocity. Such optical arrangements have been explored by different groups in 252

simulations and experiments, and are not in contradiction with special relativity.
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Figure 1.3: Temporal beam-splitter, made of two successive time-refraction events: First, at t = 0 the refractive
index suddenly changes, from n0 to n1, and then at t = ⌧ > 0, the refractive index returns to its initial value n0.
Incident, reflected and transmitted rays across the temporal slab of duration ⌧ are represented.

propagation in inhomogenious optical media. It is actually quite easy the derive time-transmission and
time-reflection coe�cients for propagation in a medium where the refractive index is an arbitrary function
of time, n(t). In particular, for a slowly varying medium where T (t) ' 1, we have the time-reflection
coe�cient given by [?]

R(t) ⌘ E0(t)
E(0)

= � 1

/2

Z t

0

d ln n

dt0
exp(�i'(t0))dt0 , (1.9)

where the phase '(t) is defined by

'(t) = 2

Z t

0

!(t0)dt0 , !(t) =
kc

n(t)
. (1.10)

Here, the time-dependent wave frequency !(t) is simply determined by the instantaneous photon disper-
sion relation, as indicated. Notice that eq. (??) is the exact temporal analogue of the reflection coe�cient
in stationary inhomogenious media (see, for instance, [?,?]).

1.4 Time-Crystals

The simplest way to built what could be called a temporal-cavity, or a time-crystal, is to superpose a
number N � 1 of identical temporal beam-splitters, distant from each other by a duration �T . The case
N = 2 can easily be

Figure 1.4: Time-crystal, made of N > 1 successive temporal beam-splitters events.

Figure 1.4: Time-crystal, made of N > 1 successive temporal beam-splitters events with the same duration ⌧v
and the same refractive index n1, separated by a time interval �T .

photon acceleration and self-phase modulation, which are well-known and have been mainly discussed in
classical optics. There are some particular cases, however, where a simple quantum description can be
found. This is the case of superluminal perturbations, such as superluminal ionization fronts.

Ionization fronts, some basic references...
Superluminal fronts become possible with the flying focus concept...
Superluminal fronts were first discussed in classical [?] and quantum optics [?]...

Figure 1.5: Superluminal front: Normalized plasma frequency !2
p(x)/!p0: (a) in the lab frame S, and (b) in the

time frame S0, moving with velocity V = c2/u < c with respect to S.

1.6 Time-Refraction Without Time

Superfluid light has been identified in nonlinear optics, and occurs when a photon beam (laser) propagates
in a nonlinear Kerr medium [?,?,?]. The di↵raction processes occurring in the transverse beam direction
medium are very similar to those of a Bose-Einstein condensate, if we identify the axis of propagation
as an e↵ective temporal direction. This means that two transverse sections of the photon beam can
be associated with two di↵erent instants of time. When such a description is possible, the photon
beam behaves as a two-dimensional superfluid light. This opens new opportunities to study superfluid
phenomena replacing the Bose-Einstein condensate experiments by much simpler nonlinear optic circuits.

An interesting version of time-refraction was recently identified in superfluid light, where it is possible
to consider a photon beam propagation in a steady-state nonlinear Kerr medium [22]. While photons
propagate in a stationary beam along the medium, the existence of a sharp boundary between two regions

of the medium with two di↵erent nonlinear susceptibilities, �
(3)
1 and �

(3)
2 leads to the possible excitation

of di↵raction waves in the perpendicular plane of the beam. These di↵raction waves satisfy a dispersion
relation that is formally identical to that of Bogolioubov oscillations in a Bose-Einstein condensate, and
can therefore be called bogolons. This is represented in Figure 1.6. The sharp spatial boundary between
the two nonlinear regions can then be percieved as a temporal boundary, where the time variable is
nothing but the axial variable z multiplied by the velocity of light.
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Figure 4. Superluminal front: Electron plasma frequency ωp/ωp0 in the time frame, moving with
velocity V = c2/u with respect to the laboratory frame.

253

Apart from a pioneering work based on geometric optics [38], superluminal fronts 254

have also been theoretically described in the frame of quantum optics, several years before 255

the appearance of these recent flying focus devices, see [31,51]. Such theoretical models 256

Figure 5. Superluminal front: Electron plasma frequency ωp/ωp0 in the time frame, moving with velocity
V = c2/u with respect to the laboratory frame.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2024 doi:10.20944/preprints202410.2413.v2

https://doi.org/10.20944/preprints202410.2413.v2


12 of 20

8. Temporal Gates
These gates are associated with the temporal control of light propagation in a medium. They

can be achieved by several different methods. An example is given here, for illustration, based on
perturbed EIT in a gas of Rydberg atoms. But other space-time configurations are possible, such
as a perturbed transmission near critical angles spatial Brewster’s angle and spatial total reflection
[77]. Another possible configuration explores the tunnelling process in superimposed space and time
forbidden boundaries.

Let us assume a gas of Rydberg atoms, to which we suddenly apply an intense electric field. This
will change the frequency of the atomic transmission lines, as well as the susceptibility of the medium,
leading to an eventual inhibition of transmission during short time intervals. We consider the case of
EIT configuration, which considerably amplifies these spectral effects. In this case, the susceptibility
near an atomic transition takes the form [78,94–96]

χ(ω, t) = χ0
iΓ/2

Γ/2 − i∆(t) + 4Ω2
c /[Γr − i∆(t)]

, (27)

where χ0 is a reference value, Ωc is the Rabi frequency, Γ is the transition bandwidth, and ∆(t) is the
frequency detuning associated with to the static or dynamical Stark effect, and due to a control field. A
typical form of the frequency detuning s is given by

∆(t) = ∆0 +
1
2

δ∆[1 + tanh(t/τ)] , (28)

where ∆0 is a reference value and δ∆ the spectral detuning, induced on a fast time scale τ. As a result
of these spectral shifts, the properties of light propagation change across the gas, as illustrated by
Figure 6. This creates a time-gate with a duration of the order of τ, and a correlated frequency shift,
ω(t)− ω0. Temporal gates in the femtosecond time-scale seem possible, using dynamical Stark effect
with current laser systems. See the related work of [79] on the temporal analogs of EIT.

α(ω)

Itr(ω)

-1.0 -0.5 0.0 0.5 1.0
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t

Figure 6. Temporal Rydberg-EIT gate: Radiation intensity transmitted through the gas, Itr(ω) (in bold), frequency
shift α(ω) = ω/ω0, and Stark induced detuning, ∆(t) (dashed curve). Normalised units are used.
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9. Time-Refraction Without Time
Let us now consider time-refraction in a completely different perspective, where instead of non-

stationary effects related to light beams, we consider diffraction effects created by continuous light
beams in stationary media. These diffraction effects can be described as waves, in the context of
superfluid theory.

Superfluid light has indeed been considered in recent years, associated with continuous photon
beams (laser beams) that propagate in nonlinear Kerr media [80–82]. The diffraction fringes, created
in the transverse beam structure by some eventual obstacle, are described in a way that is formally
very similar to Bogolioubov modes in two-dimensional Bose-Einstein condensates (BECs). This formal
analogy becomes apparent when we identify the axis of propagation in the Kerr medium as a kind of
temporal direction. In this analogy, two transverse sections of the laser beam will be perceived as two
different instants of "time". When such a description is possible, the transverse section of a laser beam
behaves as a two-dimensional superfluid. This opens new opportunities for theory and experiments,
and a new approach to superfluid phenomena, where we replace BECs by much simpler nonlinear
optics media.

An interesting version of time-refraction was recently identified in superfluid light, where tempo-
ral processes are totally absent. It occurs when the photon beam propagating in a static Kerr medium,
percieves a sharp discontinuity of the nonlinear susceptibility of the medium [83]. While photons
propagate in the stationary beam along some z-direction of the medium, the existence of a sharp
boundary at some location z = z0, between two regions of the medium with two different nonlinear
susceptibilities, χ

(3)
1 and χ

(3)
2 , leads to the excitation of diffraction waves in the perpendicular xy-plane.

These diffraction waves satisfy a dispersion relation that is formally identical to that of Bogolioubov
oscillations in a BEC, and can therefore be called bogolons. This is illustrated in Figure 7. The sharp
spatial boundary between the two nonlinear regions can then be perceived as a temporal boundary,
where the time variable is now the axial variable z divided by the velocity of light, t = z/c.
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(a) (b)

Figure 7. Time-refraction in a static medium: diffraction ring at (a) z < z0, where the nonlinearity of the medium

is described by χ
(3)
1 , and at (b) z > z0 where the nonlinearity susceptibility is χ

(3)
1 .

In order to describe this process, we use the envelope equation for the electric field, which is a
nonlinear Schrödinger equation, written in terms of BEC variables. In such a specific context, this
nonlinear equation can more appropriately be called a Gross-Pitaevskii equation. For that purpose,
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we start from the electric field associated with a photon beam (or laser beam) propagating in the Kerr
medium, as described by

E(r, t) = E(r⊥, z, t) exp(ikz − ωt) , (29)

and use the paraxial approximation. After an appropriate change of variables [50], the paraxial
equation describing the slow evolution of the field amplitude can be written in the form

ih̄
∂E
∂t

=

[
− h̄2

2mk
∇2

⊥ + gk|E |2
]
E , (30)

with ∇⊥ = (∂2/∂x2 + ∂2/∂y2). This is formally identical to the Gross-Pitaevskii equation, used to
describe a two-dimensional Bose-Einstein condensates in the mean-field approximation. But here, the
role of the condensate wavefunction is played by the electric field amplitude E , and the time variable t
is just a rescaled space variable, where z is divided by the speed of light, t = z/c. Furthermore, we
have also introduced an effective photon mass mk, and a coupling constant gk describing the linear
and nonlinear optical properties of the medium, as defined by

mk =
h̄k
c

, gk = − h̄ω√
ϵ(ω)

χ(3) , (31)

where ϵ(ω) = 1 + χ(1)(ω) is the linear dielectric function. Here it is also assumed that the axial
wavenumber k is related to the wave frequency ω by the linear dispersion relation of the medium,
such that k2 = ϵ(ω)c2/ω2.

If we further explore the analogy with a two-dimensional fluid, we can use a Madelung transfor-
mation, such that E =

√
ρ exp(iθ), where the square of the beam amplitude (the beam energy) is the

fluid density ρ, and the gradient of the field phase is the fluid velocity v, as

ρ = |E |2 , v =
ω

c
∇⊥θ

ϵ(ω)
, (32)

This allows us to derive from Equation (30) the equations for the photon fluid, which can be identified
with superfluid light. In particular, if this fluid is perturbed by some optical irregularity, the resulting
density perturbations will satisfy a dispersion relation that is formally identical to the Bogoliubov
dispersion relation for a BEC, of the form

Ω2 = C2
s q2 +

h̄2q4

4m2
k

, Cs =

√
gkρ0

mk
, (33)

where Cs is the Bogoliubov speed, and ρ0 is the unperturbed fluid density. This result is valid for
density perturbations evolving with frequency Ω and wavevector q, defined in the perpendicular
plane (x, y). This is formally identical with what occurs in a two-dimensional Bose-Einstein condensate,
but the quantity Ω is not a frequency in the usual sense, because the variable time t is not a physical
time but the beam propagation direction. These perturbations are indeed diffraction waves, defined as
beam intensity modulations in the perpendicular plane, and by analogy with the condensates can be
called bogolons, because they satisfy identical dispersion relations.

Now, if at some point z = z0 (which corresponds to an instant t = t0 ≡ z0/c in temporal units)
there is a sharp discontinuity of the nonlinear susceptibility, from an initial value χ

(3)
1 to a different

value χ
(3)
2 , in temporal units this can be seen as time-refraction. Therefore, a description similar to the

above time-refraction can be used to relate the initial wave "frequency" Ω1 to the final one, Ω2, because
gk has changed. This is a process that is formally identical to time-refraction, but occurs in a static
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configuration where the abrupt changes take place along the paraxial direction z, and not in physical
time.

The elementary excitations of the medium are not photons, but bogolons, another kind of bosons.
And, instead of photons propagating in the axial beam direction they are diffraction waves in the
perpendicular plane. But we can nevertheless define temporal reflection and transmission coefficients,
as [83]

Rb =
(αb − 1)

2αb
, Tb =

(αb + 1)
2αb

. (34)

They are very similar, but not identical to the temporal Fresnel’s laws given by eqs. (3). The new
parameter αb is determined by the Bogoliubov dispersion, valid on the two sides of the medium (33),
and is now equal to αb = Ω2/Ω1. Another important difference with respect to photon time-refraction
is that in bogolon time-refraction the sum of the refraction and transmission coefficients is independent
of the parameter αb, and always equal to one, Rb + Tb = 1.

Simulations of the Gross-Pitaevskii equation (30) confirm the validity of these analytical results,
and allow us to explore further the time-refraction mechanism in the nonlinear bogolon regime.
Furthermore, we can also define temporal beam-splitters for bogolons, as well as the equivalent of
time-crystals, in this purely static problem. This illustrates the generally of the time-refraction concept,
which can even survive the absence of temporal discontinuities.

10. High Energy QED
A further step in the theory of quantum time-refraction involves what is usually called high

energy QED, which assumes that quantum vacuum is not just made of virtual photons, but also of
virtual electron-positron pairs. This new configuration is relevant to the physics of ultra-intense lasers,
in the multi-Petawatt regime [99,100]. This more complete view of quantum vacuum includes, not
only photons as considered above, but also electrons and positrons as described by Dirac’s equation.

In order to discuss this last topic, we assume the case of pure vacuum, where intense electromag-
netic fields can be treated quasi-classically. Here, time-refraction is not related to a sudden change of
refractive index, but to a sudden change of the vector potential, A(t), and leads to the excitation of
particle-pairs. Such an elementary process can be described by a temporal Klein model.

Almost one century ago, Oscar Klein solved Dirac’s equation for the case of a potential step V(x),
and showed that, for an incident electron, the reflection probability could be larger than one. This
was initially called the Klein paradox, but was later understood in terms of particle-pair creation. The
origin of this creation is the singularity of the electric field defined by the discontinuity of the static
potential V.

A similar problem is associated with a temporal step of the vector potential, A(t). In this case, the
singularity of the electric field is created at t = 0. The solution of Dirac’s equation for this temporal
problem leads to the following probability for the electron-positron pair creation, f [101]

Pp =
a2

a2 +
(

1 +
√

1 + a2
)2 , (35)

where a = eA/
√

m2 + p2
⊥ is the normalized vector potential, and p specifies the particle momentum.

This simple expression is valid for states such that p ≃ p⊥, and momentum parallel to the vector
potential is negligible and assumes an infinitely fast time-step.

This can be generalized to more realistic configurations, associated with finite temporal variation
of the vector potential A(t), where the electric field E = −∂tA(t) can be created by intense laser pulses
[102]. This approach shows that pair production in vacuum can be described in the frame of a temporal
paradigm, that extends our previous discussion of time-refraction and spacetime optics.
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11. Conclusions
In this paper, we have given an overview of spacetime optics, centred on the concept of time-

refraction. This is a first-order process, at the same level as the usual (space) reflection, and concerns
every light beam propagating in a non-stationary medium. This process results from time symmetry
breaking, and envolves the excitation of a reflected signal. Just as space-refraction, occurring at the
space boundary between two media, time-refraction occurs at a temporal boundary and produces two
beams, the transmitted and the reflected beam. Expressions for time-transmission and time-reflection
coefficients were given. They show that photon momentum is conserved but not energy, because the
radiation frequency has to adjust to the new value of the refractive index.

Apart from these two distinct signatures, time-reflection and frequency shifts, when considered
in the frame of quantum optics, temporal discontinuities also imply photon creation in vacuum. We
have discussed the concept of a temporal device called temporal beam-splitter, which is made of
a sequence of two inverse time-refraction events, and can be seen as the temporal counterpart of
the optical beam-splitter, one of the most basic devices used in both classic and quantum optics
experiments [50,104]. More complicated temporal devices can also be imagined, such as time-cavities
and photonic time-crystals, through the addition of periodically spaced temporal beam-splitters. These
new temporal arrays display resonant transmission and reflection properties that can be described by
simple temporal Bragg laws.

Time-crystals are closely related to the dynamical Casimir effect, a quantum process due to
oscillating optical boundaries. Although defined in a different physical geometry, the dynamical
Casimir effect and time-crystals rely essentially on the same elementary properties of quantum vacuum.
However time-refraction and time-crystals are independent of optical boundaries and can occur in
unbounded and uniform media. Under certain conditions, a link with another quantum vacuum
process can be established. This is known as Unruh radiation, and is emitted by a particle moving in
vacuum with uniform acceleration. To provide such a link, the concept of effective Unruh acceleration
was proposed in [103], but the physical picture is still not clear.

The basic concept of time-refraction is associated with sharp temporal boundaries, in analogy
with space-refraction. But it can easily be extended to arbitrary non-stationary media, again in analogy
with the optics of inhomogeneous and stratified media. Arbitrary temporal variations of the refraction
index, n(t) can be seen as a succession of infinitesimal events, and general expressions for time
transmission and reflection coefficients can be derived, which resemble those of inhomogeneous
optics. They provide an alternative approach to the case of temporally periodic media, such as time-
crystals. They can also have relevance in different other areas of physics, such as that of Bose-Einstein
condensates [105–107], where time symmetry-breaking processes such as expansion, quenching, and
the Kibble-Zurek mechanism can be described in a similar way.

We have reviewed recent work on superluminal ionization fronts, which can be created by short
laser pulses using a flying focus configuration. Propagation across these fronts can lead to significant
frequency shifts as well as beam amplification, with relevance to future radiation sources. We have
shown, using an appropriate reference frame called time-frame, that this process is equivalent to a
purely temporal event, identical to time-refraction.

Furthermore, we have shown that time-refraction in anisotropic media is able to generate Faraday
rotations and create angular momentum states of light. We have also shown the resilience of the
time-refraction concept by applying it to a purely static process involving diffraction in superfluid light.
And finally, we have discussed time-refraction in the context of high-energy QED, and its relation with
the possible creation of electron-positron pairs by intense laser fields in vacuum. Such a variety of
examples clearly demonstrates the significance, the wide range of applications, and the universality
of time-refraction. The field of spacetime optics is therefore able to influence several other areas of
physics.
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