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P-cages from Mozaic Graphs

B. Piette and Arpad Lukacs

Graphs

In this supplementary material we consider the p-cages generated from 3
graphs which lead only to very deformed p-cages. The graphs considered are

p-cage | graph name Description

name

TTM3 | 56_F44 4-0-3_4-3-0_12-2-1 24-1-2 . V12_12 | Truncated tetrahedron where
the hexagons become 3-mosaic.

TOM3 | 56_F86_6-0-4_8-3-0_24-2-1_48-1-2.V24 24 | Truncated octahedron where the
hexagons are 3-mosaic.

TCM4 56_F86_6-4-0_8-0-3_24-2-1_48-1-2.V24_24 | Truncated cube where the

octagons are 4-mosaic.

Table 1: Bi-symmetric hole polyhedron graphs with valency 5 and 6 nodes
as well as triangular and square faces and which include mosaics sub-
gaphs|Piette2024]. The first column is the label describing the p-cages de-
rived from the graph, the second column is the label for the graph used
in [Piette2024] and the third column describes a solid for which the planar
graph corresponds to the hole polyhedron graph.

The hole-edge mappings for these graphs are presented on Figure (1] for
the TTM3 p-cages and on Figure 2la and [2lb for respectively the TOM3 and
TCM4 p-cages.

2 Parametrisation

In what follows we use the same notations as in the main paper: R,,(0)
denotes a rotation of angle 6 around the vector w while R,(0), R,(#) and
R, (0) correspond to rotations of an angle 6 around respectively the z, y and
Z axes.

U;, .5,k 1S @ unit length vector parallel to the intersection line between
face 7 of type ji and face k of type ja . Qj, i,k is the intersection point
between the reference face of type 2, face i of type j7; and face k of type 7
. Pj, i.j, 1 is the intersection point between the reference face of type 1, the
type 71 face ¢ and type 7o face k.
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Figure 1: Hole edges mapping for the hole polyhedron graphs: a) 56_F44_4-
0-3_4-3-0_12-2-1 24-1-2. V12 12
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Figure 2: Hole edges mapping for the hole polyhedron graphs: a) 56_F86_6-
0-4_8-3-0_24-2-1_48-1-2.V24 24 b) 56_F86_6-4-0_8-0-3_24-2-1_48-1-

2.V24.24



Figure 3: Parametrisation of the truncated tetrahedron with a 3-mosaic p-
cage. a) Truncated tetrahedron with a 3-mosaic vectors. b) Mapping of
vertices.

2.1 TTM3

The underlying symmetry of these p-cages is that of the truncated tetra-
hedron. We orient the truncated tetrahedron so that the centre of the top
triangle face is in the direction (0,0, 1) and the centre of the side hexagon is
in the direction (1/v/3, —1/4/3,1/4/3). This is illustrated in figure

The vertices of the underlying tetrahedron are

G, = (0,0,1), G, — (0,_L§ _1>

37 3

2 V2 1 2 V2 1
f— _——, — — = — —_—— — — 1
GS ( 3737 3>7 G4 ( 373a 3) ()

The centre of the top three faces of the tetrahedron, also the centre of
the top three hexagons, are

2 V21 47 o
H —_——— = H, = — | H H; = — | Hy.
1( 277 979>77 2 RZ(?)) 1, 3 RZ<3> 1
(2)
Defining

e; = (sin (g) , COS (g) ,0) = (%, ?,0) ) (3)



the rotations linking the faces are then as follows:

2w 47
732,2 = Rz(?% 7?'2,3 - Rz(?%
2 47 2T
Raosti = RHl(?), Rag+i = RHI(?), Rag+i = RHQ(g), 1=1...3,
2 41
R1,1 = Ret (0)7 R1,2 = RH1 (?> ) R1,3 = RH1 (g) )

2w 47
i — Lz | 57 ] i Rz o ]
Risyi=R ( 3 ) Rie+ ( 3 )

We then take as basis vectors of the reference faces

V1,1 =5 RH1 (T) Ret (U) H17

V111 = Ry, (7') Re, (U) €,

vi12 = Ru, (7) Re, (0) ( L1 2ﬁ> :

VN
Vo = 83 Ru(6) (0, — cos(), sin(6),

V211 = Rz(¢) (17 0, 0)7

my = Q122 + kius 1,09,

A
m3 = Rg, (3) my,

ms = Q23,17 + ksuz1,1.7,
my; = Q725 + krug 1,05,
mgy = Q2512 + koUa 1.1 2,
my = Qi21,1 + ki1,

ny = P10+ kst 112,

4
n; = RH1 (1) no,

3
2
n; = RH1 <—§> R.my,
21
nry = Rz <?) me,

Nng = My,

Vo192 = R,(4) (0,sin(), cos(d)) . (5)

My = Q11,22 + koo 1,09,

47
my = RG1 (?) m,,

me = Q23,17 + keU2,1,1,7,
mg = Q1725 + ksUa 1,05,
My = Q2512 + KioUa 1,12,
Mg = Q12;1,1 + k12U2,1:1,1,

my = Py1.12 + ka1, 2,

4
ny = RH1 <—7T> ny,

3
2
Ne = RH1 (—?W) R.my,
21
ng = Rz <?) ms,



Figure 4: Parametrisation of the truncated octahedron with a 3 mosaic p-
cage. a) truncated octahedron vectors. b) Mapping of vertices.

The optimization parameters are 0, ¢, o, 7, S1, So, k1, ko, ks, ke, k7, ks,
ko, k10, k11, k12, k13, k14 as well as the planar coordinates of the non-shared
vertices for both reference faces.

2.2 TOM3

We orient the truncated octahedron so that the centre of the top square face
is in the direction (0,0, 1) and the centre of the side hexagon in the direction

(1/+/3,—1/4/3,1/4/3). This is illustrated in figure .
The symmetry axes of the truncated octahedron are the centre of the face
of the underlying cube
G, =(0,0,1), G, = (0,0,-1) G; = (1,0,0),
G,=(-1,0,0) G5 =(0,1,0), Gs = (0,—1,0). (7)

The centres of the hexagonal faces are then

1 1 1 ™
H|— —— —&], H,=R.(-)H H;=R,(mr)H
(#wn) =@ o
Defining



the rotations linking the faces are then as follows:

Roo = Rz(g), Ros = R.(m), Rou = Rz(gg)y
Rossi=Re(3),  Rasyi=Rulm) Rosori = Rul(), i=1
Rorosi = Ry(g), Raooei = By(5), i=1...4,

e (). e (5)
ngﬂ_Rz(g), Rigei = R, (1), i=1...4,
Rigs = R, (37”) , Risswi = Re (), i=1...12. (10)

We then take
Vii =51 Ry, (1) Re,, (0) Hy, Vi1 = B, (T) Re,, (0) €4y,

V1,12 = Ru, (7 exy (

Vo1 =Sy R.(¢) (0, — cos(6), sin(0
vo12 = R.(¢) (0,sin(0), cos(d)) .

my = Q11,22 + k1,122,

47
= Ry, (?) ™My,

ms = Q241,10 + ksu2.1.1,10,
my = Q11027 + krua 127,
mgy = Q2712 + koUa 1.1 2,

my = Q21,1 + ki1,

ny = P+ kisug 2,

47
n3 = RH1 (?) Ny,

m

Ny = Ry (5) Rz (7'(') my,
m

ne = By (3) mo

Ny = My,

1 )
V(6)’ \/ZG) ’
U211 = -Rz<¢)(1a Oa 0)7
(11)

my = Q11522 + kaUa 1,0,

47
my = Ry, <?) my,

meg = Q241,10 + keU2,1:1,10,
mg = Q110,27 + ksua,1,2.7,
My = Q27,12 + Koo 1,12,
My = Q12,11 + kiou2 111,

my = Ps1.19 + k14U 1.1 2,

4
ny = RH1 <?) ng,

T
Ng = Ry (5) Rz (7T) my,
T
ns = By (3) ms
N = My,

(12)



Figure 5: Parametrisation of the truncated cube with a 4 mosaic p-cage. a)
Vectors. b) Mapping of vertices.

The optimization parameters are 0, ¢, o, 7, S1, So, k1, ko, ks, kg, k7, ks, ko,
kio, k11, k12, k13, k14 as well as the coordinates in the plane of the non-shared
vertices for both reference faces.

2.3 TCM4

We orient the truncated cube so that the octagons are in planes orthogonal
to the 2,y and z axes. This is illustrated in figure [5

The symmetry axes of the truncated cube are the centres of the faces of
the cube

G = (0,0,1), Gy = (0,0, 1) G = (1,0,0),
G4 = (_17070)7 G5 = (07 170)a GG - (Oa _1a0>7 (13)

as well as the corners of the cube

Hl = (17 _17 1)a H2 = <1a ]-7 1)7 H3 = (_]-7 17 1)a H4 = <_17 _17 ]-)a
H;=(1,-1,-1), Hg=(1,1,-1), H;=(-1,1,-1), Hg=(-1,—-1,-1).

(14)



The rotations linking the faces are then as follows:

47 T T
Ran = R, (g) Ras =R, (3):  Raa=Re (3)
3
R25—RG1(7T), R26—RG1(7T)7 R27—RG1 (7)7
3 2 T
Res = Ra, <7) , Rog= Rm, (3) , Ragp1 = R (25) 1=1,2,3,
RQJQ_H' = R$ (7'(') 1=1...12. (15)

We then pick the following vectors for the pentavalent faces

™ 3T
Ri2 = Rg, (§> , Ri3 = Rg, (1), Ri4 = Rg, (7) ,
T 3T )
Riari = Ry <§) Rig+i = Ry () Ri24i = Ry (7) 1=1,2,3,4
T 3T )
Ri6+i = R <§> Ri204+i = Ry (7> 1=1,2,3,4.
(16)
Defining
1 1
ey =|—7,—,0 17
(7545 .
We then take
1 1
‘/1,1 = Sl Rz<¢)Remy (9>(§7 _57 1)7
0111 = Ro(0)Rer, (0 sz = R0 (0) (2 22
1,1,1 — £z €xy HATR] 1,1,2 — L1z €xy \/5’ \/gv \/3 )
1
V2,1 =5 RH1 (7') RZ(J) <§, —1, 1) )
3 1 3 9 10
v :RITRZO' _,_,O s v =R 1TRZU - ) ’
2,1,1 . (T) ()<\/E\/1_0> 2,1,2 w1, (T) ()(\/@ 190\/1_9>



my = Q11829 + ki1u21,29, my = Q11829 + kata129,

47 41
ms = Ry, | — | maq, my = Ry, | — | mq,
3 3
ms; = Q29211 + ksUa1.1.1, me = Q2211 + kU111,
my = Q1,128 + krug 128, mg = Q11,28 + ksUa 1,08,
my = Q281,19 + koUa 1.1,19, mip = Q281,19 + KioUz,1:1,19,
my = Q1,19;1,18 + k11u2,1;1,187 myy = Q1,19;1,18 + k12U2,1;1,187
n; = P2,2;1,2 + k13’u1,1;1,2, my = P2,2;1,2 + lf?14u1,1;1,2,
3T 3T
n3 = Rg, | = | no, ny = Rg, | — | n,
2 2
3 47 3 4
ns = Rg, | = | R, | - ) Mo, ne = Rg, | = | Ba, | - | Mo,
2 3 2 3
N7y = Mg, ng — Mg,
4 4
ng = Ry, | - | M, ny = Ry, | - | M,
3 3
(19)
3 Results

The p-cages TTM3 and TOMS3 do not lead to any p-cages with deformation
below 10% and the best TCM3 p-cages have deformation exceeding 8% and
are not good candidate for protein cages.

The TCM3 p-cages are all presented graphically in the supplementary
file bi_symmetrix_full_list_56_34.pdf.
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