Submitted:
07 November 2024
Posted:
08 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Invasive and Non-Native Plant Species
3. The Global Threat of the Plant Invaders Presence
4. Challenges in Prevention, Eradication and Control
5. New Perspectives in Plant Invasion Research
5.1. Phytoremediation Potential
5.2. Natural Dyes
5.3. Chemical and Pharmaceutical Potential
5.4. Interaction with Native Pollinators
5.5. To Eat or Not to Eat?
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pierzynski, G.M.; Vance, G.F.; Sims, T.J. Soils and environmental quality, 3rd ed.; Taylor & Francis Group: Boca Raton, USA, 2005; 584p. [Google Scholar]
- Lee, K.E.; Pankhurst, C.E. Soil organisms and sustainable productivity. Aust. J. Soil Res. 1992, 30, 855–892. [Google Scholar] [CrossRef]
- Pritchard, S.G. Soil organisms and global climate change. Plant Pathol. 2011, 60, 82–99. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni,S. ; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Sharafatmandrad, M.; Mashizi, A.K. Temporal and spatial assessment of supply and demand of the water-yield ecosystem service for water scarcity management in arid to semi-arid ecosystems. Water Resour. Manag. 2021, 35, 63–82. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Castellano, M.J.; Archontoulis, S.V.; Helmers, M.J.; Poffenbarger, H.J.; Six, J. Sustainable intensification of agricultural drainage. Nat. Sustain. 2019, 2, 914–921. [Google Scholar] [CrossRef]
- Levine, J.M.; Vilà, M.; D’Antonio, C.M.; Dukes, J.S.; Grigulis, K.; Lavorel, S. Mechanisms underlying the impacts of exotic plant invasions. Proc. Royal Soc. B, 2003; 270, 775–781. [Google Scholar]
- Bobuľská, L.; Demková, L.; Čerevková, A.; Renčo, M. Invasive Goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in Central Europe. Diversity 2019, 11, 134. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Bobuľská, L.; Hauptvogl, M.; Hrstková, M. Open mining pits and heaps of waste material as the source of undesirable substances: biomonitoring of air and soil pollution in former mining area (Dubník, Slovakia). Environ. Sci. Pollut. Res. 2019, 26, 35227–35239. [Google Scholar] [CrossRef]
- Caspi, T.; Hartz, L.A.; Villa, A.E.S.; Loesberg, J.A.; Robins, C.R.; Meyer III, W.M. Impact of invasive annuals on soil carbon and nitrogen storage in southern California depend on the identity of the invader. Ecol. Evol. 2019, 9, 4980–4993. [Google Scholar] [CrossRef]
- Pickett, B.; Irvine, I.C.; Bullock, E.; Arogyaswamy, K.; Aronson, E. Legacy effects of invasive grass impact soil microbes and native shrub growth. Invasive Plant Sci. Manag. 2019, 12, 22–35. [Google Scholar] [CrossRef]
- Čerevková, A.; Miklisová, D.; Bobuľská, L.; Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 2020, 94, e51. [Google Scholar] [CrossRef]
- Theodoropoulos, D.I. Invasion biology. Critique of a pseudoscience. Ann. Bot. 2004, 94, 196–197. [Google Scholar]
- Sagoff, M. Do non-native species threaten the natural environment? J. Agric. Environ. Ethics 2005, 18, 215–236. [Google Scholar] [CrossRef]
- Brown, R.L.; Peet, R.K. Diversity and invasibility of southern Appalachian plant communities. Ecology 2003, 84, 32–39. [Google Scholar] [CrossRef]
- Davis, M.A.; Grime, J.P.; Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 2000, 88, 528–534. [Google Scholar] [CrossRef]
- Colautti, R.I.; MacIsaac, H.I. A neutral terminology to define ‘invasive’ species. Divers. Distrib. 2004, 10, 135–141. [Google Scholar] [CrossRef]
- Hulme, P.E. Addressing the threat to biodiversity from botanic gardens, Trends Ecol. Evol. 2011, 26, 168–174. [Google Scholar]
- McNeely, J.A. The Great Reshuffling: Human Dimensions of Invasive Alien Species, 1st ed.; IUCN: Gland, Cambridge, Switzerland, UK, 2001; 245p. [Google Scholar]
- Raymond, B.; McInnes, J.; Dambacher, J.M.; Way, S.; Bergstrom, D.M. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island, J. Appl. Ecol. 2011, 48, 181–191. [Google Scholar] [CrossRef]
- Traveset, A.; Richardson, D.M. Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol. Evol. 2006, 21, 208–216. [Google Scholar] [CrossRef]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Šibíková, M.; Jarolímek, I.; Hegedüšová, K.; Májeková, J.; Mikulová, K.; Slabejová, D.; Škodová, I.; Zaliberová, M.; Medvecká, J. Effect of planting alien Robinia pseudoacacia trees on homogenization of Central European forest vegetation. Sci. Total Environ. 2019, 687, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Verma, A.K.; Garkoti, S.C. Lantana camara and Ageratina adenophora invasion alter the understory species composition and diversity of chir pine forest in central Himalaya, India. Acta Oecol. 2020, 109, 103642. [Google Scholar] [CrossRef]
- Ahmad, R.; Khuroo, A.A.; Hamid, M.; Rashid, I. Plant invasion alters the physico-chemical dynamics of soil system: insights from invasive Leucanthemum vulgare in the Indian Himalaya. Environ. Monit. Assess. 2019, 191, 792. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, S.; Verma, A.K.; Joshi, R.K.; Garkoti, S.C. Invasion of Lantana camara and Ageratina adenophora alters the soil physico-chemical characteristics and microbial biomass of chir pine forests in the central Himalaya, India. Catena 2021, 207, 105624. [Google Scholar] [CrossRef]
- Mao, R.; Bajwa, A.A.; Adkins, S. A superweed in the making: adaptation of Parthenium hysterophorus to a changing climate. A review, Agron. Sustain. Dev. 2021, 41, 47. [Google Scholar] [CrossRef]
- Zelnik, I. The presence of invasive alien plant species in different habitats: case study from Slovenia, Acta Biol. Slov. 2012, 22, 25–38. [Google Scholar] [CrossRef]
- Reinhart, K.O.; Callaway, R.M. Soil biota and invasive plants. New Phytol. 2006, 170, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.A.; Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practice, Glob. Environ. Change 2010, 20, 96–112. [Google Scholar] [CrossRef]
- Vilà, M.; Corbin, J.D.; Dukes, J.S.; Pino, J.; Smith, S.D. Linking plant invasion to global environmental change. In Terrestrials ecosystems in a changing world, 1st ed.; Canadell, J.G., Pataki, D., Pitelka, L., Eds.; The IGBP Series; Springer: Berlin, Heidelberg, Germany, 2007; pp. 93–102. [Google Scholar]
- Shackleton, R.T.; Shackleton, C.M.; Kull, C.A. The role of invasive alien species in shaping local livelihoods and human well-being: a review, J. Environ. Manage. 2019, 229, 145–157. [Google Scholar] [CrossRef]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being, Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar]
- Gallardo, B.; Bacher, S.; Bradley, B.; Comín, F.A.; Gallien, L.; Jeschké, J.M.; Sorte, C.J.B.; Vilà, M. Invasives: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services, NeoBiota 2019, 50, 109-122.
- Jones, B.A.; McDermott, S.M. Health impacts of invasive species through an altered natural environment: assessing air pollution sinks as a causal pathway, Environ. Resour. Econ. 2018, 71, 23–43. [Google Scholar] [CrossRef]
- Bobuľská, L.; Demková, L. Effects of invasive species Impatiens parviflora on soil microbial indices in the protected areas in Slovakia. In Proceeding of the VIII International Scientific Agriculture Symposium Agrosym, Jahorina, Bosnia and Herzegovina, 05-08 October 2017; pp. 1880–1885. [Google Scholar]
- Vilà, M.; Hulme, P.E. Impact of Biological Invasions on Ecosystem Services, 1st ed.; Springer Nature: Cham, Switzerland, 2017; 354p. [Google Scholar]
- Moroń, D.; Lenda, M.; Skórka, P.; Szentgyörgyi, H.; Settele, J.; Woyciechowski, M. Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biol. Conserv. 2009, 142, 1322–1332. [Google Scholar] [CrossRef]
- Lenda, M.; Witek, M.; Skórka, P.; Moroń, D.; Woyciechowski, M. Invasive alien plants affect grassland and communities, colony size and foraging behavior, Biol. Invasions 2013, 15, 2403–2414. [Google Scholar] [CrossRef]
- Baranová, B.; Manko, P.; Jászay, T. Differences in surface-dwelling beetles of grassland invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect Conserv. 2014, 18, 623–635. [Google Scholar] [CrossRef]
- Yeates G., W.; Ferris, H.; Moens, T.; van der Putten, W. H. The role of nematodes in Ecosystems. In Nematodes as environmental indicators, 1st ed.; Wilson, M. J., Kakouli-Duarte, T., Eds.; CABI International: Wallingford, UK, 2009; pp. 1–106. [Google Scholar]
- Ritz, K.; Black, H.I.J.; Campbell, C.D.; Harris, J.A.; Wood, C. Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 2009, 9, 1212–1221. [Google Scholar] [CrossRef]
- Čerevková, A.; Bobuľská, L.; Miklisová, D.; Renčo, M. A case study of soil food web components affected by Fallopia japonica (Polygonaceae) in three natural habitats in Central Europe. J. Nematol. 2019, 51, e42. [Google Scholar] [CrossRef] [PubMed]
- Trognitz, F.; Hackl, E.; Widhalm, S.; Sessitsch, A. The roleof plant-microbiome interactions in weed establishment and control. FEMS Microbiol. Ecol. 2016, 92, 1–15. [Google Scholar] [CrossRef]
- Vinhal-Freitas, I.C.; Corrêa, G.F.; Wendling, B.; Bobuľská, L.; Ferreira, A.S. Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecol. Indic. 2017, 74, 182–190. [Google Scholar] [CrossRef]
- Sicardi, M.; Garcı́a-Préchac, F.; Frioni, L. Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay. Appl. Soil Ecol. 2004, 27, 125–133. [Google Scholar] [CrossRef]
- Bobuľská, L.; Demková, L. Functional diversity and activity of microbial communities is altered by land use management in agricultural soil of North-East Slovakia. Russ. J. Ecol. 2021, 52, 470–478. [Google Scholar] [CrossRef]
- Peltzer, D.A.; Bellingham, P.J.; Kurokawa, H.; Walker, L.R.; Wardle, D.A.; Yeates, G.W. Punching above their weight: Low-biomass non-native plant species alter soil properties during primary succession. Oikos 2009, 118, 1001–1014. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Goncalves, P.; Copeland, E.; Qi, S.S.; Dai, Z.C.; Li, G.L.; Wang, C.Y.; Du, D.L.; Thomas, T. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol. Biochem. 2020, 143, 107739. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Pineda, R.P.; Barney, J.N.; Nilsen, E.T.; Barrett, J.E.; Williams, M.A.; Liu, J. Plant invasions associated with change in root-zome microbial community structure and diversity. PLos One 2015, 10, e0141424. [Google Scholar] [CrossRef]
- Chacón, N.; Herrera, I.; Flores, S.; Gonzáles, J.A.; Nassar, J.M. Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in neotropical arid zones. Biol. Fertil. Soils 2009, 45, 321–328. [Google Scholar] [CrossRef]
- Kong, Y.; James, K.; Dingkang, W.; Heping, H.; Kaiyou, G.; Yonxia, W.; Yun, X. Effect of Ageratina adenophora invasion on the composition and diversity of soil microbiome. J. Gen. Appl. Microbiol. 2017, 63, 114–121. [Google Scholar] [CrossRef]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: a meta-analysis of their effect on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Song, W.; Feng, J.; Jia, D.; Guo, J.; Wang, Z.; Wu, H.; Qi, F.; Liang, J.; Lin, G. Increased nitrogen input enhances Kandelia obovata seedling growth in the presence of invasive Spartina alterniflora in subtropical regions of China, Biol. Lett. 2017, 13, 20160760. [Google Scholar] [CrossRef]
- Perry, L.G.; Blumenthal, D.M.; Monaco, T.A.; Paschke, M.W.; Redente, E.F. Immobilizing nitrogen to control plant invasion, Oecologia 2010, 163, 13-24.
- Vitousek, P.M.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.; Schlesinger, W.H.; Tilman, G.D. Human alteration of the global nitrogen cycle: Causes and consequences. Issues Ecol. 1997, 1, 1–17. [Google Scholar]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants, Nature 2003, 421, 57-60.
- Dukes, J.S.; Mooney, H.A. Does global change increase the success of biological invaders? Trends Ecol. Evol. 1999, 14, 135–139. [Google Scholar] [CrossRef]
- Ehrenfeld, J. Effects of exotic plant invasions of ecosystem nutrient cycling processes. Ecosystems 2003, 6, 503–523. [Google Scholar] [CrossRef]
- Rejmánek, M. Invasive plants: approaches and prediction. Austral Ecol. 2000, 25, 497–506. [Google Scholar] [CrossRef]
- Thompson, S. K.; Seber, G.A.F. Adaptive Sampling, 1st ed.; Wiley-Interscience: New York, USA, 1996; 288p. [Google Scholar]
- Wang, W.; Zhang, Ch.; Allen, J.M.; Li, W.; Boyer, M.A.; Segerson, K.; Silander, J.A. Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut, Land 2016, 5, 25.
- With, K.A. The landscape ecology of invasive spread, Conserv. Biol. 2002, 16, 1192–1203. [Google Scholar]
- Jarošík, V.; Pyšek, P.; Foxcroft, L.C.; Richardson, D.M.; Rouget, M.; MacFadyen, S. Predicting incursion of plant invaders into Kruger National Park, South Africa: the interplay of general drivers and species-specific factors, PloS One 2011, 6, e28711.
- Randall, L.M. Protected areas. In Encyclopedia of Biological Invasions, 1st ed.; Simberloff, D., Rejmánek, M., Eds.; University of California: Berkley, USA, 2011; pp. 563–567. [Google Scholar]
- Horan, R.D.; Perrings, Ch.; Lupi, F.; Bulte, E.H. Biological pollution prevention strategies under ignorance: the case of invasive species. Amer. J. Agr. Econ. 2005, 84, 1303–1310. [Google Scholar] [CrossRef]
- Jarnevich, C.S.; Sofaer, H.R.; Engelstad, P. Modelling presence versus abundance for invasive species risk assessment. Divers. Distrib. 2021, 27, 2454–2464. [Google Scholar] [CrossRef]
- Olson, L. The economics of terrestrial invasive species: a review of the literature. Agric. Resour. Econ. Rev. 2006, 35, 178–194. [Google Scholar]
- Yli-Panula, E.; Jeronen, E.; Lemmetty, P.; Pauna, A. Teaching methods in biology promoting biodiversity education. Sustain. 2018, 10, 1–18. [Google Scholar]
- Sosa, A.J.; Jiménez, N.L.; Faltlhauser, A.C.; Righetti, T.; McKay, F.; Bruzzone, O.A.; Souto, A.F. The educational community and its knowledge and perceptions of native and invasive alien species. Sci. Rep. 2021, 11, 21474. [Google Scholar]
- Cordeiro, B.; Marchante, H.; Castro, P.; Marchante, E. Does public awareness about invasive plants pays off? An analysis of knowledge and perceptions of environmentally aware citizens in Portugal. Biol. Invasions 2020, 22, 2267–2281. [Google Scholar] [CrossRef]
- Zavaleta, E.S.; Hobbs, R.J.; Mooney, H.A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 2001, 16, 454–459. [Google Scholar] [CrossRef]
- Donlan, C.J.; Tershy, B.R.; Keitt, B.S.; Wood, B.; Sánchez, J.Á.; Weinstein, A.; Croll, D.A.; Hermosillo, M.Á.; Aguilar, J.L. Island conservation action in northwest México. In Proceeding of the Fifth California Islands Symposium, Museum of Natural History, Santa Barbara, USA, 29 March-1 April 1999; pp. 330–338. [Google Scholar]
- Green, S.J.; Grosholz, E.D. Functional education as a framework for invasive species control. Front. Ecol. Environ. 2021, 19, 98–107. [Google Scholar]
- Clarke, M.; Ma, Z.; Snyder, S.A.; Hennes, E.P. Understanding invasive plant management on family forestland: An application of protection motivation theory. J. Environ Manage. 2021, 286, 112161. [Google Scholar] [CrossRef] [PubMed]
- Krajšek, S.S.; Kladnik, A.; Skočir, S.; Bačič, M. Seed germination of invasive Phytolacca americana and potentially invasive P. acinosa. Plants 2023, 12, 1052. [Google Scholar] [CrossRef]
- Moore, E.; D'Amico, V.; Trammell, T.L.E. Plant community dynamics following non-native shrub removal depend on invasion intensity and forest site characteristics. Ecosphere 2023, 14, e4351. [Google Scholar] [CrossRef]
- Barudanović, S.; Zečić, E.; Macanović, A.; Duraković, B.; Mašić, E. Invasive alien plant species in global perspectives with special references to Bosnia and Herzegovina. In Invasive Alien Species: Observations and Issues from Around the World, 1st ed.; Pullaiah, T., Ielmini, M.R., Eds.; John Wiley & Sons Ltd.: New York, USA, 2011; pp. 215–252. [Google Scholar]
- Forner, W.G.; Zalba, S.M.; Guadagnin, D.L. Methods for prioritizing invasive plants in protected areas: A systematic review. Nat. Areas J. 2022, 42, 69–78. [Google Scholar] [CrossRef]
- Senator, S.A.; Rozenberg, A.G. Assessment of economic and environmental impact of invasive plant species. Biol. Bull. Rev. 2017, 7, 273–278. [Google Scholar] [CrossRef]
- Lampert, A.; Hastings, A.; Grosholtz, E.D.; Jardine, S.L.; Sanchirico, J.N. Optimal approaches for balancing invasive species eradication and endangered species management. Science 2014, 344, 1028–1031. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Han, G.; Qiao, P.; Mei, B.; Wang, Q.; Zhou, Y.; Zhang, A.; Song, W.; Guan, B. Effects of mechanical and chemical control on invasive Spartina alternifolia in the Yellow River Delta, China. PeerJ 2019, 7, e7655. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D.; Keitt, B.; Will, D.; Holmes, N.; Pickett, E.; Genovesi, P. Yes we can! Exciting progress and prospects for controlling invasives on islands and beyond. West. N. Am. Nat. 2018, 78, 942–958. [Google Scholar] [CrossRef]
- Nuñez, M.A.; Chiuffo, M.C.; Torres, A.; Paul, T.; Dimarco, R.D.; Raal, P.; Policelli, N.; Moyano, J.; García, R.A.; van Wilgen, B.W.; Pauchard, A.; Richardson, D.M. Ecology and management of invasive Pinaceae around the world: progress and challenges. Biol. Invasions 2017, 19, 3099–3120. [Google Scholar] [CrossRef]
- Weidlich, E.W.A.; Flórido, F.G.; Sorrini, T.B.; Brancalion, P.H.S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 2020, 57, 1806–1817. [Google Scholar] [CrossRef]
- Hubert, T.D.; Miller, J.; Burkett, D. A brief introduction to integrated pest management for aquatic systems. N. Am. J. Fish. Manag. 2019, 41, 264–275. [Google Scholar] [CrossRef]
- Havens, K.; Jolls, C.L.; Knight, T.M.; Vitt, P. Risks and rewards: assessing the effectiveness and safety of classical invasive plant biocontrol by arthropods. BioScience 2019, 69, 247–258. [Google Scholar] [CrossRef]
- Kettenring, K.M.; Adams, C.R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 2011, 48, 970–979. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Suckling, D.M.; Wearing, C.H.; Byers, J.A. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 2006, 99, 1550–1564. [Google Scholar] [CrossRef] [PubMed]
- Tebboth, M.G.L.; Few, R.; Assen, M.; Degefu, M.A. Valuing local perspectives in invasive species management: Moving beyong the ecosystems service-disservice dichotomy. Ecosyst. Serv. 2020, 42, 101068. [Google Scholar] [CrossRef]
- Hess, M.C.M.; Mesléard, F.; Buisson, E. Priority effects: Emerging principles for invasive plant species management. Ecol. Eng. 2019, 127, 48–57. [Google Scholar] [CrossRef]
- Reid, A.M.; Morin, L.; Downey, P.O.; French, K.; Virtue, J.G. Does invasive plant management aid the restoration of natural ecosystems? Biol. Conserv. 2009, 142, 2342–2349. [Google Scholar] [CrossRef]
- Harker, K.; O'Donovan, J. Recent weed control, weed management and integrated weed management. Weed Technol. 2013, 27, 1–11. [Google Scholar] [CrossRef]
- Strayer, D.L. Eight questions about invasions and ecosystem functioning. Ecol. Lett. 2012, 15, 1199–1210. [Google Scholar] [CrossRef]
- Cassini, M.H. A review of the critics of invasion biology. Ecol. Rev. 2020, 95, 1467–1478. [Google Scholar] [CrossRef]
- Larson, D.L.; Phillips-Mao, L.; Quiram, G.; Sharpe, L.; Stark, R.; Sugita, S.; Weiler, A. A framework for sustainable invasive species management: Environmental, social, and economic objectives. J. Environ. Manage. 2011, 92, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Bobuľská, L.; Čekanová, K.; Demková, L.; Oboňa, J.; Sarvaš, J. Evaluation of the phytoremediation properties of the invasive species Solidago genus. An. Univ. Craiova, Biol. med. ştiinţe agric. 2018, 23, 314–320. [Google Scholar]
- Dudek, K.; Michlewicz, M.; Dudek, M.; Tryjanowski, P. Invasive Canadian goldenrod (Solidago canadensis L.) as a preferred foraging habitat for spider. Arthropod-Plant Inte. 2016, 10, 377–381. [Google Scholar] [CrossRef]
- Prabakaran, K.; Li, J.; Anandkumar, A.; Leng, Z.; Zou, C.B.; Du, D. Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol. Eng. 2019, 138, 28–37. [Google Scholar] [CrossRef]
- Ruwanza, S.; Shackleton, C.M. Effects of the invasive shrub, Lantana camara, on soil properties in the Eastern Cape, South Africa. Weed Biol. Manag. 2016, 16, 67–79. [Google Scholar] [CrossRef]
- Jo, I.; Fridley, J.D.; Frank, D.A. Invasive plants accelerate nitrogen cycling: evidence from experimental woody monocultures. J. Ecol. 2017, 105, 1105–1110. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Jagodziński, A.M. Functional traits of acquisitive invasive woody species differ from conservative invasive and native species. NeoBiota 2019, 41, 91–113. [Google Scholar] [CrossRef]
- Mathakutha, R.; Steyn, C.; Roux, P.C.; Blom, I.J.; Chown, S.L.; Daru, B.H.; Ripley, B.S.; Louw, A.; Greve, M. Invasive species differ in key functional traits from native and non-invasive alien plant species. J. Veg. Sci. 2019, 30, 994–1006. [Google Scholar] [CrossRef]
- Ye, X.Q.; Yan, Y.N.; Wu, M.; Yu, F. High capacity of nutrient accumulation by invasive Solidago canadensis in a coastal grassland. Front. Plant Sci. 2019, 10, 575. [Google Scholar] [CrossRef]
- Denley, D.; Metaxas, A.; Fennel, K. Community composition influences the population growth and ecological impact of invasive species in response to climate changes. Oecologia 2019, 189, 537–548. [Google Scholar] [CrossRef]
- Braun, K.; Collantes, M.B.; Yahdjian, L.; Escartin, C.; Anchorena, J.A. Increased litter decomposition rates of exotic invasive species Hieracium pilosella (Asteraceae) in Southern Patagonia, Argentina. Plant Ecol. 2019, 220, 393–403. [Google Scholar] [CrossRef]
- Zeng, A.; Hu, W.; Zeng, C.; Sun, Z.; Gao, D. Litter decomposition and nutrient dynamics of native species (Cyperus malaccensis) and alien invasive species (Spartina alternifolia) in a typical subtropical estuary (Min river) in China. Estuaries Coast 2020, 43, 1873–1883. [Google Scholar] [CrossRef]
- Dassonville, N.; Vanderhoeven, S.; Vanparys, V.; Hayez, M.; Gruber, W.; Meerts, P. Impacts of alien invasive plant on soil nutrients are correlated with initial site conditions in NW Europe, Oecologia 2008, 157, 131-140.
- Wagh, V.V.; Jain, A.K. Status of ethnobotanical invasive plants in western Madhya Pradesh, India. S. Afr. J Bot. 2018, 114, 171–180. [Google Scholar] [CrossRef]
- Pétilon, J.; Ysner, F.; Canard, A.; Lefeuvne, L.C. Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implication for management: Responses of spider population. Biol. Conserv. 2005, 126, 103–117. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Tran, T.V.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.N. Invasive plants as biosorbents for environmental remediation: a review. Environmental Chem. Lett. 2022, 20, 1421–1451. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Recent studies in applications of aquatic weed plants in phytoremediation of wastewater: a review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Yousaf, B.; Liu, G.; Abbas, Q.; Ali, M.U.; Wang, R.; Ahmed, R.; Wang, C.; Al-Wabel, M.I.; Usman, A.R.A. Operational control on environmental safety of potentially toxic elements during thermal conversion of metal- accumulator invasive ragweed to biochar. J. Clean. Prod. 2018, 195, 458–469. [Google Scholar] [CrossRef]
- Odoh, C.K.; Zabbey, N.; Sam, K.; Eze, C.N. Status, progress and challenges of phytoremediation – An African scenario. J. Environ. Manage. 2019, 237, 365–378. [Google Scholar] [CrossRef]
- Davarnejad, R.; Azizi, A.; Mohammadi, M.; Mansoori, S. A green technique for synthesizing iron nanoparticles by extract of centaurea cyanus plant: an optimized adsorption process for methylene blue. Int. J. Environ. Anal Chem. 2022, 102, 2379–2393. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Mengelizadeh, N.; Taghavi, M.; Mohebi, S.; Balarak, D. Activated carbon derived from Azolla filiculoides fern: a high-adsorption-capacity adsorbent for residual ampicillin in pharmaceutical wastewater. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive planrs as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour. Conserv. Recycl. 2021, 164, 105204. [Google Scholar] [CrossRef]
- Yang, J.; Xu, P.; Xia, Y.; Chen, B. Multifunctional carbon aerogels from Typha orientalis for oil/water separation and simultaneous removal of oil-soluble pollutants. Cellulose 2018, 25, 5863–5875. [Google Scholar] [CrossRef]
- Flax, B.; Bower, A.H.; Wagner-Graham, M.A.; Bright, M.; Cooper, I.; Nguyen, W.; Nunez, H.; Purdy, B.; Wahba, N.; Savage, T.; D'Souza, I.; LaCour, A.; Akelaitis, E. Natural dyes from three invasive plant species in The United States. J. Nat. Fibers 2022, 19, 10964–10978. [Google Scholar] [CrossRef]
- Huang, X.; Wan, Y.; Shi, B.; Shi, J.; Chen, H.; Liang, H. Characterization and application of poly-ferric-tittanium-silicate-sulfate in disperse and reactive dye wastewaters treatment. Chemosphere 2020, 249, 126129. [Google Scholar] [CrossRef]
- Hebeish, A.; Shahin, A.A.; Ragheb, A.A. New environment-friendly approach for textile printing using natural dye loaded chitosan nanoparticles. Egypt. J. Chem. 2015, 58, 659–670. [Google Scholar]
- Klančnik, M. printing with natural dye extracted from Impatiens grandulifera Royle. Coatings 2021, 11, 445. [Google Scholar] [CrossRef]
- Domingcil, K.; Lin, S.H. Natural dyes and the sustainable environment from invasive plants. J. Hwa Gang Text. 2017, 24, 406–418. [Google Scholar]
- Devi, S.; Karuppan, P. Reddish brown pigments from Alternaria alternata for textile dyeing and printing. Indian J. Fibre Text. Res. 2015, 40, 315–319. [Google Scholar]
- Máximo, P.; Ferreira, L.M.; Branco, P.S.; Lourenço, A. Invasive plants: turning enemies into value. Molecules 2020, 25, 3529. [Google Scholar] [CrossRef]
- Gaspar, M.C.; Fronseca, D.A.; Antunes, M.J.; Frigerio, C.; Gomes, N.G.M.; Vieira, M.; Santos, A.E.; Cruz, M.T.; Cotrim, M.D.; Campos, M.G. Polyphenolic characterization and bioactivity of an Oxalis pes-caprae L. leaf extract. Nat. Prod. Res. 2018, 32, 732–738. [Google Scholar] [CrossRef]
- Meddeb, E.; Charni, M.; Ghazouani, T.; Cozzolino, A.; Frantianni, F.; Raboudi, F.; Nazzaro, F.; Fattouch, S. Biochemical and molecular study of carpobrotus edulis bioactive properties and their effects on dugresia sicula (turbellaria, tricladida) regeneration. Appl. Biochem. Biotechnol. 2017, 182, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Hafsa, J.; Hammi, K.M.; Ben Khedher, M.R.; Smach, M.A.; Charfeddine, B.; Limem, K.; Majdoub, H. Inhibition of protein glycation, antioxidant and antiproliferative activities of carpobrotus edulis extracts. Biomed. Pharmacother. 2016, 84, 1496–1503. [Google Scholar] [CrossRef]
- Madureira, A.M.; Duarte, A.; Teixeira, G. Antimicrobial activity of selected extracts from Hakea salicifolia and H. sericeae (Proteaceae) against Staphylococcus aureus multiresistant strains. S. Afr. J. Bot. 2012, 81, 40–43. [Google Scholar] [CrossRef]
- Gruľová, D.; Baranová, B.; Ivanova, V.; DeMartino, L.; Manchini, E.; De Feo, V. Composition and bio activity of essential oils of Solidago spp. and their impact on radish and garden cress. Allelopathy J. 2016, 39, 129–142. [Google Scholar]
- Barney, J.N.; Hay, A.G.; Weston, L.A. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J. Agric. Food Chem. 2005, 53, 247–265. [Google Scholar] [CrossRef]
- Gruľová, D.; Krausová, P.; Demková, L.; Bobuľská, L.; Sedlák, V.; Konečná, M.; Mydlárová Blaščáková, M.; Poráčová, J. Comparison of the quality and quantity of Solidago canadensis L. essential oil and its allelopatic activity from three localities in dependence to the distance to industrial park. Biodiv. Environ. 2020, 12, 51–65. [Google Scholar]
- Ding, L.J.; Ding, W.; Zhang, Y.Q.; Luo, J.X. Bioguided fractionation and isolation of esculentoside p from Phytolacca americana L. Ind. Crop Prod. 2013, 44, 534–541. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, H.; Wei, M.; Wang, S.; Wang, C. Silver nanoparticles intensify the allelopathic intensity of four invasive plant species in the Asteraceae. An. Acad. Bras. Cienc. 2022, 94, e20201661. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Tran, T.V.; Nguyen, T.T.T.; Nguyen, D.H.; Alhassan, M.; Lee, T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. Sci. Total Environ. 2023, 857, 159278. [Google Scholar] [CrossRef]
- Stout, J.C.; Tiedeken, E.J. Direct interactions between invasive plants and native pollinators: evidence, impacts and approaches. Func. Ecol. 2017, 31, 38–46. [Google Scholar] [CrossRef]
- Gonzáles-Varo, J.P.; Biesmeijer, J.C.; Bommarco, R.; Potts, S.G.; Schweiger, O.; Smith, H.G.; Steffan-Dewenter, I.; Szentgyörgyi, H.; Woyciechowski, M.; Vilà, M. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 2013, 28, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.C.; Morales, C.L. Ecological impacts of invasive alien species on bees. Apidologie 2009, 40, 388–409. [Google Scholar] [CrossRef]
- Drossart, M.; Michez, D.; Vanderplanck, M. Invasive plants as potential food resource for native pollinators: A case study with two invasive species and a generalist bumble bee. Sci. Rep. 2017, 7, 16242. [Google Scholar] [CrossRef]
- Russo, L.; de Keyzer, C.W.; Harmon-Threatt, A.N.; LeCroy, K.A.; MacIvor, J.S. The managed-to-invasive species continuum in social and solitary bees and impacts on native bee conservation. Curr. Opin. Insect Sci. 2021, 46, 43–49. [Google Scholar] [CrossRef]
- Jakobsson, A.; Padrón, B. Does the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes? Oecologia 2014, 174, 217–226. [Google Scholar] [CrossRef]
- Brown, B.J.; Mitchell, R.J. Competition for pollination: effects on pollen of an invasive plant on seed set of a native congener. Oecologia 2001, 129, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Koyama, A.; Egawa, C.; Taki, H.; Yasuda, M.; Kanzaki, N.; Ide, T.; Okabe, K. Non-native plants are seasonal pollen source for native honeybees in suburban ecosystems. Urban Ecosyst. 2018, 21, 1113–1122. [Google Scholar] [CrossRef]
- Diaz-Betancourt, M.; Ghermandi, L.; Rapoport, E.H. Weed as a source for human consumption. A comparison between tropical and temperate Latin America. Rev. Biol. Trop. 1999, 47, 329–338. [Google Scholar] [CrossRef]
- Nuñez, M.A.; Kuebbing, S.; Dimarco, R.D.; Simberloff, D. Invasive species: to eat or not to eat, that is the question. Conserv. Lett. 2012, 5, 327–406. [Google Scholar] [CrossRef]
- Mihaly, C.; Heavenrich, S. Diet for a changing climate: food for thought, 1st ed.; Twenty-First Century Books: Minneapolis, USA, 2019; 128p. [Google Scholar]
- Feng, J.; Leone, J.; Schweig, S.; Zhang, Y. Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B.burgdorferi. Front. Med. 2020, 7, 6. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J. Profile of bioactive compounds in the morphological parts of wild Fallopia japonica (Houtt) and Fallopia sachalinensis (F. Schmidt) and their antioxidative activity. Molecules 2019, 24, 1436. [Google Scholar] [CrossRef] [PubMed]
| Approaches | Advantages | Limits | References |
|---|---|---|---|
|
Mechanical (pulling, digging, hot steam application, plucking, grazing, plowing, cutting, mowing, mulching, foil placing, suffocation) |
Practically very effective Preventing the formation of flowers, fruits and seeds Destruction of seed stock Least harmful to the environment |
Small area application Very strenuous and laborious Plants often regenerate and are capable of new reproduction Not applicable in every type of ecosystems |
[83,84,85] |
|
Chemical (herbicides) |
Large scale area application Affects the whole plant including root system |
Very harmful to the environment | [83,84,85,86] |
| Does not affect the soil supply of seeds Reduced effect if plants are heavily dusted Not applicable in every type of ecosystems | |||
|
Combined (mechanical and chemical) |
The most effective among listed Small and large scale application Suitable for excessively tall and dense population |
Unrecorded | [73,85,87] |
|
Biological (natural invaders enemies – insects, mold, fungi) |
Exploiting the potential of a natural enemy | Low efficiency The possibility of the damage, not the total elimination Insufficient research |
[84,88,89,90] |
|
Environmental (appropriate management of unmaintained and abandoned sites) |
Well managed and maintained localities Prevention of the penetration of competitively stronger and fast-starters invaders |
Appropriate use only with other effective methods | [75,86,91,92,93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
