Altmetrics
Downloads
69
Views
72
Comments
0
This version is not peer-reviewed
Applications of Machine Learning in Large-Scale Optimization and High-Dimensional Learning
Submitted:
29 October 2024
Posted:
30 October 2024
You are already at the latest version
Algorithm collect_user_data(user_id): # Collecting data from different sources preferences = get_user_preferences(user_id) behavior = get_user_behavior(user_id) context = get_current_context(user_id) demographics = get_user_demographics(user_id) # Data combining to a new user profile user_profile = { 'preferences': preferences, 'behavior': behavior, 'context': context, 'demographics': demographics } return user_profile |
Algorithm preprocess_data(user_profile): # Missing values handle for key, value in user_profile.items(): if value is None: user_profile[key] = handle_missing_value(value) # Numerical values Normalize (e.g., age, income) user_profile['demographics'] = normalize_demographics(user_profile['demographics']) # categorical values Encode (e.g., travel preferences , gender) user_profile['preferences'] = encode_categorical_data(user_profile['preferences']) return user_profile |
Algorithm feature_engineering(user_profile): # Example feature engineering user_profile['is_frequent_traveler'] = calculate_travel_frequency(user_profile['behavior']) # Create time-based features user_profile['booking_time_of_day'] = extract_time_of_day(user_profile['context']['timestamp']) user_profile['is_weekend'] = is_weekend(user_profile['context']['timestamp']) return user_profile |
Algorithm from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier select_model(): # Example: Random Forest Classifier for classification problem model = RandomForestClassifier(n_estimators=100, random_state=42) return model |
Algorithm train_model(model, X_train, y_train): # using training data, model training. model.fit(X_train, y_train) return model |
Algorithm predict_recommendations(model, user_profile): # To model input features Converting user profile input_features = preprocess_data(user_profile) # Predict travel options those are recommended (e.g., destinations, location, flights) recommendations = model.predict(input_features) return recommendations |
Algorithm evaluate_model(model, X_test, y_test): # test data is used to analysis the model. predictions = model.predict(X_test) accuracy = calculate_accuracy(predictions, y_test) return accuracy feedback_loop(user_feedback, model): # depends on the real time feedback update model if user_feedback.is_positive: update_model_with_positive_feedback(model, user_feedback) else: update_model_with_negative_feedback(model, user_feedback) return model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated