Results

Contingency Tables

jaspFrequencies::ContingencyTables(
        version = "0.18.3",
        formula = cbind(GEND, AGE, EDUC, WORKSTAT, INCSTAT, RESI) ~ PURFRE + MIPBREP + MIPB1T + RFQ,
        chiSquaredContinuityCorrection = TRUE,
        contingencyCoefficient = TRUE,
        countsExpected = TRUE,
        likelihoodRatio = TRUE,
        phiAndCramersV = TRUE,
        residualsPearson = TRUE,
        residualsUnstandardized = TRUE,
        vovkSellke = TRUE)
Contingency Tables
PURFRE
GEND   Once a month Once every 12 months or less frequently Once every 6 months Several times a month Several times a week Total
Female Count 181.000 56.000 176.000 135.000 27.000 575.000
Expected count 171.992 54.581 178.339 138.355 31.733 575.000
Unstandardized residuals 9.008 1.419 -2.339 -3.355 -4.733
Pearson residuals 0.687 0.192 -0.175 -0.285 -0.840
Male Count 86.000 29.000 104.000 81.000 23.000 323.000
Expected count 96.615 30.660 100.180 77.720 17.826 323.000
Unstandardized residuals -10.615 -1.660 3.820 3.280 5.174
Pearson residuals -1.080 -0.300 0.382 0.372 1.226
Prefer not to disclose Count 4.000 1.000 1.000 2.000 0.000 8.000
Expected count 2.393 0.759 2.481 1.925 0.442 8.000
Unstandardized residuals 1.607 0.241 -1.481 0.075 -0.442
Pearson residuals 1.039 0.276 -0.940 0.054 -0.664
Total Count 271.000 86.000 281.000 218.000 50.000 906.000
Expected count 271.000 86.000 281.000 218.000 50.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 6.853 8 0.553 1.000
Χ² continuity correction 6.853 8 0.553 1.000
Likelihood ratio 7.311 8 0.503 1.000
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.087
Phi-coefficient NaN
Cramer's V 0.061
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPBREP
GEND   Attractive new offers Other Satisfaction with products purchased so far Satisfaction with the delivery of purchased products Satisfaction with the online shopping process and support Total
Female Count 23.000 10.000 411.000 62.000 69.000 575.000
Expected count 28.560 12.693 392.853 67.908 72.986 575.000
Unstandardized residuals -5.560 -2.693 18.147 -5.908 -3.986
Pearson residuals -1.040 -0.756 0.916 -0.717 -0.467
Male Count 22.000 9.000 202.000 44.000 46.000 323.000
Expected count 16.043 7.130 220.681 38.147 40.999 323.000
Unstandardized residuals 5.957 1.870 -18.681 5.853 5.001
Pearson residuals 1.487 0.700 -1.258 0.948 0.781
Prefer not to disclose Count 0.000 1.000 6.000 1.000 0.000 8.000
Expected count 0.397 0.177 5.466 0.945 1.015 8.000
Unstandardized residuals -0.397 0.823 0.534 0.055 -1.015
Pearson residuals -0.630 1.959 0.229 0.057 -1.008
Total Count 45.000 20.000 619.000 107.000 115.000 906.000
Expected count 45.000 20.000 619.000 107.000 115.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 14.323 8 0.074 1.914
Χ² continuity correction 14.323 8 0.074 1.914
Likelihood ratio 13.556 8 0.094 1.654
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.125
Phi-coefficient NaN
Cramer's V 0.089
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPB1T
GEND   Fast and accurate delivery Other To have a secure shopping certificate To have positive customer reviews To offer the option of in-store pickup To offer the payment option I prefer Total
Female Count 134.000 4.000 156.000 189.000 29.000 63.000 575.000
Expected count 128.201 5.077 164.376 187.859 31.098 58.389 575.000
Unstandardized residuals 5.799 -1.077 -8.376 1.141 -2.098 4.611
Pearson residuals 0.512 -0.478 -0.653 0.083 -0.376 0.603
Male Count 67.000 4.000 101.000 103.000 19.000 29.000 323.000
Expected count 72.015 2.852 92.337 105.528 17.469 32.799 323.000
Unstandardized residuals -5.015 1.148 8.663 -2.528 1.531 -3.799
Pearson residuals -0.591 0.680 0.902 -0.246 0.366 -0.663
Prefer not to disclose Count 1.000 0.000 2.000 4.000 1.000 0.000 8.000
Expected count 1.784 0.071 2.287 2.614 0.433 0.812 8.000
Unstandardized residuals -0.784 -0.071 -0.287 1.386 0.567 -0.812
Pearson residuals -0.587 -0.266 -0.190 0.858 0.862 -0.901
Total Count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Expected count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 6.432 10 0.778 1.000
Χ² continuity correction 6.432 10 0.778 1.000
Likelihood ratio 7.038 10 0.722 1.000
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.084
Phi-coefficient NaN
Cramer's V 0.060
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
RFQ
GEND   Because I want to see the product live Because of negative reviews Due to inappropriate and hidden information about product delivery and returns Due to long delivery time Due to the need for a better price Due to website design (complicated search, can't find what I'm looking for) Other Total
Female Count 149.000 160.000 70.000 88.000 54.000 29.000 25.000 575.000
Expected count 132.009 173.262 77.428 79.332 53.946 29.194 29.829 575.000
Unstandardized residuals 16.991 -13.262 -7.428 8.668 0.054 -0.194 -4.829
Pearson residuals 1.479 -1.007 -0.844 0.973 0.007 -0.036 -0.884
Male Count 56.000 112.000 50.000 36.000 31.000 16.000 22.000 323.000
Expected count 74.155 97.328 43.494 44.564 30.304 16.400 16.756 323.000
Unstandardized residuals -18.155 14.672 6.506 -8.564 0.696 -0.400 5.244
Pearson residuals -2.108 1.487 0.986 -1.283 0.127 -0.099 1.281
Prefer not to disclose Count 3.000 1.000 2.000 1.000 0.000 1.000 0.000 8.000
Expected count 1.837 2.411 1.077 1.104 0.751 0.406 0.415 8.000
Unstandardized residuals 1.163 -1.411 0.923 -0.104 -0.751 0.594 -0.415
Pearson residuals 0.858 -0.909 0.889 -0.099 -0.866 0.932 -0.644
Total Count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Expected count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 20.983 12 0.051 2.436
Χ² continuity correction 20.983 12 0.051 2.436
Likelihood ratio 22.061 12 0.037 3.025
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.150
Phi-coefficient NaN
Cramer's V 0.108
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
PURFRE
AGE   Once a month Once every 12 months or less frequently Once every 6 months Several times a month Several times a week Total
Early Adulthood Count 91.000 27.000 86.000 41.000 9.000 254.000
Expected count 75.976 24.110 78.779 61.117 14.018 254.000
Unstandardized residuals 15.024 2.890 7.221 -20.117 -5.018
Pearson residuals 1.724 0.588 0.814 -2.573 -1.340
Early Midlife Count 42.000 6.000 31.000 45.000 9.000 133.000
Expected count 39.783 12.625 41.251 32.002 7.340 133.000
Unstandardized residuals 2.217 -6.625 -10.251 12.998 1.660
Pearson residuals 0.352 -1.864 -1.596 2.298 0.613
Late Midlife Count 12.000 9.000 23.000 18.000 0.000 62.000
Expected count 18.545 5.885 19.230 14.918 3.422 62.000
Unstandardized residuals -6.545 3.115 3.770 3.082 -3.422
Pearson residuals -1.520 1.284 0.860 0.798 -1.850
Midlife Count 65.000 29.000 64.000 47.000 21.000 226.000
Expected count 67.600 21.453 70.095 54.380 12.472 226.000
Unstandardized residuals -2.600 7.547 -6.095 -7.380 8.528
Pearson residuals -0.316 1.630 -0.728 -1.001 2.415
Older Adulthood Count 1.000 1.000 3.000 2.000 0.000 7.000
Expected count 2.094 0.664 2.171 1.684 0.386 7.000
Unstandardized residuals -1.094 0.336 0.829 0.316 -0.386
Pearson residuals -0.756 0.412 0.563 0.243 -0.622
Young Adulthood Count 60.000 14.000 74.000 65.000 11.000 224.000
Expected count 67.002 21.263 69.475 53.898 12.362 224.000
Unstandardized residuals -7.002 -7.263 4.525 11.102 -1.362
Pearson residuals -0.855 -1.575 0.543 1.512 -0.387
Total Count 271.000 86.000 281.000 218.000 50.000 906.000
Expected count 271.000 86.000 281.000 218.000 50.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 50.519 20 < .001 229.606
Χ² continuity correction 50.519 20 < .001 229.606
Likelihood ratio 54.838 20 < .001 843.603
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.230
Phi-coefficient NaN
Cramer's V 0.118
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPBREP
AGE   Attractive new offers Other Satisfaction with products purchased so far Satisfaction with the delivery of purchased products Satisfaction with the online shopping process and support Total
Early Adulthood Count 13.000 5.000 176.000 29.000 31.000 254.000
Expected count 12.616 5.607 173.539 29.998 32.241 254.000
Unstandardized residuals 0.384 -0.607 2.461 -0.998 -1.241
Pearson residuals 0.108 -0.256 0.187 -0.182 -0.218
Early Midlife Count 9.000 3.000 73.000 26.000 22.000 133.000
Expected count 6.606 2.936 90.869 15.708 16.882 133.000
Unstandardized residuals 2.394 0.064 -17.869 10.292 5.118
Pearson residuals 0.931 0.037 -1.874 2.597 1.246
Late Midlife Count 2.000 1.000 42.000 9.000 8.000 62.000
Expected count 3.079 1.369 42.360 7.322 7.870 62.000
Unstandardized residuals -1.079 -0.369 -0.360 1.678 0.130
Pearson residuals -0.615 -0.315 -0.055 0.620 0.046
Midlife Count 11.000 4.000 160.000 23.000 28.000 226.000
Expected count 11.225 4.989 154.408 26.691 28.687 226.000
Unstandardized residuals -0.225 -0.989 5.592 -3.691 -0.687
Pearson residuals -0.067 -0.443 0.450 -0.714 -0.128
Older Adulthood Count 1.000 0.000 4.000 1.000 1.000 7.000
Expected count 0.348 0.155 4.783 0.827 0.889 7.000
Unstandardized residuals 0.652 -0.155 -0.783 0.173 0.111
Pearson residuals 1.106 -0.393 -0.358 0.191 0.118
Young Adulthood Count 9.000 7.000 164.000 19.000 25.000 224.000
Expected count 11.126 4.945 153.042 26.455 28.433 224.000
Unstandardized residuals -2.126 2.055 10.958 -7.455 -3.433
Pearson residuals -0.637 0.924 0.886 -1.449 -0.644
Total Count 45.000 20.000 619.000 107.000 115.000 906.000
Expected count 45.000 20.000 619.000 107.000 115.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 20.786 20 0.410 1.000
Χ² continuity correction 20.786 20 0.410 1.000
Likelihood ratio 19.676 20 0.478 1.000
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.150
Phi-coefficient NaN
Cramer's V 0.076
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPB1T
AGE   Fast and accurate delivery Other To have a secure shopping certificate To have positive customer reviews To offer the option of in-store pickup To offer the payment option I prefer Total
Early Adulthood Count 55.000 1.000 73.000 85.000 16.000 24.000 254.000
Expected count 56.631 2.243 72.611 82.985 13.737 25.792 254.000
Unstandardized residuals -1.631 -1.243 0.389 2.015 2.263 -1.792
Pearson residuals -0.217 -0.830 0.046 0.221 0.610 -0.353
Early Midlife Count 37.000 3.000 34.000 34.000 7.000 18.000 133.000
Expected count 29.653 1.174 38.021 43.453 7.193 13.506 133.000
Unstandardized residuals 7.347 1.826 -4.021 -9.453 -0.193 4.494
Pearson residuals 1.349 1.685 -0.652 -1.434 -0.072 1.223
Late Midlife Count 16.000 0.000 16.000 19.000 1.000 10.000 62.000
Expected count 13.823 0.547 17.724 20.256 3.353 6.296 62.000
Unstandardized residuals 2.177 -0.547 -1.724 -1.256 -2.353 3.704
Pearson residuals 0.585 -0.740 -0.410 -0.279 -1.285 1.476
Midlife Count 50.000 4.000 72.000 68.000 13.000 19.000 226.000
Expected count 50.389 1.996 64.607 73.837 12.223 22.949 226.000
Unstandardized residuals -0.389 2.004 7.393 -5.837 0.777 -3.949
Pearson residuals -0.055 1.419 0.920 -0.679 0.222 -0.824
Older Adulthood Count 1.000 0.000 0.000 2.000 2.000 2.000 7.000
Expected count 1.561 0.062 2.001 2.287 0.379 0.711 7.000
Unstandardized residuals -0.561 -0.062 -2.001 -0.287 1.621 1.289
Pearson residuals -0.449 -0.249 -1.415 -0.190 2.635 1.529
Young Adulthood Count 43.000 0.000 64.000 88.000 10.000 19.000 224.000
Expected count 49.943 1.978 64.035 73.183 12.115 22.746 224.000
Unstandardized residuals -6.943 -1.978 -0.035 14.817 -2.115 -3.746
Pearson residuals -0.982 -1.406 -0.004 1.732 -0.608 -0.785
Total Count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Expected count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 37.455 25 0.052 2.386
Χ² continuity correction 37.455 25 0.052 2.386
Likelihood ratio 36.759 25 0.061 2.160
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.199
Phi-coefficient NaN
Cramer's V 0.091
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
RFQ
AGE   Because I want to see the product live Because of negative reviews Due to inappropriate and hidden information about product delivery and returns Due to long delivery time Due to the need for a better price Due to website design (complicated search, can't find what I'm looking for) Other Total
Early Adulthood Count 67.000 85.000 28.000 29.000 25.000 12.000 8.000 254.000
Expected count 58.313 76.536 34.203 35.044 23.830 12.896 13.177 254.000
Unstandardized residuals 8.687 8.464 -6.203 -6.044 1.170 -0.896 -5.177
Pearson residuals 1.138 0.967 -1.061 -1.021 0.240 -0.250 -1.426
Early Midlife Count 28.000 29.000 18.000 23.000 14.000 7.000 14.000 133.000
Expected count 30.534 40.076 17.909 18.350 12.478 6.753 6.900 133.000
Unstandardized residuals -2.534 -11.076 0.091 4.650 1.522 0.247 7.100
Pearson residuals -0.459 -1.750 0.021 1.086 0.431 0.095 2.703
Late Midlife Count 17.000 17.000 12.000 7.000 4.000 2.000 3.000 62.000
Expected count 14.234 18.682 8.349 8.554 5.817 3.148 3.216 62.000
Unstandardized residuals 2.766 -1.682 3.651 -1.554 -1.817 -1.148 -0.216
Pearson residuals 0.733 -0.389 1.264 -0.531 -0.753 -0.647 -0.121
Midlife Count 37.000 66.000 40.000 34.000 21.000 17.000 11.000 226.000
Expected count 51.885 68.099 30.433 31.181 21.203 11.475 11.724 226.000
Unstandardized residuals -14.885 -2.099 9.567 2.819 -0.203 5.525 -0.724
Pearson residuals -2.066 -0.254 1.734 0.505 -0.044 1.631 -0.211
Older Adulthood Count 4.000 1.000 0.000 1.000 0.000 0.000 1.000 7.000
Expected count 1.607 2.109 0.943 0.966 0.657 0.355 0.363 7.000
Unstandardized residuals 2.393 -1.109 -0.943 0.034 -0.657 -0.355 0.637
Pearson residuals 1.888 -0.764 -0.971 0.035 -0.810 -0.596 1.057
Young Adulthood Count 55.000 75.000 24.000 31.000 21.000 8.000 10.000 224.000
Expected count 51.426 67.497 30.163 30.905 21.015 11.373 11.620 224.000
Unstandardized residuals 3.574 7.503 -6.163 0.095 -0.015 -3.373 -1.620
Pearson residuals 0.498 0.913 -1.122 0.017 -0.003 -1.000 -0.475
Total Count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Expected count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 43.165 30 0.057 2.262
Χ² continuity correction 43.165 30 0.057 2.262
Likelihood ratio 42.747 30 0.062 2.141
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.213
Phi-coefficient NaN
Cramer's V 0.098
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
PURFRE
EDUC   Once a month Once every 12 months or less frequently Once every 6 months Several times a month Several times a week Total
Bachelor Count 95.000 24.000 119.000 81.000 24.000 343.000
Expected count 102.597 32.558 106.383 82.532 18.929 343.000
Unstandardized residuals -7.597 -8.558 12.617 -1.532 5.071
Pearson residuals -0.750 -1.500 1.223 -0.169 1.165
Elementary school Count 1.000 0.000 2.000 1.000 0.000 4.000
Expected count 1.196 0.380 1.241 0.962 0.221 4.000
Unstandardized residuals -0.196 -0.380 0.759 0.038 -0.221
Pearson residuals -0.180 -0.616 0.682 0.038 -0.470
High school Count 127.000 54.000 129.000 82.000 15.000 407.000
Expected count 121.741 38.634 126.233 97.932 22.461 407.000
Unstandardized residuals 5.259 15.366 2.767 -15.932 -7.461
Pearson residuals 0.477 2.472 0.246 -1.610 -1.574
Master of Science Count 34.000 7.000 25.000 44.000 8.000 118.000
Expected count 35.296 11.201 36.598 28.393 6.512 118.000
Unstandardized residuals -1.296 -4.201 -11.598 15.607 1.488
Pearson residuals -0.218 -1.255 -1.917 2.929 0.583
PhD Count 14.000 1.000 6.000 10.000 3.000 34.000
Expected count 10.170 3.227 10.545 8.181 1.876 34.000
Unstandardized residuals 3.830 -2.227 -4.545 1.819 1.124
Pearson residuals 1.201 -1.240 -1.400 0.636 0.820
Total Count 271.000 86.000 281.000 218.000 50.000 906.000
Expected count 271.000 86.000 281.000 218.000 50.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 38.498 16 0.001 43.022
Χ² continuity correction 38.498 16 0.001 43.022
Likelihood ratio 39.004 16 0.001 49.631
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.202
Phi-coefficient NaN
Cramer's V 0.103
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPBREP
EDUC   Attractive new offers Other Satisfaction with products purchased so far Satisfaction with the delivery of purchased products Satisfaction with the online shopping process and support Total
Bachelor Count 15.000 11.000 231.000 45.000 41.000 343.000
Expected count 17.036 7.572 234.345 40.509 43.538 343.000
Unstandardized residuals -2.036 3.428 -3.345 4.491 -2.538
Pearson residuals -0.493 1.246 -0.219 0.706 -0.385
Elementary school Count 1.000 0.000 3.000 0.000 0.000 4.000
Expected count 0.199 0.088 2.733 0.472 0.508 4.000
Unstandardized residuals 0.801 -0.088 0.267 -0.472 -0.508
Pearson residuals 1.798 -0.297 0.162 -0.687 -0.713
High school Count 19.000 4.000 300.000 39.000 45.000 407.000
Expected count 20.215 8.985 278.072 48.067 51.661 407.000
Unstandardized residuals -1.215 -4.985 21.928 -9.067 -6.661
Pearson residuals -0.270 -1.663 1.315 -1.308 -0.927
Master of Science Count 5.000 3.000 69.000 17.000 24.000 118.000
Expected count 5.861 2.605 80.620 13.936 14.978 118.000
Unstandardized residuals -0.861 0.395 -11.620 3.064 9.022
Pearson residuals -0.356 0.245 -1.294 0.821 2.331
PhD Count 5.000 2.000 16.000 6.000 5.000 34.000
Expected count 1.689 0.751 23.230 4.015 4.316 34.000
Unstandardized residuals 3.311 1.249 -7.230 1.985 0.684
Pearson residuals 2.548 1.442 -1.500 0.990 0.329
Total Count 45.000 20.000 619.000 107.000 115.000 906.000
Expected count 45.000 20.000 619.000 107.000 115.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 33.834 16 0.006 12.456
Χ² continuity correction 33.834 16 0.006 12.456
Likelihood ratio 30.371 16 0.016 5.516
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.190
Phi-coefficient NaN
Cramer's V 0.097
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPB1T
EDUC   Fast and accurate delivery Other To have a secure shopping certificate To have positive customer reviews To offer the option of in-store pickup To offer the payment option I prefer Total
Bachelor Count 81.000 2.000 88.000 121.000 18.000 33.000 343.000
Expected count 76.475 3.029 98.054 112.062 18.551 34.830 343.000
Unstandardized residuals 4.525 -1.029 -10.054 8.938 -0.551 -1.830
Pearson residuals 0.517 -0.591 -1.015 0.844 -0.128 -0.310
Elementary school Count 0.000 0.000 1.000 3.000 0.000 0.000 4.000
Expected count 0.892 0.035 1.143 1.307 0.216 0.406 4.000
Unstandardized residuals -0.892 -0.035 -0.143 1.693 -0.216 -0.406
Pearson residuals -0.944 -0.188 -0.134 1.481 -0.465 -0.637
High school Count 86.000 3.000 135.000 122.000 21.000 40.000 407.000
Expected count 90.744 3.594 116.350 132.971 22.012 41.329 407.000
Unstandardized residuals -4.744 -0.594 18.650 -10.971 -1.012 -1.329
Pearson residuals -0.498 -0.313 1.729 -0.951 -0.216 -0.207
Master of Science Count 28.000 1.000 26.000 39.000 8.000 16.000 118.000
Expected count 26.309 1.042 33.733 38.552 6.382 11.982 118.000
Unstandardized residuals 1.691 -0.042 -7.733 0.448 1.618 4.018
Pearson residuals 0.330 -0.041 -1.331 0.072 0.641 1.161
PhD Count 7.000 2.000 9.000 11.000 2.000 3.000 34.000
Expected count 7.581 0.300 9.720 11.108 1.839 3.453 34.000
Unstandardized residuals -0.581 1.700 -0.720 -0.108 0.161 -0.453
Pearson residuals -0.211 3.102 -0.231 -0.032 0.119 -0.244
Total Count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Expected count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 24.007 20 0.242 1.071
Χ² continuity correction 24.007 20 0.242 1.071
Likelihood ratio 19.474 20 0.491 1.000
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.161
Phi-coefficient NaN
Cramer's V 0.081
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
RFQ
EDUC   Because I want to see the product live Because of negative reviews Due to inappropriate and hidden information about product delivery and returns Due to long delivery time Due to the need for a better price Due to website design (complicated search, can't find what I'm looking for) Other Total
Bachelor Count 76.000 106.000 47.000 48.000 34.000 15.000 17.000 343.000
Expected count 78.746 103.354 46.188 47.323 32.180 17.415 17.794 343.000
Unstandardized residuals -2.746 2.646 0.812 0.677 1.820 -2.415 -0.794
Pearson residuals -0.309 0.260 0.120 0.098 0.321 -0.579 -0.188
Elementary school Count 2.000 2.000 0.000 0.000 0.000 0.000 0.000 4.000
Expected count 0.918 1.205 0.539 0.552 0.375 0.203 0.208 4.000
Unstandardized residuals 1.082 0.795 -0.539 -0.552 -0.375 -0.203 -0.208
Pearson residuals 1.129 0.724 -0.734 -0.743 -0.613 -0.451 -0.456
High school Count 94.000 122.000 58.000 54.000 41.000 22.000 16.000 407.000
Expected count 93.439 122.639 54.806 56.153 38.184 20.664 21.114 407.000
Unstandardized residuals 0.561 -0.639 3.194 -2.153 2.816 1.336 -5.114
Pearson residuals 0.058 -0.058 0.431 -0.287 0.456 0.294 -1.113
Master of Science Count 30.000 32.000 10.000 19.000 8.000 6.000 13.000 118.000
Expected count 27.091 35.556 15.890 16.280 11.071 5.991 6.121 118.000
Unstandardized residuals 2.909 -3.556 -5.890 2.720 -3.071 0.009 6.879
Pearson residuals 0.559 -0.596 -1.478 0.674 -0.923 0.004 2.780
PhD Count 6.000 11.000 7.000 4.000 2.000 3.000 1.000 34.000
Expected count 7.806 10.245 4.578 4.691 3.190 1.726 1.764 34.000
Unstandardized residuals -1.806 0.755 2.422 -0.691 -1.190 1.274 -0.764
Pearson residuals -0.646 0.236 1.132 -0.319 -0.666 0.969 -0.575
Total Count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Expected count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 21.600 24 0.603 1.000
Χ² continuity correction 21.600 24 0.603 1.000
Likelihood ratio 21.506 24 0.609 1.000
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.153
Phi-coefficient NaN
Cramer's V 0.077
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
PURFRE
WORKSTAT   Once a month Once every 12 months or less frequently Once every 6 months Several times a month Several times a week Total
Employed Count 141.000 49.000 140.000 158.000 38.000 526.000
Expected count 157.336 49.929 163.141 126.565 29.029 526.000
Unstandardized residuals -16.336 -0.929 -23.141 31.435 8.971
Pearson residuals -1.302 -0.132 -1.812 2.794 1.665
Part-time employed Count 29.000 7.000 30.000 13.000 2.000 81.000
Expected count 24.228 7.689 25.123 19.490 4.470 81.000
Unstandardized residuals 4.772 -0.689 4.877 -6.490 -2.470
Pearson residuals 0.969 -0.248 0.973 -1.470 -1.168
Retiree Count 1.000 4.000 5.000 1.000 0.000 11.000
Expected count 3.290 1.044 3.412 2.647 0.607 11.000
Unstandardized residuals -2.290 2.956 1.588 -1.647 -0.607
Pearson residuals -1.263 2.893 0.860 -1.012 -0.779
Student Count 72.000 19.000 86.000 36.000 8.000 221.000
Expected count 66.105 20.978 68.544 53.177 12.196 221.000
Unstandardized residuals 5.895 -1.978 17.456 -17.177 -4.196
Pearson residuals 0.725 -0.432 2.108 -2.355 -1.202
Unemployed Count 28.000 7.000 20.000 10.000 2.000 67.000
Expected count 20.041 6.360 20.780 16.121 3.698 67.000
Unstandardized residuals 7.959 0.640 -0.780 -6.121 -1.698
Pearson residuals 1.778 0.254 -0.171 -1.525 -0.883
Total Count 271.000 86.000 281.000 218.000 50.000 906.000
Expected count 271.000 86.000 281.000 218.000 50.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 51.892 16 < .001 2834.207
Χ² continuity correction 51.892 16 < .001 2834.207
Likelihood ratio 50.487 16 < .001 1766.807
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.233
Phi-coefficient NaN
Cramer's V 0.120
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPBREP
WORKSTAT   Attractive new offers Other Satisfaction with products purchased so far Satisfaction with the delivery of purchased products Satisfaction with the online shopping process and support Total
Employed Count 23.000 13.000 352.000 66.000 72.000 526.000
Expected count 26.126 11.611 359.375 62.121 66.766 526.000
Unstandardized residuals -3.126 1.389 -7.375 3.879 5.234
Pearson residuals -0.612 0.407 -0.389 0.492 0.641
Part-time employed Count 3.000 3.000 58.000 12.000 5.000 81.000
Expected count 4.023 1.788 55.341 9.566 10.281 81.000
Unstandardized residuals -1.023 1.212 2.659 2.434 -5.281
Pearson residuals -0.510 0.906 0.357 0.787 -1.647
Retiree Count 3.000 0.000 5.000 1.000 2.000 11.000
Expected count 0.546 0.243 7.515 1.299 1.396 11.000
Unstandardized residuals 2.454 -0.243 -2.515 -0.299 0.604
Pearson residuals 3.320 -0.493 -0.918 -0.262 0.511
Student Count 12.000 3.000 161.000 21.000 24.000 221.000
Expected count 10.977 4.879 150.992 26.100 28.052 221.000
Unstandardized residuals 1.023 -1.879 10.008 -5.100 -4.052
Pearson residuals 0.309 -0.851 0.814 -0.998 -0.765
Unemployed Count 4.000 1.000 43.000 7.000 12.000 67.000
Expected count 3.328 1.479 45.776 7.913 8.504 67.000
Unstandardized residuals 0.672 -0.479 -2.776 -0.913 3.496
Pearson residuals 0.368 -0.394 -0.410 -0.324 1.199
Total Count 45.000 20.000 619.000 107.000 115.000 906.000
Expected count 45.000 20.000 619.000 107.000 115.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 23.385 16 0.104 1.564
Χ² continuity correction 23.385 16 0.104 1.564
Likelihood ratio 18.538 16 0.293 1.023
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.159
Phi-coefficient NaN
Cramer's V 0.080
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPB1T
WORKSTAT   Fast and accurate delivery Other To have a secure shopping certificate To have positive customer reviews To offer the option of in-store pickup To offer the payment option I prefer Total
Employed Count 121.000 7.000 150.000 161.000 27.000 60.000 526.000
Expected count 117.276 4.645 150.369 171.850 28.448 53.413 526.000
Unstandardized residuals 3.724 2.355 -0.369 -10.850 -1.448 6.587
Pearson residuals 0.344 1.093 -0.030 -0.828 -0.272 0.901
Part-time employed Count 26.000 0.000 21.000 28.000 3.000 3.000 81.000
Expected count 18.060 0.715 23.156 26.464 4.381 8.225 81.000
Unstandardized residuals 7.940 -0.715 -2.156 1.536 -1.381 -5.225
Pearson residuals 1.868 -0.846 -0.448 0.299 -0.660 -1.822
Retiree Count 3.000 0.000 2.000 2.000 2.000 2.000 11.000
Expected count 2.453 0.097 3.145 3.594 0.595 1.117 11.000
Unstandardized residuals 0.547 -0.097 -1.145 -1.594 1.405 0.883
Pearson residuals 0.350 -0.312 -0.645 -0.841 1.822 0.835
Student Count 39.000 1.000 65.000 80.000 14.000 22.000 221.000
Expected count 49.274 1.951 63.178 72.203 11.953 22.442 221.000
Unstandardized residuals -10.274 -0.951 1.822 7.797 2.047 -0.442
Pearson residuals -1.464 -0.681 0.229 0.918 0.592 -0.093
Unemployed Count 13.000 0.000 21.000 25.000 3.000 5.000 67.000
Expected count 14.938 0.592 19.153 21.890 3.624 6.804 67.000
Unstandardized residuals -1.938 -0.592 1.847 3.110 -0.624 -1.804
Pearson residuals -0.501 -0.769 0.422 0.665 -0.328 -0.691
Total Count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Expected count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 22.403 20 0.319 1.009
Χ² continuity correction 22.403 20 0.319 1.009
Likelihood ratio 23.386 20 0.270 1.040
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.155
Phi-coefficient NaN
Cramer's V 0.079
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
RFQ
WORKSTAT   Because I want to see the product live Because of negative reviews Due to inappropriate and hidden information about product delivery and returns Due to long delivery time Due to the need for a better price Due to website design (complicated search, can't find what I'm looking for) Other Total
Employed Count 108.000 149.000 77.000 85.000 44.000 32.000 31.000 526.000
Expected count 120.759 158.497 70.830 72.572 49.349 26.706 27.287 526.000
Unstandardized residuals -12.759 -9.497 6.170 12.428 -5.349 5.294 3.713
Pearson residuals -1.161 -0.754 0.733 1.459 -0.761 1.024 0.711
Part-time employed Count 14.000 28.000 14.000 5.000 13.000 5.000 2.000 81.000
Expected count 18.596 24.407 10.907 11.175 7.599 4.113 4.202 81.000
Unstandardized residuals -4.596 3.593 3.093 -6.175 5.401 0.887 -2.202
Pearson residuals -1.066 0.727 0.936 -1.847 1.959 0.438 -1.074
Retiree Count 7.000 0.000 0.000 2.000 0.000 0.000 2.000 11.000
Expected count 2.525 3.315 1.481 1.518 1.032 0.558 0.571 11.000
Unstandardized residuals 4.475 -3.315 -1.481 0.482 -1.032 -0.558 1.429
Pearson residuals 2.816 -1.821 -1.217 0.392 -1.016 -0.747 1.892
Student Count 62.000 77.000 24.000 21.000 23.000 7.000 7.000 221.000
Expected count 50.737 66.593 29.759 30.491 20.734 11.221 11.465 221.000
Unstandardized residuals 11.263 10.407 -5.759 -9.491 2.266 -4.221 -4.465
Pearson residuals 1.581 1.275 -1.056 -1.719 0.498 -1.260 -1.319
Unemployed Count 17.000 19.000 7.000 12.000 5.000 2.000 5.000 67.000
Expected count 15.382 20.189 9.022 9.244 6.286 3.402 3.476 67.000
Unstandardized residuals 1.618 -1.189 -2.022 2.756 -1.286 -1.402 1.524
Pearson residuals 0.413 -0.265 -0.673 0.906 -0.513 -0.760 0.818
Total Count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Expected count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 50.697 24 0.001 47.147
Χ² continuity correction 50.697 24 0.001 47.147
Likelihood ratio 54.134 24 < .001 115.292
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.230
Phi-coefficient NaN
Cramer's V 0.118
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
PURFRE
INCSTAT   Once a month Once every 12 months or less frequently Once every 6 months Several times a month Several times a week Total
High Income Count 31.000 6.000 26.000 47.000 16.000 126.000
Expected count 37.689 11.960 39.079 30.318 6.954 126.000
Unstandardized residuals -6.689 -5.960 -13.079 16.682 9.046
Pearson residuals -1.090 -1.723 -2.092 3.030 3.431
I don't want to say Count 70.000 28.000 71.000 46.000 13.000 228.000
Expected count 68.199 21.642 70.715 54.861 12.583 228.000
Unstandardized residuals 1.801 6.358 0.285 -8.861 0.417
Pearson residuals 0.218 1.367 0.034 -1.196 0.118
Low Income Count 17.000 12.000 36.000 10.000 3.000 78.000
Expected count 23.331 7.404 24.192 18.768 4.305 78.000
Unstandardized residuals -6.331 4.596 11.808 -8.768 -1.305
Pearson residuals -1.311 1.689 2.401 -2.024 -0.629
Mid Income Count 65.000 17.000 64.000 54.000 7.000 207.000
Expected count 61.917 19.649 64.202 49.808 11.424 207.000
Unstandardized residuals 3.083 -2.649 -0.202 4.192 -4.424
Pearson residuals 0.392 -0.598 -0.025 0.594 -1.309
Mid-High Income Count 88.000 23.000 84.000 61.000 11.000 267.000
Expected count 79.864 25.344 82.811 64.245 14.735 267.000
Unstandardized residuals 8.136 -2.344 1.189 -3.245 -3.735
Pearson residuals 0.910 -0.466 0.131 -0.405 -0.973
Total Count 271.000 86.000 281.000 218.000 50.000 906.000
Expected count 271.000 86.000 281.000 218.000 50.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 52.421 16 < .001 3392.513
Χ² continuity correction 52.421 16 < .001 3392.513
Likelihood ratio 49.376 16 < .001 1221.498
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.234
Phi-coefficient NaN
Cramer's V 0.120
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPBREP
INCSTAT   Attractive new offers Other Satisfaction with products purchased so far Satisfaction with the delivery of purchased products Satisfaction with the online shopping process and support Total
High Income Count 5.000 3.000 83.000 16.000 19.000 126.000
Expected count 6.258 2.781 86.086 14.881 15.993 126.000
Unstandardized residuals -1.258 0.219 -3.086 1.119 3.007
Pearson residuals -0.503 0.131 -0.333 0.290 0.752
I don't want to say Count 10.000 5.000 160.000 20.000 33.000 228.000
Expected count 11.325 5.033 155.775 26.927 28.940 228.000
Unstandardized residuals -1.325 -0.033 4.225 -6.927 4.060
Pearson residuals -0.394 -0.015 0.339 -1.335 0.755
Low Income Count 5.000 2.000 55.000 10.000 6.000 78.000
Expected count 3.874 1.722 53.291 9.212 9.901 78.000
Unstandardized residuals 1.126 0.278 1.709 0.788 -3.901
Pearson residuals 0.572 0.212 0.234 0.260 -1.240
Mid Income Count 11.000 4.000 140.000 26.000 26.000 207.000
Expected count 10.281 4.570 141.427 24.447 26.275 207.000
Unstandardized residuals 0.719 -0.570 -1.427 1.553 -0.275
Pearson residuals 0.224 -0.266 -0.120 0.314 -0.054
Mid-High Income Count 14.000 6.000 181.000 35.000 31.000 267.000
Expected count 13.262 5.894 182.421 31.533 33.891 267.000
Unstandardized residuals 0.738 0.106 -1.421 3.467 -2.891
Pearson residuals 0.203 0.044 -0.105 0.617 -0.497
Total Count 45.000 20.000 619.000 107.000 115.000 906.000
Expected count 45.000 20.000 619.000 107.000 115.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 6.601 16 0.980 1.000
Χ² continuity correction 6.601 16 0.980 1.000
Likelihood ratio 6.959 16 0.974 1.000
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.085
Phi-coefficient NaN
Cramer's V 0.043
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPB1T
INCSTAT   Fast and accurate delivery Other To have a secure shopping certificate To have positive customer reviews To offer the option of in-store pickup To offer the payment option I prefer Total
High Income Count 31.000 1.000 25.000 47.000 6.000 16.000 126.000
Expected count 28.093 1.113 36.020 41.166 6.815 12.795 126.000
Unstandardized residuals 2.907 -0.113 -11.020 5.834 -0.815 3.205
Pearson residuals 0.549 -0.107 -1.836 0.909 -0.312 0.896
I don't want to say Count 49.000 2.000 76.000 68.000 11.000 22.000 228.000
Expected count 50.834 2.013 65.179 74.490 12.331 23.152 228.000
Unstandardized residuals -1.834 -0.013 10.821 -6.490 -1.331 -1.152
Pearson residuals -0.257 -0.009 1.340 -0.752 -0.379 -0.239
Low Income Count 16.000 0.000 29.000 22.000 7.000 4.000 78.000
Expected count 17.391 0.689 22.298 25.483 4.219 7.921 78.000
Unstandardized residuals -1.391 -0.689 6.702 -3.483 2.781 -3.921
Pearson residuals -0.333 -0.830 1.419 -0.690 1.354 -1.393
Mid Income Count 47.000 2.000 63.000 60.000 15.000 20.000 207.000
Expected count 46.152 1.828 59.175 67.629 11.195 21.020 207.000
Unstandardized residuals 0.848 0.172 3.825 -7.629 3.805 -1.020
Pearson residuals 0.125 0.127 0.497 -0.928 1.137 -0.222
Mid-High Income Count 59.000 3.000 66.000 99.000 10.000 30.000 267.000
Expected count 59.530 2.358 76.328 87.232 14.440 27.113 267.000
Unstandardized residuals -0.530 0.642 -10.328 11.768 -4.440 2.887
Pearson residuals -0.069 0.418 -1.182 1.260 -1.169 0.555
Total Count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Expected count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 22.425 20 0.318 1.010
Χ² continuity correction 22.425 20 0.318 1.010
Likelihood ratio 23.378 20 0.271 1.040
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.155
Phi-coefficient NaN
Cramer's V 0.079
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
RFQ
INCSTAT   Because I want to see the product live Because of negative reviews Due to inappropriate and hidden information about product delivery and returns Due to long delivery time Due to the need for a better price Due to website design (complicated search, can't find what I'm looking for) Other Total
High Income Count 21.000 48.000 11.000 25.000 8.000 10.000 3.000 126.000
Expected count 28.927 37.967 16.967 17.384 11.821 6.397 6.536 126.000
Unstandardized residuals -7.927 10.033 -5.967 7.616 -3.821 3.603 -3.536
Pearson residuals -1.474 1.628 -1.449 1.827 -1.111 1.424 -1.383
I don't want to say Count 53.000 70.000 40.000 26.000 20.000 10.000 9.000 228.000
Expected count 52.344 68.702 30.702 31.457 21.391 11.576 11.828 228.000
Unstandardized residuals 0.656 1.298 9.298 -5.457 -1.391 -1.576 -2.828
Pearson residuals 0.091 0.157 1.678 -0.973 -0.301 -0.463 -0.822
Low Income Count 23.000 23.000 9.000 6.000 11.000 4.000 2.000 78.000
Expected count 17.907 23.503 10.503 10.762 7.318 3.960 4.046 78.000
Unstandardized residuals 5.093 -0.503 -1.503 -4.762 3.682 0.040 -2.046
Pearson residuals 1.203 -0.104 -0.464 -1.451 1.361 0.020 -1.017
Mid Income Count 50.000 50.000 28.000 27.000 29.000 8.000 15.000 207.000
Expected count 47.523 62.374 27.874 28.560 19.421 10.510 10.738 207.000
Unstandardized residuals 2.477 -12.374 0.126 -1.560 9.579 -2.510 4.262
Pearson residuals 0.359 -1.567 0.024 -0.292 2.174 -0.774 1.300
Mid-High Income Count 61.000 82.000 34.000 41.000 17.000 14.000 18.000 267.000
Expected count 61.298 80.454 35.954 36.838 25.050 13.556 13.851 267.000
Unstandardized residuals -0.298 1.546 -1.954 4.162 -8.050 0.444 4.149
Pearson residuals -0.038 0.172 -0.326 0.686 -1.608 0.121 1.115
Total Count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Expected count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 41.019 24 0.017 5.413
Χ² continuity correction 41.019 24 0.017 5.413
Likelihood ratio 41.087 24 0.016 5.484
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.208
Phi-coefficient NaN
Cramer's V 0.106
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
PURFRE
RESI   Once a month Once every 12 months or less frequently Once every 6 months Several times a month Several times a week Total
Rural Count 37.000 16.000 45.000 21.000 2.000 121.000
Expected count 36.193 11.486 37.529 29.115 6.678 121.000
Unstandardized residuals 0.807 4.514 7.471 -8.115 -4.678
Pearson residuals 0.134 1.332 1.220 -1.504 -1.810
Suburban settlement Count 28.000 8.000 38.000 21.000 6.000 101.000
Expected count 30.211 9.587 31.326 24.302 5.574 101.000
Unstandardized residuals -2.211 -1.587 6.674 -3.302 0.426
Pearson residuals -0.402 -0.513 1.193 -0.670 0.180
Town/township Count 206.000 62.000 198.000 176.000 42.000 684.000
Expected count 204.596 64.927 212.146 164.583 37.748 684.000
Unstandardized residuals 1.404 -2.927 -14.146 11.417 4.252
Pearson residuals 0.098 -0.363 -0.971 0.890 0.692
Total Count 271.000 86.000 281.000 218.000 50.000 906.000
Expected count 271.000 86.000 281.000 218.000 50.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 13.502 8 0.096 1.638
Χ² continuity correction 13.502 8 0.096 1.638
Likelihood ratio 14.657 8 0.066 2.047
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.121
Phi-coefficient NaN
Cramer's V 0.086
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPBREP
RESI   Attractive new offers Other Satisfaction with products purchased so far Satisfaction with the delivery of purchased products Satisfaction with the online shopping process and support Total
Rural Count 6.000 1.000 95.000 12.000 7.000 121.000
Expected count 6.010 2.671 82.670 14.290 15.359 121.000
Unstandardized residuals -0.010 -1.671 12.330 -2.290 -8.359
Pearson residuals -0.004 -1.022 1.356 -0.606 -2.133
Suburban settlement Count 6.000 2.000 73.000 7.000 13.000 101.000
Expected count 5.017 2.230 69.006 11.928 12.820 101.000
Unstandardized residuals 0.983 -0.230 3.994 -4.928 0.180
Pearson residuals 0.439 -0.154 0.481 -1.427 0.050
Town/township Count 33.000 17.000 451.000 88.000 95.000 684.000
Expected count 33.974 15.099 467.325 80.781 86.821 684.000
Unstandardized residuals -0.974 1.901 -16.325 7.219 8.179
Pearson residuals -0.167 0.489 -0.755 0.803 0.878
Total Count 45.000 20.000 619.000 107.000 115.000 906.000
Expected count 45.000 20.000 619.000 107.000 115.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 12.540 8 0.129 1.394
Χ² continuity correction 12.540 8 0.129 1.394
Likelihood ratio 14.275 8 0.075 1.896
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.117
Phi-coefficient NaN
Cramer's V 0.083
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
MIPB1T
RESI   Fast and accurate delivery Other To have a secure shopping certificate To have positive customer reviews To offer the option of in-store pickup To offer the payment option I prefer Total
Rural Count 24.000 0.000 39.000 42.000 3.000 13.000 121.000
Expected count 26.978 1.068 34.591 39.532 6.544 12.287 121.000
Unstandardized residuals -2.978 -1.068 4.409 2.468 -3.544 0.713
Pearson residuals -0.573 -1.034 0.750 0.393 -1.385 0.203
Suburban settlement Count 22.000 0.000 25.000 42.000 5.000 7.000 101.000
Expected count 22.519 0.892 28.873 32.998 5.462 10.256 101.000
Unstandardized residuals -0.519 -0.892 -3.873 9.002 -0.462 -3.256
Pearson residuals -0.109 -0.944 -0.721 1.567 -0.198 -1.017
Town/township Count 156.000 8.000 195.000 212.000 41.000 72.000 684.000
Expected count 152.503 6.040 195.536 223.470 36.993 69.457 684.000
Unstandardized residuals 3.497 1.960 -0.536 -11.470 4.007 2.543
Pearson residuals 0.283 0.798 -0.038 -0.767 0.659 0.305
Total Count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Expected count 202.000 8.000 259.000 296.000 49.000 92.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 10.860 10 0.369 1.000
Χ² continuity correction 10.860 10 0.369 1.000
Likelihood ratio 13.190 10 0.213 1.116
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.109
Phi-coefficient NaN
Cramer's V 0.077
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables
Contingency Tables
RFQ
RESI   Because I want to see the product live Because of negative reviews Due to inappropriate and hidden information about product delivery and returns Due to long delivery time Due to the need for a better price Due to website design (complicated search, can't find what I'm looking for) Other Total
Rural Count 27.000 32.000 21.000 12.000 14.000 7.000 8.000 121.000
Expected count 27.779 36.460 16.294 16.694 11.352 6.143 6.277 121.000
Unstandardized residuals -0.779 -4.460 4.706 -4.694 2.648 0.857 1.723
Pearson residuals -0.148 -0.739 1.166 -1.149 0.786 0.346 0.688
Suburban settlement Count 23.000 48.000 7.000 12.000 7.000 3.000 1.000 101.000
Expected count 23.188 30.434 13.600 13.935 9.476 5.128 5.240 101.000
Unstandardized residuals -0.188 17.566 -6.600 -1.935 -2.476 -2.128 -4.240
Pearson residuals -0.039 3.184 -1.790 -0.518 -0.804 -0.940 -1.852
Town/township Count 158.000 193.000 94.000 101.000 64.000 36.000 38.000 684.000
Expected count 157.033 206.106 92.106 94.371 64.172 34.728 35.483 684.000
Unstandardized residuals 0.967 -13.106 1.894 6.629 -0.172 1.272 2.517
Pearson residuals 0.077 -0.913 0.197 0.682 -0.021 0.216 0.422
Total Count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Expected count 208.000 273.000 122.000 125.000 85.000 46.000 47.000 906.000
Chi-Squared Tests
  Value df p VS-MPR*
Χ² 24.599 12 0.017 5.349
Χ² continuity correction 24.599 12 0.017 5.349
Likelihood ratio 25.710 12 0.012 7.025
N 906  
* Vovk-Sellke Maximum p -Ratio: Based the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p log(p )) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001).
Nominal
  Value
Contingency coefficient 0.163
Phi-coefficient NaN
Cramer's V 0.117
ᵃ Phi coefficient is only available for 2 by 2 contingency Tables