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Abstract: Clustering algorithm such as k-Means is highly sensitive to the scale of input features. A common 

approach to mitigate this issue is Min-Max scaling normalization, which rescales feature values to a specified 

range. This paper investigates an alternative form of Min-Max scaling, where the normalization is based on 

both the minimum (Xmin) and mean (Xmean) of the feature, rather than the maximum value. The proposed 

method is shown to be particularly effective in improving clustering accuracy for datasets with varying scales 

and distributions. Experimental results demonstrate that using this modified Min-Max scaling approach leads 

to better-defined clusters, enhanced performance in terms of clustering accuracy, and reduced bias in distance-

based clustering algorithms. We validate the method using several standard clustering techniques, including 

k-Means on publicly available datasets. 
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I. Introduction 

Clustering is an essential technique in unsupervised machine learning, aimed at grouping 

similar data points based on feature similarity. Clustering algorithms, such as k-Means and 

DBSCAN, often rely on distance metrics (e.g., Euclidean distance) to measure the similarity between 

data points. However, these algorithms can be sensitive to the scale of input features. When features 

have differing scales, those with larger numerical ranges tend to dominate the distance calculation, 

potentially leading to poor clustering results [1]. 

A common approach to address this issue is Min-Max scaling normalization, which rescales 

each feature to a fixed range (usually [0, 1]). However, the traditional Min-Max scaling method uses 

the minimum and maximum values of the feature, which can be heavily influenced by outliers. To 

address this, we propose a modification to the Min-Max scaling formula by incorporating the mean 

of the feature instead of the maximum value, thus ensuring more robust normalization, especially 

when dealing with outliers or skewed distributions [2]. 

This paper investigates the impact of this modified Min-Max scaling on clustering performance, 

particularly focusing on the k-Means clustering algorithm [3]. 

II. Literature Review 

Numerous researchers are putting up their efforts in the Normalization techniques context.  

Normalization techniques can be categorized into several types, each with distinct 

methodologies and use cases. The following sections outline the most commonly used normalization 

techniques in clustering analysis. 

The below are the main Normalization techniques which are present in the existing market. They 

were 
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1. Min-Max Normalization 

Min-Max normalization rescales features to a specified range, typically [0, 1] [4]. The 

transformation is expressed mathematically as: 

Xnorm=(X−Xmin) / (Xmax−Xmin) 

Advantages 

a. Uniform Scaling: Min-Max normalization ensures that all features contribute equally to 

distance metrics. 

b. Interpretability: Rescaling features to a [0, 1] range makes the data more interpretable. 

Disadvantages 

Sensitivity to Outliers: Extreme values can skew the normalization, leading to suboptimal 

feature scaling. 

2. Z-Score Normalization (Standardization) 

Z-score normalization, or standardization, centers the data around the mean and scales it by the 

standard deviation [5]. The formula for this transformation is: 

Xstandard=(X−μ) / σ 

where μ is the mean and σ\sigma is the standard deviation of the feature. 

Advantages 

a. Robustness: This method is less sensitive to outliers compared to Min-Max normalization. 

b. Gaussian Distribution: Standardization is effective for data that is approximately normally 

distributed, allowing for meaningful interpretation of standard deviations. 

Disadvantages 

Assumption of Normality: Z-score normalization assumes that the data follows a Gaussian 

distribution, which may not hold true for all datasets. 

3. Robust Normalization 

Robust normalization uses the median and the interquartile range (IQR) for scaling [6]. The 

transformation is defined as: 

Xrobust=(X−Q2) / (Q3−Q1) 

where Q1 and Q3Q_3Q3 are the first and third quartiles, respectively. 

Advantages 

Outlier Resilience: Robust normalization effectively minimizes the influence of outliers, 

providing a more accurate representation of the central data distribution. 

Disadvantages 

Less Interpretability: The scaling does not provide a straightforward interpretation as Min-Max 

normalization does. 

4. Unit Vector Normalization 

Unit vector normalization scales each feature vector to have a length of one. This method is 

defined as: 

Xunit=X / ∥X∥ 
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Advantages 

Direction Preservation: This method is particularly useful in applications where the direction 

of the vector is more significant than its magnitude, such as in text clustering. 

Disadvantages 

Not Suitable for Sparse Data: In cases where many feature values are zero, this method may 

not be applicable. 

5. Logarithmic Transformation 

Logarithmic transformation applies a logarithm function to the data, particularly effective for 

skewed distributions [8]: 

Xlog=log(X+1) 

Advantages 

Skewness Mitigation: This technique can stabilize variance and make the data more normally 

distributed. 

Disadvantages 

Non-Negative Requirement: Logarithmic transformation is only applicable to non-negative 

data. 

6. Power Transformation 

Power transformation methods, such as Box-Cox and Yeo-Johnson transformations, aim to make 

the data more Gaussian-like [9]. They are defined as: 

Box-Cox Transformation (only for positive data): 

Xbox-cox=(Xλ−1) / λ where λ! =0 

Yeo-Johnson Transformation (for both positive and negative data): 

 

Advantages 

Gaussian Distribution: Both transformations help stabilize variance and achieve normality, 

which can improve clustering performance. 

Disadvantages 

Parameter Estimation: Selecting the appropriate transformation parameter (e.g., λ) requires 

careful consideration and may complicate preprocessing. 

III. Methodology 

In the Min-Max Scaling change denominator with mean(x) for kmeans accuracy confusion 

matrix for best seed. Normally mean based accuracy improvement wit hfeature creation was there in 

the current era [12].  
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Modified Min-Max Scaling Formula 

In the traditional Min-Max scaling, the normalization of each feature Xi is done using the 

following formula: 

Xi′= (Xi−Xmin) / (Xmax−Xmin) 

Where: 

Xi is the original value of the feature. 

Xmin and Xmax are the minimum and maximum values of the feature, respectively. 

This normalization transforms the values of each feature to a fixed range, typically [0, 1]. 

However, the use of the maximum value can lead to issues when the feature contains outliers or 

extreme values. To address this, we propose an alternative formula that normalizes based on both 

the minimum and mean of the feature: 

Xi′ = (Xi−Xmin) / Xmean 

Where: 

Xi is the original value of the feature. 

Xmin is the minimum value of the feature. 

Xmean is the mean value of the feature. 

This new formula rescales each feature by the difference between its value and the minimum 

value, normalized by the difference between the mean and the minimum value, ensuring that 

features with extreme values do not unduly influence the scaling process. 

To apply a modified Min-Max Scaling where we change the denominator from the range  

x′=x−min(x) \ mean(x), we can follow these steps: 

1. Load the Dataset: Load the Iris dataset and extract the features. 

2. Apply Modified Min-Max Scaling: For each feature, normalize as x′=x−min(x) \ mean(x) 

3. K-means Clustering: Perform K-means on the normalized data, testing multiple seeds to find 

the one with the best accuracy. 

4. Evaluate Accuracy and Confusion Matrix: Track the accuracy and confusion matrix for the 

best-performing seed. 

IV. Experimental Setup 

a. Dataset Description 

To evaluate the effectiveness of the modified Min-Max scaling, we conducted experiments using 

two datasets from the UCI Machine Learning Repository [13].  

1. Iris Dataset: A classic dataset with 150 samples and 4 features (sepal length, sepal width, petal 

length, and petal width). 

2. Wine Dataset: A dataset with 178 samples and 13 features related to the chemical composition 

of wines. 

b. Data Preprocessing 

1. Data Cleaning: Ensure the datasets are free from missing values and outliers. Outliers were 

identified using the IQR method and appropriately handled [14]. 

2. Normalization Application: Each normalization technique was applied to both datasets, 

transforming the feature values into the desired scale [15]. 

c. K-Means Clustering Algorithm 

We employed the K-means clustering algorithm for our experiments. The algorithm was run 

with different numbers of clusters (k), ranging from 2 to 6, to evaluate its performance under various 

conditions [16]. 

For each dataset, the following steps were performed: 

1. Apply the modified Min-Max scaling (based on Xmean). 

2. Run k-Means clustering algorithms on the scaled and unscaled data. 
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3. Evaluate clustering performance using the clustering Accuracy. 

d. Performance Metrics 

To assess clustering performance, we used the following metrics: 

1. Clustering Accuracy: Calculated by comparing the predicted cluster labels with the true class 

labels [17]. 

2. Silhouette Score: Measures the quality of clusters based on how similar an object is to its own 

cluster compared to other clusters [18]. 

3. Inertia (Within-Cluster Sum of Squares - WCSS) 

Inertia measures the compactness of the clusters. It calculates the sum of squared distances 

between each data point and its assigned cluster's centroid [19]. 

4. Davies-Bouldin Index (DBI) 

It measures the average similarity between clusters, with similarity defined as the ratio of the 

sum of the cluster's scatter (compactness) and the distance between the cluster centroids (separation) 

[20]. 

Dunn Index 

The Dunn index measures the separation between clusters relative to the compactness within 

clusters. A higher Dunn index indicates better clustering, with well-separated and tight clusters [21]. 

Adjusted Rand Index (ARI) 

ARI compares the clustering results to the true labels, adjusting for random chance. It measures 

the similarity between the predicted clusters and the true clusters [22]. 

Normalized Mutual Information (NMI) 

NMI measures the shared information between the predicted clusters and the true labels. It 

normalizes mutual information to ensure values are between 0 and 1, where 1 indicates perfect 

agreement [23]. 

Fowlkes-Mallows Index (FMI) 

FMI calculates the geometric mean of precision and recall for clustering, comparing the 

clustering results with true class labels [24]. 

This normalization transforms the values of each feature to a fixed range, typically [0, 1]. 

However, the use of the maximum value can lead to issues when the feature contains outliers or 

extreme values. To address this, we propose an alternative formula that normalizes based on both 

the minimum and mean of the feature: 

V. Results and Discussion 

The k-Means algorithm is sensitive to the scale of the features, as the distance between data 

points determines the cluster centroids. By applying the modified Min-Max scaling, we expect 

improved performance, especially for datasets with varying feature scales. 

Table 1. shows the clustering accuracy of k-Means with and without the modified Min-Max scaling:. 

Method Data Set Features Selected Best Seed Accuracy Obtained 

MinMaxScaler Iris petal length petal width 0 0.96 

Apply modified 

Min-Max Scaling 
Iris petal length petal width 0 0.96 

MinMaxScaler Iris 
sepal length, sepal width, petal 

length, petal width 
3 0.8866666666666667 

Apply modified 

Min-Max Scaling 
Iris 

sepal length, sepal width, petal 

length, petal width 
7 0.96 

MinMaxScaler wine 
proline and 

nonflavanoid_phenols 
8 0.7191011235955056 

Apply modified 

Min-Max Scaling 
wine 

proline and 

nonflavanoid_phenols 
0 0.7247191011235955 
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MinMaxScaler wine Proline, hue, ssstotal_phenols 0 0.8764044943820225 

Apply modified 

Min-Max Scaling 
wine Proline, hue, total_phenols 8 0.8876404494382022 

5. Conclusion 

This study demonstrates the effectiveness of modified Min-Max scaling normalization (using 

both Xmin and Xmean ) for improving the accuracy of Kmeans clustering algorithm. The results show 

that this method enhances the performance of k-Means, particularly when the features in the dataset 

have varying scales or distributions. By using the mean instead of the maximum value for scaling, 

the normalization process becomes more robust, reducing the influence of outliers and providing 

more consistent results across different clustering algorithms. 

In conclusion, the modified Min-Max scaling is a valuable preprocessing step for improving 

clustering accuracy and should be considered when working with datasets that contain features with 

large scale differences or outliers. 
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