Preprint
Review

How ASIA-PACIFIC and Arabian Countries Published Articles in the Scopus and WoS Indexed Sources with EEGLAB in 20 Years: A Bibliometric Study

Altmetrics

Downloads

80

Views

106

Comments

0

This version is not peer-reviewed

Submitted:

10 November 2024

Posted:

11 November 2024

You are already at the latest version

Alerts
Abstract
Introduction: The EEGLAB is one of the main and primary software for designing and analyzing experiments with electroencephalography datasets. It has been used globally for more than 20 years. The aim of this bibliometric research is to study the ASIA-PACIFIC and Arabian states regions with 80 countries and territories and the way they used EEGLAB and published articles in SCOPUS and Web of Science (WoS) Indexed Sources. Methods : The bibliometrix package in R was used to analyze all SCOPUS and WoS indexes- sources citations of EEGLAB's main article from the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) with 5 subregions and 58 countries and territories and United Nations Economic and Social Commission for West Asia (ESCWA) or Arab States with 22 countries and territories until 03/28/2024. Results: There are 22,298 Google Scholar citations for EEGLAB software, meanwhile, this number is reduced to 14,958 (≈ 67.1%) citations in the WoS and 15,827 (≈ 70.1%) citations in the Scopus, respectively. The Bibliometric indices, Lotka's law coefficient estimation, core sources based on Bradford's law, the most globally cited documents in all time, after 2020 and 2022, Co-Occurrence Network of WoS subject, Co-Citation Network Papers and Historiography are presented. Most analyses have been grouped by database, regions, and subregions. The appendix includes further analysis for example country-based analysis for China, Japan, India, Russian Federation and Iran. Conclusions: About 35% of all WoS documents and 41% of authors came from these two regions (ESCAP and ESCWA) while the average citation per doc in the world is doubled these two regions.
Keywords: 
Subject: Medicine and Pharmacology  -   Neuroscience and Neurology
  • Key messages
    • The bibliometric analysis of all EEGLAB Citations from SCOPUS & Web of Science
    • Focus on 80 countries & territories including the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) and West Asia (ESCWA)
    • Estimating and Comparison of Lotka's law coefficient estimation for Author Scientific Productivity among subregions with Functional Data Analysis
    • Provided the Most Global Cited Documents, historiographies, co-citation networks and co-occurrence network of WoS subject group by subregions, periods and databases
    • Further analysis in the online Supplementary materials including specific analysis for China, Japan, India, Russian Federation and Iran.

1. Introduction [409 words]

After the development of the electroencephalogram (EEG) by Hans Berger in 1929 and since 1936 it became a major diagnostic tool and instrument in neuroscience globally (Keshavan et al., 2024; Mecarelli, 2019; Pavlov et al., 2021). From the 1990s many different academic software applications were developed for brain mapping with EEG (Baillet et al., 2011) such as EEGLAB (Delorme & Makeig, 2004) , Field-Trip (Oostenveld et al., 2011) , SPM (Litvak et al., 2011) and recent advances in Python such as MNE (Gramfort et al., 2014). The EEGLAB is an open source application developed by a team with the leading of Professor Arnaud Delorme and Scott Makeig from Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, USA. (Delorme & Makeig, 2004) The main features are providing Independent Component Analysis (ICA) and time/frequency analysis, various methods for artifact removal, a user-friendly graphical user interface (GUI), multiformat data importing, and interactive plotting. It has been downloaded about 350,000 times more than 15,265 researchers in the EEGLAB news list and more than 160 plug-ins (EEGLAB Website).
More than 12,700 Web of Science indexed research articles and documents cited EEGLAB papers worldwide with an estimated international Co-authorship is 37.27% (Fayaz, 2023). As stated in many bibliometric analysis, for example in Construction Health and Safety Management (Ding et al., 2023), Visualizations in Computer Graphics (Sajovic & Boh Podgornik, 2022) , Brain-Computer Interface (Stegman et al., 2020) and Good Scientific Practice (Niso et al., 2022) , EEGLAB is the main software.
The bibliometric study of geographically specific regions is of interest in neuroscience such as : neuroscience research in Saudi Arabia (Alhibshi et al., 2020), Turkey (Kocak et al., 2019), Iran (Ashrafi et al., 2012), Latin America (Forero et al., 2020), Brazil (Hoppen & Vanz, 2016), Neurosurgical Research in Southeast Asia (Omar II et al., 2022), Egyptian neurosurgical publications (Azab & Salem, 2022), Neurodegenerative Disorders in Arab Countries (El Masri et al., 2021) and Alzheimer's Disease in the world and China (Dong et al., 2019). Usually, the most cited articles came from the United States (US) and North America, European countries, etc., and the remaining parts of the world were not well-studied (Fayaz, 2023). However, there is no bibliometric analysis for EEGLAB paper citations in specific regions such as Asia-Pacific and Arabian states with 80 countries and territories. In this study, the SCOPUS and WOS databases were analyzed for these regions with bibliometrix R packages (Aria & Cuccurullo, 2017).

2. Material and Methods [335 words]

2.1. Selected Regions

The countries and territories in two of the five regional commissions under the jurisdiction of the United Nations Economic and Social Council are considered.(Regional Commissions) They are including:
  • United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) with 58 countries and territories (Division, 2024). They divided into 5 Asia-Pacific subregions:
    I.
    East and North East Asia (ENEA): China, Democratic People's Republic of Korea, Hong Kong (China), Japan, Macao (China), Mongolia and Republic of Korea;
    II.
    North and Central Asia (NCA): Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Russian Federation, Tajikistan, Turkmenistan and Uzbekistan;
    III.
    Pacific (PACIFIC): American Samoa, Australia, Cook Islands, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, Micronesia (Federated States of) , Nauru , New Caledonia, New Zealand, Niue, Northern Mariana Islands, Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga, Tuvalu and Vanuatu;
    IV.
    South East Asia (SEA): Brunei Darussalam, Cambodia, Indonesia, Lao People's Democratic Republic, Malaysia, Myanmar, Philippines, Singapore, Thailand, Timor-Leste and Vietnam;
    V.
    South and South West Asia (SSWA): Afghanistan, Bangladesh, Bhutan, India, Iran (Islamic Republic of), Maldives, Nepal, Pakistan, Sri Lanka and Türkiye.
  • The United Nations Economic and Social Commission for West Asia (ESCWA) or Arab States with the following 22 countries and territories (United Nations Economic and Social Commission for Western Asia, 2024):
    I.
    Algeria, Bahrain, Comoros, Djibouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, State of Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syrian Arab Republic, Tunisia, United Arab Emirates and Yemen.

2.2. Databases

The Web of Science (WoS) and Scopus are used as two citation databases. The search strategy considers all citations grouped by regions, subregions, and countries of the Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods. 2004 Mar 15;134(1):9-21. (Delorme & Makeig, 2004) The date of searching and downloading is 03/28/2024.

2.3. Statistical and Data Analysis

The bibliometric analysis methods are used with bibliometrix package (Aria & Cuccurullo, 2017) in POSIT (https://posit.co/) and R software (https://www.r-project.org/)(R, 2023).

3. Results (1958 Words)

3.1. The Descriptive Statistics

In Google Scholar, there exits 22,298 citations for EEGLAB software (until 03/28/2024) (Delorme & Makeig, 2004), meanwhile this number is reduced into 14,958 (   67.1%) citations in the WoS and 15,827 (   70.1%) citations in the Scopus, respectively. The accessible WoS results include 14,598 citations. The number of total citations in WoS for all selected regions is 4,836 (   21.6%) articles and for ENEA, NCA, PACIFIC, SEA, SSWA and Arab states were 3,168 (   14.2%), 172 (   0.77%) , 836 (   3.75%), 276 (   1.23%), 564 (   2.52%) and 155 (   0.69%) citations respectively. These citations were published from 2004 to 2024 in 975 sources (journals, conference proceedings, etc.), written by 12,140 authors and they cited 134,022 unique references. The annual growth rate (considering the first three months of 2024) is estimated at 20.85%, the international co-authorship is 42.39%, and the average citation per doc is 13.97 documents. According to the Table 1, the ENEA subregion is in one cluster and other subregions are in another cluster based on the k-mean clustering with a single linkage.
The list of citations grouped by country name and region is presented in Supplementary materials , Table S1 for both WoS and Scopus databases. According to this table, China (2,257), Australia (755), Japan (574), the Republic of Korea (392), India (231), Iran (191), the Russian Federation (163), Singapore (151), New Zealand (103), both Malaysia (79) and Türkiye (79) are top-ten countries according to the WoS citations. The difference between the number of citations in WoS and Scopus for each country is calculated as D i f f = # W o S # S c o p u s   . Hong Kong (China), India, Japan, China, Russian Federation, Iran and Macao (China) have D i f f 40 citations. Hence, further analysis such as the country-specific profile based on Scopus is provided in ">Supplementary materials, Part B Country Profile based on Scopus citations.

3.2. Lotka's law coefficient estimation for Author Scientific Productivity

The Lotka's law coefficient,”the frequency of publication by authors in any given field as an inverse square law, where the number of authors publishing a certain number of articles is a fixed ratio to the number of authors publishing a single article”, is estimated with lotka() function in bibliometrix package (Aria & Cuccurullo, 2017; Lotka, 1926) for author scientific productivity in each region. (Table 2) The goodness of fit ,R2,of all models are more than 0.95 and the p-value of the two-sample Kolmogorov-Smirnov test between the empirical and the theorical Lotka's Law distribution (Beta=2) are higher than 0.05, and they are not statistically different.
To compare the Lotka curves between regions, the two groups are created: 1) ENEA, PACIFIC and SEA for East Asia regions and 2) NCA, SSWA and Arab States for central and west Asia regions. The lotka curves are compared with an ANOVA test for functional data with fanova.onefactor () function in fda.usc package.(Cuevas et al., 2004; Febrero-Bande & De La Fuente, 2012) The P-value based on the 1000 bootstrap resamples for number and proportion of authors are estimated 0.174 and 0.226 , respectively. Therefore, there is no statistical difference between these two regions. (Supplementary materials, Part C)

3.3. Bradford Law

The core sources based on Bradford's law are estimated with bradford() function for all six regions: Neuroimage, Frontiers In Human Neuroscience, Scientific Reports, Frontiers In Neuroscience, Psychophysiology, Plos One, International Journal Of Psychophysiology, IEEE Transactions On Neural Systems And Rehabilitation Engineering, Neuropsychologia, Journal Of Neural Engineering, Brain Sciences, Biological Psychology, Frontiers In Psychology, Clinical Neurophysiology And Cerebral Cortex. The core sources for each region are presented separately in the Supplementary materials, Part D.

3.4. The Most Global Cited Documents

Table 3 presented the two most globally cited documents for each region group by all times and after 2020 based on SCOPUS database. Their total citation (TC) frequency and average per year are provided. Some authors have more than one affiliation from different countries or their affiliation is changed. Therefore, only the mentioned affiliation of the published papers is considered in Table 3.
Table 3. The Most Global Cited Documents Group by Region and Period based on SCOPUS.
Table 3. The Most Global Cited Documents Group by Region and Period based on SCOPUS.
Region Period Ref TC Article Title/Description
# per Year
ENEA
All
Time
(Bin et al., 2009) 558 34.88 Online Multi-Channel Steady-State Visual Evoked Potential (SSVEP)-based BCI with Canonical Correlation Analysis (CCA)
(Norton et al., 2015) 270 27.00 Online Multi-View Transfer Takagi-Sugeno-Kang (TSK) fuzzy system for estimating EEG-Based Driver Drowsiness
≥2020 (Jiang et al., 2020) 120 30.00 Soft, curved electrode systems capable of integration on the auricle for a persistent BCI
(Jin et al., 2020) 85 17.00 Bispectrum based channel selection (BCS) method for motor imagery (MI)-based BCI
NCA
All
Time
(G. Knyazev et al., 2009) 169 10.56 Synchronization Of Event-Related Delta and Theta In Explicit And Implicit Emotion Processing
(Knyazev et al., 2011) 162 11.57 Relations between Heart–brain interactions and somatosensory perception and evoked potentials
≥2020 (Al et al., 2020) 104 20.80 Independent Component Analysis (ICA) in default mode network and EEG alpha oscillations
(Jin et al., 2020) 85 17.00 Bispectrum based channel selection (BCS) method for motor imagery (MI)-based BCI
PACIFIC
All
Time
(Whitham et al., 2007) 343 19.06 Statistical Significance that EEG frequencies above 20 Hz are contaminated by electromyogram (EMG) in the presence and absence of complete neuromuscular blockade, sparing the dominant arm trial.
(Badcock et al., 2013) 229 19.08 Validation of the Emotiv EPOC® EEG
Gaming System for Measuring Research
Quality Auditory for Auditory Event-Related Potentials (ERPs)
≥2020 (Jiang et al., 2020) 120 30.00 Soft, curved electrode systems capable of integration on the auricle for a persistent BCI
(Klug & Gramann, 2021) 80 20.00 The ICA method improves the quality of EEG mobile and stationary experiments
SEA
All
Time
(Norton et al., 2015) 270 27.00 Online Multi-View Transfer Takagi-Sugeno-Kang (TSK) fuzzy system for estimating EEG-Based Driver Drowsiness
(Islam et al., 2016) 219 24.33 A Review about Detection and Removal Artifacts in Scalp EEG
≥2020 (Fahimi et al., 2020) 77 19.25 Deep Convolutional Generative Adversarial Networks (DCGANS) for Generating Artificial EEG in BCI
(Jeong et al., 2020) 70 14.00 Decoding Movement-Related Cortical Potentials (MRCP) based Brain-Machine Interface (BMI)
SSWA
All
Time
(Acar et al., 2011) 397 28.36 Scalable Tensor Factorizations, CANDECOMP/PARAFAC (CP), with Missing Data
(Islam et al., 2016) 219 24.33 A Review about Detection and Removal Artifacts in Scalp EEG
≥2020 (Hosseini et al., 2020) 113 28.25 A review of Machine Learning Methods for EEG signal Processing
(Rossini et al., 2020) 106 21.20 A Review about Biomarkers (also EEG based) for Early diagnosis of Alzheimer’s disease based on the International Federation of Clinical Neurophysiology (IFCN)
Arab States
All
Time
(Arnal et al., 2015) 177 17.70 EEG Delta–Beta Coupled Oscillations Underlie Temporal Prediction Accuracy
(Alhanbali et al., 2019) 143 10.21 A Trial about Listening Effort with capturing EEG
≥2020 (Čukić et al., 2020) 27 5.40 Using Higuchi's fractal dimension (HFD) and sample entropy (SampEn) methods to study the Biomarkers of major depressive disorder (MDD) with EEG.
(Islam et al., 2020) 25 5.00 EEG mobility artifact removal for ambulatory epileptic seizure prediction applications
All Six Regions
All
Time
(Bin et al., 2009) 558 34.88 Online Multi-Channel Steady-State Visual Evoked Potential (SSVEP)-based BCI with Canonical Correlation Analysis (CCA)
(Acar et al., 2011) 397 28.36 Scalable Tensor Factorizations, CANDECOMP/PARAFAC (CP), with Missing Data
≥2020 (Jiang et al., 2020) 120 30.00 Soft, curved electrode systems capable of integration on the auricle for a persistent BCI
(Hosseini et al., 2020) 113 28.25 A review of Machine Learning Methods for EEG signal Processing
Abbreviations: TC (Total Citations).
Table 4 compares the top 10 articles with the highest number of globally total citations after 2022 between ESCAP and ESCWA regions in WOS database and all countries in the world in SCOPUS.

3.5. The Co-Occurrence Network of WoS subject

The co-occurrence network of WoS subjects classification for all six regions is presented in Figure 1. (Supplementary materials, Part E provides a separate analysis for each region)

3.6. The Co-Citation Network Papers

The co-citation network papers for all six regions are presented in Figure 2. The papers are : (Oldfield, 1971), (Makeig, 1993), (Bell & Sejnowski, 1995), (Benjamini & Hochberg, 1995), (Makeig & Jung, 1996), (Brainard & Vision, 1997), (Pfurtscheller & Da Silva, 1999), (Klimesch, 1999), (Lachaux et al., 1999), (Jung et al., 2000), (Pascual-Marqui, 2002), (Wolpaw et al., 2002), (Polich, 2007), (Maris & Oostenveld, 2007), (Faul et al., 2007), (Klimesch et al., 2007), (Rubinov & Sporns, 2010), (Tadel et al., 2011), (Mognon et al., 2011), (Oostenveld et al., 2011), (Klimesch, 2012), (Lopez-Calderon & Luck, 2014), (Luck, 2014) and (Pion-Tonachini et al., 2019). (Supplementary materials, Part F provides a separate analysis for each region)

3.7. The Historiography

The historiography (historical co-citation network) are produced with histNetwork() and histPlot(). It has node (document cited by other documents) and the edge (direct citation) with the first author name and publishing year. (Ciavolino et al., 2022) The plots are presented in a layout with 6 plots for each subregions and one plot for all six subregions together in Figure 3.
In the ENEA subregion, there exists two clusters: The first one starts at 2010 “A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials” (Hu et al., 2010) and at 2012 “Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity” (Zhang et al., 2012) and continues to the 2014 article “Single-trial time–frequency analysis of electrocortical signals: Baseline correction and beyond” (Li Hu et al., 2014) and it ended at 2019 article “Neural indicators of perceptual variability of pain across species” (Hu & Iannetti, 2019). The second cluster has two articles in 2017: “Temporal dynamics of reward anticipation in the human brain” (Zhang et al., 2017) and “Reward processing in gain versus loss context: An ERP study.” (Zheng et al., 2017)
In the NCA region, there is one cluster: it starts with a 2008 article “Anxiety and oscillatory responses to emotional facial expressions” (Knyazev, Bocharov, et al., 2008) and 2011 article “The default mode network and EEG alpha oscillations: an independent component analysis” (Knyazev et al., 2011) and endet at 2016 article “Anxiety, depression, and oscillatory dynamics in a social interaction model” (Knyazev et al., 2016).
In the PACIFIC region, there exists two clusters: In the first cluster, the 2008 article “Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study” (Daskalakis et al., 2008) and 2009 article “Suppression of γ-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS–EEG study” (Farzan et al., 2009) are main references, in the middle there are two articles, the 2014 article “Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties” (Rogasch et al., 2014) and the 2015 article “Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: A TMS–EEG study” (Rogasch et al., 2015) and it ended with 2019 article “Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials” (Biabani et al., 2019) and 2020 article “Source-based artifact-rejection techniques available in TESA, an open-source TMS–EEG toolbox” (Mutanen et al., 2020). In the second cluster: there exits two articles about Emotiv EPOC (Badcock et al., 2013; Badcock et al., 2015).
In the SEA region, there exists three clusters, The first cluster started at 2014 article “Hybrid fNIRS-EEG based classification of auditory and visual perception processes” (Putze et al., 2014) . The second cluster started at 2014 articles “Discriminative analysis of brain functional connectivity patterns for mental fatigue classification” (Sun, Lim, Meng, et al., 2014) and “Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks” (Sun, Lim, Kwok, et al., 2014) , in the middle is the 2018 article “Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks” (Dimitrakopoulos et al., 2018) and it ended with 2020 article “Dynamic reorganization of functional connectivity unmasks fatigue related performance declines in simulated driving” (Wang et al., 2020). The third cluster start with 2017 article “Dynamic functional segregation and integration in human brain network during complex tasks” (Ren et al., 2016) and it ended with 2020 article “Towards machine to brain interfaces: sensory stimulation enhances sensorimotor dynamic functional connectivity in upper limb amputees.” (Ding et al., 2020).
In the SSWA region, there exits six clusters. The first cluster started with the 2013 article “Sensitive periods for the functional specialization of the neural system for human face processing” (Röder et al., 2013) and ended with two 2018 articles “Evidence of a retinotopic organization of early visual cortex but impaired extrastriate processing in sight recovery individuals” and “Motion processing after sight restoration: No competition between visual recovery and auditory compensation” (Bottari et al., 2018; Sourav et al., 2018). In the second cluster, the 2015 article “Minimum connected component–a novel approach to detection of cognitive load induced changes in functional brain networks” (Vijayalakshmi et al., 2015) exit. The third cluster is the cluster of Bahar Güntekin articles with some reviews (Gülmen Yener et al., 2013; Güntekin & Başar, 2014, 2016; Güntekin et al., 2019). The fourth cluster is Hamid Karimi-Rouzbahani articles(Karimi-Rouzbahani et al., 2017a, 2017b). The fifth cluster has two articles about automated detection of schizophrenia with EEG(Jahmunah et al., 2019; Shalbaf et al., 2020). The sixth cluster is Fatemeh Hasanzadeh articles (Hasanzadeh et al., 2019, 2020).
In the Arab states, there exits five clusters. In the first cluster there exited an 2011 article “A comparison of methods for separation of transient and oscillatory signals in EEG” (Jmail et al., 2011). In the second cluster a 2015 article, “EEGNET: An open source tool for analyzing and visualizing M/EEG connectome” (Hassan et al., 2015) exited. In the third cluster, Fares Al-Shargie articles exited (Al-Shargie et al., 2019; Alex et al., 2020; Yahya et al., 2019). In the fourth cluster, the 2017 article “Eeg-based brain-computer interface for decoding motor imagery tasks within the same hand using choi-williams time-frequency distribution” existed (Alazrai et al., 2017). The fifth cluster for 2020 article “Eeg-based neurohaptics research: A literature review” (Alsuradi et al., 2020) existed.
In these six regions overall, there exits three clusters. In the first cluster it started with a 2008 article “Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study” (Daskalakis et al., 2008) and it reached 2014 article “Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties” (Rogasch et al., 2014) and finally it reached the 2019 article “Clinical utility and prospective of TMS–EEG” (Tremblay et al., 2019). The second cluster have two articles from Gennady G Knyazev (G. Knyazev et al., 2009; Knyazev, Bocharov, et al., 2008) and an article from Bahar Güntekin (Güntekin & Başar, 2014). The third cluster contains 4 articles. It started with 2012 article “Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity” (Zhang et al., 2012) and three articles from Li Hu (Hu & Iannetti, 2019; Hu et al., 2013; Li Hu et al., 2014).
Figure 3. The historiography (historical co-citation network) plots, (a) ENEA, (b) NCA, (c) PACIFIC, (d) SEA, (e) SSWA, (f) Arab Sates and (g) All six subregions together.
Figure 3. The historiography (historical co-citation network) plots, (a) ENEA, (b) NCA, (c) PACIFIC, (d) SEA, (e) SSWA, (f) Arab Sates and (g) All six subregions together.
Preprints 139123 g003aPreprints 139123 g003bPreprints 139123 g003cPreprints 139123 g003dPreprints 139123 g003ePreprints 139123 g003f

3.8. The Further Analysis

The further analysis grouped by subregions such as : Collaboration Network Between Institute, Country Collaboration Network, Authors Production Over Time and Keyword Plus Trend Topic are in the Supplementary materials in Part G, H, I and J, respectively.

4. Discussion (359 words)

In the year of the 20th anniversary of EEGLAB (2004 through 2023), EEGLAB Newsletter issue 17 in February 2024 (Newsletter, 2024) and a bibliometric analysis of all 12,700 WoS citations of EEGLAB software until 8/27/2023 studied this software. (Fayaz, 2023) This new updated analysis with all 15,827 Scopus and WOS instead of only WOS citations of EEGLAB until 03/28/2024 showed that they were published in 2,072 sources, written by 33,070 authors, cited 763,160 references, and presented 21,384 keywords. And the annual growth rate is 18.63% and the international co-authorship is 34.8%.
In addition, the comparison between all citations of all World and ESCAP and ESCWA regions together showed that (Fayaz, 2023), about 35% of all WoS documents and 41% of authors came from these two regions while the average citation per doc in the world is doubled these two regions. Educational programs such as organizing conferences and training workshops, and supporting researchers in these regions (subregions) can be the basis for faster development and better quality of research. For example, A Virtual EEGLAB Workshop Pacific/Asia in 2021 was held with the hosting of Professor Tzyy-Ping Jung (鍾子平) from the Swartz Center for Computational Neuroscience, University of California San Diego, La Jolla, CA, USA and Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan and Professor Makoto Miyakoshi (宮腰誠) from Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio and Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio (2021 Virtual EEGLAB Workshop Pacific/Asia, 2021)
One of the main direction for future research is bibliometric analysis of some specific topics in these regions and its relations with EEGLAB and EEG such as Traditional Chinese Medicine like Herbs and Acupuncture (Lim et al., 2021; Zhao et al., 2022) Islamic health-related topics (Kannan et al., 2022), and Yoga and meditation (Gaur et al., 2020). The main limitation of this research is that it only considers the papers that cited the EEGLAB main paper, therefore many more articles are not considered and other databases such as DOAJ indexed-only or articles with other languages are not provided.

Supplementary Materials

The following supporting information can be downloaded at the website of this paper posted on Preprints.org.

References

  1. 2021 Virtual EEGLAB Workshop Pacific/Asia. (2021). https://eeglab.org/workshops/EEGLAB_2021_UCSD_asia.
  2. Acar, E.; Dunlavy, D.M.; Kolda, T.G.; Mørup, M. Scalable tensor factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems 2011, 106, 41–56. [Google Scholar] [CrossRef]
  3. Al-Ezzi, A.; Kamel, N.; Faye, I.; Gunaseli, E. Analysis of default mode network in social anxiety disorder: EEG resting-state effective connectivity study. Sensors 2021, 21, 4098. [Google Scholar] [CrossRef] [PubMed]
  4. Al-Shargie, F.; Kiguchi, M.; Badruddin, N.; Dass, S.C.; Hani, A.F.M.; Tang, T.B. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomedical optics express 2016, 7, 3882–3898. [Google Scholar] [CrossRef] [PubMed]
  5. Al-Shargie, F.; Tariq, U.; Alex, M.; Mir, H.; Al-Nashash, H. Emotion recognition based on fusion of local cortical activations and dynamic functional networks connectivity: An EEG study. IEEE Access 2019, 7, 143550–143562. [Google Scholar] [CrossRef]
  6. Al, E.; Iliopoulos, F.; Forschack, N.; Nierhaus, T.; Grund, M.; Motyka, P.; Gaebler, M.; Nikulin, V.V.; Villringer, A. Heart–brain interactions shape somatosensory perception and evoked potentials. Proceedings of the National Academy of Sciences 2020, 117, 10575–10584. [Google Scholar] [CrossRef]
  7. Alazrai, R.; Alwanni, H.; Baslan, Y.; Alnuman, N.; Daoud, M.I. Eeg-based brain-computer interface for decoding motor imagery tasks within the same hand using choi-williams time-frequency distribution. Sensors 2017, 17, 1937. [Google Scholar] [CrossRef]
  8. Alazrai, R.; Momani, M.; Khudair, H.A.; Daoud, M.I. EEG-based tonic cold pain recognition system using wavelet transform. Neural Computing and Applications 2019, 31, 3187–3200. [Google Scholar] [CrossRef]
  9. Alex, M.; Tariq, U.; Al-Shargie, F.; Mir, H.S.; Al Nashash, H. Discrimination of genuine and acted emotional expressions using EEG signal and machine learning. IEEE Access 2020, 8, 191080–191089. [Google Scholar] [CrossRef]
  10. Alhanbali, S.; Dawes, P.; Millman, R.E.; Munro, K.J. Measures of listening effort are multidimensional. Ear and Hearing 2019, 40, 1084–1097. [Google Scholar] [CrossRef]
  11. Alhibshi, A.H.; Alamoudi, W.A.; Haq, I.U.; Rehman, S.U.; Farooq, R.K.; Al Shamrani, F.J. Bibliometric analysis of Neurosciences research productivity in Saudi Arabia from 2013-2018. Neurosciences Journal 2020, 25, 134–143. [Google Scholar] [CrossRef]
  12. Alsuradi, H.; Park, W.; Eid, M. Eeg-based neurohaptics research: A literature review. IEEE Access 2020, 8, 49313–49328. [Google Scholar] [CrossRef]
  13. Alsuradi, H.; Park, W.; Eid, M. Midfrontal theta oscillation encodes haptic delay. Scientific Reports 2021, 11, 17074. [Google Scholar] [CrossRef] [PubMed]
  14. Amorim, E.; Zheng, W.-L.; Ghassemi, M.M.; Aghaeeaval, M.; Kandhare, P.; Karukonda, V.; Lee, J.W.; Herman, S.T.; Sivaraju, A.; Gaspard, N. The international cardiac arrest research consortium electroencephalography database. Critical Care Medicine 2023, 51, 1802–1811. [Google Scholar] [CrossRef] [PubMed]
  15. Apicella, A.; Arpaia, P.; Frosolone, M.; Improta, G.; Moccaldi, N.; Pollastro, A. EEG-based measurement system for monitoring student engagement in learning 4.0. Scientific Reports 2022, 12, 5857. [Google Scholar] [CrossRef]
  16. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics 2017, 11, 959–975. [Google Scholar] [CrossRef]
  17. Arnal, L.H.; Doelling, K.B.; Poeppel, D. Delta–beta coupled oscillations underlie temporal prediction accuracy. Cerebral Cortex 2015, 25, 3077–3085. [Google Scholar] [CrossRef]
  18. Ashrafi, F.; Mohammadhassanzadeh, H.; Shokraneh, F.; Valinejadi, A.; Johari, K.; Saemi, N.; Zali, A.; Mohaghegh, N.; Ashayeri, H. Iranians’ contribution to world literature on neuroscience. Health Information & Libraries Journal 2012, 29, 323–332. [Google Scholar]
  19. Aslan, Z.; Akin, M. A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals. Physical and Engineering Sciences in Medicine 2022, 45, 83–96. [Google Scholar] [CrossRef]
  20. Attaheri, A.; Choisdealbha, Á.N.; Di Liberto, G.M.; Rocha, S.; Brusini, P.; Mead, N.; Olawole-Scott, H.; Boutris, P.; Gibbon, S.; Williams, I. Delta-and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants. NeuroImage 2022, 247, 118698. [Google Scholar] [CrossRef]
  21. Azab, M.A.; Salem, A.E. Egyptian neurosurgical publication productivity. A retrospective analysis from 2015 to 2020. Interdisciplinary Neurosurgery 2022, 28, 101505. [Google Scholar] [CrossRef]
  22. Badcock, N.A.; Mousikou, P.; Mahajan, Y.; De Lissa, P.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ 2013, 1, e38. [Google Scholar] [PubMed]
  23. Badcock, N.A.; Preece, K.A.; de Wit, B.; Glenn, K.; Fieder, N.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 2015, 3, e907. [Google Scholar] [PubMed]
  24. Baillet, S.; Friston, K.; Oostenveld, R. Academic software applications for electromagnetic brain mapping using MEG and EEG. Computational intelligence and neuroscience 2011, 2011, 12–12. [Google Scholar]
  25. Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural computation 1995, 7, 1129–1159. [Google Scholar]
  26. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 1995, 57, 289–300. [Google Scholar]
  27. Bernadine, C.; Nanda, N.; Vijayalakshmi, R.; Thilaga, M.; Naga, D.; Nabaraj, D. Breaking the Camel's Back: Can Cognitive Overload be Quantified in the Human Brain? Procedia-Social and Behavioral Sciences 2013, 97, 21–29. [Google Scholar]
  28. Biabani, M.; Fornito, A.; Mutanen, T.P.; Morrow, J.; Rogasch, N.C. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain stimulation 2019, 12, 1537–1552. [Google Scholar]
  29. Bin, G.; Gao, X.; Yan, Z.; Hong, B.; Gao, S. An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. Journal of neural engineering 2009, 6, 046002. [Google Scholar]
  30. Bottari, D.; Kekunnaya, R.; Hense, M.; Troje, N.F.; Sourav, S.; Röder, B. Motion processing after sight restoration: No competition between visual recovery and auditory compensation. NeuroImage 2018, 167, 284–296. [Google Scholar]
  31. Bottari, D.; Troje, N.F.; Ley, P.; Hense, M.; Kekunnaya, R.; Röder, B. The neural development of the biological motion processing system does not rely on early visual input. Cortex 2015, 71, 359–367. [Google Scholar]
  32. Bottari, D.; Troje, N.F.; Ley, P.; Hense, M.; Kekunnaya, R.; Röder, B. Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans. Scientific Reports 2016, 6, 24683. [Google Scholar] [CrossRef] [PubMed]
  33. Brainard, D.H.; Vision, S. The psychophysics toolbox. Spatial vision 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed]
  34. Cecchetti, G.; Agosta, F.; Canu, E.; Basaia, S.; Barbieri, A.; Cardamone, R.; Bernasconi, M.P.; Castelnovo, V.; Cividini, C.; Cursi, M. Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study. Journal of neurology 2022, 269, 3400–3412. [Google Scholar] [CrossRef] [PubMed]
  35. Cho, J.-H.; Jeong, J.-H.; Lee, S.-W. NeuroGrasp: Real-time EEG classification of high-level motor imagery tasks using a dual-stage deep learning framework. IEEE Transactions on Cybernetics 2021, 52, 13279–13292. [Google Scholar] [CrossRef]
  36. Chung, S.W.; Lewis, B.P.; Rogasch, N.C.; Saeki, T.; Thomson, R.H.; Hoy, K.E.; Bailey, N.W.; Fitzgerald, P.B. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clinical neurophysiology 2017, 128, 1117–1126. [Google Scholar] [CrossRef]
  37. Chung, S.W.; Rogasch, N.C.; Hoy, K.E.; Sullivan, C.M.; Cash, R.F.; Fitzgerald, P.B. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Human brain mapping 2018, 39, 783–802. [Google Scholar] [CrossRef]
  38. Ciavolino, E.; Aria, M.; Cheah, J.-H.; Roldán, J.L. A tale of PLS structural equation modelling: episode I—a bibliometrix citation analysis. Social Indicators Research 2022, 164, 1323–1348. [Google Scholar] [CrossRef]
  39. Cuevas, A.; Febrero, M.; Fraiman, R. An anova test for functional data. Computational statistics & data analysis 2004, 47, 111–122. [Google Scholar]
  40. Čukić, M.; Stokić, M.; Radenković, S.; Ljubisavljević, M.; Simić, S.; Savić, D. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. International journal of methods in psychiatric research 2020, 29, e1816. [Google Scholar] [CrossRef]
  41. Dai, Z.; De Souza, J.; Lim, J.; Ho, P.M.; Chen, Y.; Li, J.; Thakor, N.; Bezerianos, A.; Sun, Y. EEG cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands. Frontiers in human neuroscience 2017, 11, 237. [Google Scholar] [CrossRef]
  42. Dasdemir, Y.; Yildirim, E.; Yildirim, S. Analysis of functional brain connections for positive–negative emotions using phase locking value. Cognitive neurodynamics 2017, 11, 487–500. [Google Scholar] [CrossRef] [PubMed]
  43. Daskalakis, Z.J.; Farzan, F.; Barr, M.S.; Maller, J.J.; Chen, R.; Fitzgerald, P.B. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study. Neuropsychopharmacology 2008, 33, 2860–2869. [Google Scholar] [CrossRef] [PubMed]
  44. Delorme, A.; Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
  45. Di Gregorio, F.; Trajkovic, J.; Roperti, C.; Marcantoni, E.; Di Luzio, P.; Avenanti, A.; Thut, G.; Romei, V. Tuning alpha rhythms to shape conscious visual perception. Current Biology 2022, 32, 988–998 e986. [Google Scholar] [CrossRef]
  46. Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Lim, J.; deSouza, J.J.; Bezerianos, A.; Sun, Y. Task-independent mental workload classification based upon common multiband EEG cortical connectivity. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017, 25, 1940–1949. [Google Scholar] [CrossRef]
  47. Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Wang, H.; Sgarbas, K.; Thakor, N.; Bezerianos, A.; Sun, Y. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2018, 26, 740–749. [Google Scholar] [CrossRef] [PubMed]
  48. Dimitrakopoulos, G.N.; Kakkos, I.; Vrahatis, A.G.; Sgarbas, K.; Li, J.; Sun, Y.; Bezerianos, A. Driving mental fatigue classification based on brain functional connectivity. Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August 25–27, 2017, Proceedings.
  49. Dimitriadis, S.I.; Sun, Y.; Kwok, K.; Laskaris, N.A.; Thakor, N.; Bezerianos, A. Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions. Annals of biomedical engineering 2015, 43, 977–989. [Google Scholar] [CrossRef]
  50. Ding, K.; Dragomir, A.; Bose, R.; Osborn, L.E.; Seet, M.S.; Bezerianos, A.; Thakor, N.V. Towards machine to brain interfaces: sensory stimulation enhances sensorimotor dynamic functional connectivity in upper limb amputees. Journal of neural engineering 2020, 17, 035002. [Google Scholar] [CrossRef]
  51. Ding, Z.; Xiong, Z.; Ouyang, Y. A Bibliometric Analysis of Neuroscience Tools Use in Construction Health and Safety Management. Sensors 2023, 23, 9522. [Google Scholar] [CrossRef]
  52. Division, E.S. (2024). List of countries in the Asia-Pacific region and subregions. https://data.unescap.org/stories/escap-database.
  53. Dong, R.; Wang, H.; Ye, J.; Wang, M.; Bi, Y. Publication trends for Alzheimer's disease worldwide and in China: a 30-year bibliometric analysis. Frontiers in human neuroscience 2019, 13, 259. [Google Scholar] [CrossRef]
  54. EEGLAB Website. eeglab.org.
  55. El Masri, J.; Dankar, R.; El Masri, D.; Chanbour, H.; El Hage, S.; Salameh, P. The Arab countries’ contribution to the research of neurodegenerative disorders. Cureus 2021, 13. [Google Scholar] [CrossRef] [PubMed]
  56. Fahimi, F.; Dosen, S.; Ang, K.K.; Mrachacz-Kersting, N.; Guan, C. Generative adversarial networks-based data augmentation for brain–computer interface. IEEE transactions on neural networks and learning systems 2020, 32, 4039–4051. [Google Scholar] [CrossRef] [PubMed]
  57. Farzan, F.; Barr, M.S.; Hoppenbrouwers, S.S.; Fitzgerald, P.B.; Chen, R.; Pascual-Leone, A.; Daskalakis, Z.J. The EEG correlates of the TMS-induced EMG silent period in humans. NeuroImage 2013, 83, 120–134. [Google Scholar] [CrossRef] [PubMed]
  58. Farzan, F.; Barr, M.S.; Levinson, A.J.; Chen, R.; Wong, W.; Fitzgerald, P.B.; Daskalakis, Z.J. Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain 2010, 133, 1505–1514. [Google Scholar] [CrossRef]
  59. Farzan, F.; Barr, M.S.; Levinson, A.J.; Chen, R.; Wong, W.; Fitzgerald, P.B.; Daskalakis, Z.J. Reliability of long-interval cortical inhibition in healthy human subjects: a TMS–EEG study. Journal of neurophysiology 2010, 104, 1339–1346. [Google Scholar] [CrossRef]
  60. Farzan, F.; Barr, M.S.; Wong, W.; Chen, R.; Fitzgerald, P.B.; Daskalakis, Z.J. Suppression of γ-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS–EEG study. Neuropsychopharmacology 2009, 34, 1543–1551. [Google Scholar] [CrossRef]
  61. Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
  62. Fayaz, M. The Bibliometric Analysis of EEGLAB software in the Web of Science indexed Articles. Neuroscience Informatics 2023, 100154. [Google Scholar] [CrossRef]
  63. Febrero-Bande, M.; De La Fuente, M.O. Statistical computing in functional data analysis: The R package fda. usc. Journal of statistical Software 2012, 51, 1–28. [Google Scholar] [CrossRef]
  64. Forero, D.A.; Trujillo, M.L.; González-Giraldo, Y.; Barreto, G.E. Scientific productivity in neurosciences in Latin America: a scientometrics perspective. International Journal of Neuroscience 2020, 130, 398–406. [Google Scholar] [CrossRef]
  65. Gaur, S.; Panjwani, U.; Kumar, B. EEG Brain Wave Dynamics: A Systematic Review and Meta Analysis on Eff ect of Yoga on Mind Relaxation. J Biomed Res Environ Sci 2020, 1, 353–362. [Google Scholar] [CrossRef]
  66. Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.S. MNE software for processing MEG and EEG data. NeuroImage 2014, 86, 446–460. [Google Scholar] [CrossRef] [PubMed]
  67. Gülmen Yener, G.; Güntekin, B.; Emek Savaş, D.D.; Kurt, P.; Başar, E. (2013). Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment.
  68. Guney, O.B.; Oblokulov, M.; Ozkan, H. A deep neural network for ssvep-based brain-computer interfaces. IEEE transactions on biomedical engineering 2021, 69, 932–944. [Google Scholar] [CrossRef]
  69. Güntekin, B.; Başar, E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014, 58, 33–51. [Google Scholar] [CrossRef] [PubMed]
  70. Güntekin, B.; Başar, E. Review of evoked and event-related delta responses in the human brain. International Journal of Psychophysiology 2016, 103, 43–52. [Google Scholar] [CrossRef]
  71. Güntekin, B.; Hanoğlu, L.; Aktürk, T.; Fide, E.; Emek-Savaş, D.D.; Ruşen, E.; Yıldırım, E.; Yener, G.G. Impairment in recognition of emotional facial expressions in Alzheimer's disease is represented by EEG theta and alpha responses. Psychophysiology 2019, 56, e13434. [Google Scholar] [CrossRef]
  72. Harvy, J.; Thakor, N.; Bezerianos, A.; Li, J. Between-frequency topographical and dynamic high-order functional connectivity for driving drowsiness assessment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2019, 27, 358–367. [Google Scholar] [CrossRef]
  73. Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal. Journal of affective disorders 2019, 256, 132–142. [Google Scholar] [CrossRef]
  74. Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. Journal of neural engineering 2020, 17, 026010. [Google Scholar] [CrossRef]
  75. Hassan, M.; Shamas, M.; Khalil, M.; El Falou, W.; Wendling, F. EEGNET: An open source tool for analyzing and visualizing M/EEG connectome. PLoS One 2015, 10, e0138297. [Google Scholar] [CrossRef]
  76. Hill, A.T.; Clark, G.M.; Bigelow, F.J.; Lum, J.A.; Enticott, P.G. Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Developmental Cognitive Neuroscience 2022, 54, 101076. [Google Scholar] [CrossRef] [PubMed]
  77. Hill, A.T.; Rogasch, N.C.; Fitzgerald, P.B.; Hoy, K.E. Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. NeuroImage 2017, 152, 142–157. [Google Scholar] [CrossRef]
  78. Hoppen, N.H.F.; Vanz, S.A. d. S. Neurosciences in Brazil: a bibliometric study of main characteristics, collaboration and citations. Scientometrics 2016, 109, 121–141. [Google Scholar] [CrossRef]
  79. Hosseini, M.-P.; Hosseini, A.; Ahi, K. A review on machine learning for EEG signal processing in bioengineering. IEEE reviews in biomedical engineering 2020, 14, 204–218. [Google Scholar] [CrossRef]
  80. Hu, L.; Cai, M.; Xiao, P.; Luo, F.; Iannetti, G. Human brain responses to concomitant stimulation of Aδ and C nociceptors. Journal of Neuroscience 2014, 34, 11439–11451. [Google Scholar] [CrossRef] [PubMed]
  81. Hu, L.; Iannetti, G. Neural indicators of perceptual variability of pain across species. Proceedings of the National Academy of Sciences 2019, 116, 1782–1791. [Google Scholar] [CrossRef]
  82. Hu, L.; Mouraux, A.; Hu, Y.; Iannetti, G.D. A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage 2010, 50, 99–111. [Google Scholar] [CrossRef]
  83. Hu, L.; Peng, W.; Valentini, E.; Zhang, Z.; Hu, Y. Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. The Journal of Pain 2013, 14, 89–99. [Google Scholar] [CrossRef]
  84. Hu, L.; Xiao, P.; Zhang, Z.; Mouraux, A.; Iannetti, G.D. Single-trial time–frequency analysis of electrocortical signals: Baseline correction and beyond. NeuroImage 2014, 84, 876–887. [Google Scholar] [CrossRef]
  85. Huang, G.; Xiao, P.; Hung, Y.; Iannetti, G.D.; Zhang, Z.; Hu, L. A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. NeuroImage 2013, 81, 283–293. [Google Scholar] [CrossRef]
  86. Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique/Clinical Neurophysiology 2016, 46, 287–305. [Google Scholar] [CrossRef] [PubMed]
  87. Islam, M.S.; El-Hajj, A.M.; Alawieh, H.; Dawy, Z.; Abbas, N.; El-Imad, J. EEG mobility artifact removal for ambulatory epileptic seizure prediction applications. Biomedical Signal Processing and Control 2020, 55, 101638. [Google Scholar] [CrossRef]
  88. Jahmunah, V.; Oh, S.L.; Rajinikanth, V.; Ciaccio, E.J.; Cheong, K.H.; Arunkumar, N.; Acharya, U.R. Automated detection of schizophrenia using nonlinear signal processing methods. Artificial intelligence in medicine 2019, 100, 101698. [Google Scholar] [CrossRef]
  89. Jeong, J.-H.; Kwak, N.-S.; Guan, C.; Lee, S.-W. Decoding movement-related cortical potentials based on subject-dependent and section-wise spectral filtering. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28, 687–698. [Google Scholar] [CrossRef]
  90. Jiang, Y.; Zhang, Y.; Lin, C.; Wu, D.; Lin, C.-T. EEG-based driver drowsiness estimation using an online multi-view and transfer TSK fuzzy system. IEEE Transactions on Intelligent Transportation Systems 2020, 22, 1752–1764. [Google Scholar] [CrossRef]
  91. Jin, J.; Liu, C.; Daly, I.; Miao, Y.; Li, S.; Wang, X.; Cichocki, A. Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28, 2153–2163. [Google Scholar] [CrossRef]
  92. Jmail, N.; Gavaret, M.; Bartolomei, F.; Chauvel, P.; Badier, J.-M.; Bénar, C.-G. Comparison of brain networks during interictal oscillations and spikes on magnetoencephalography and intracerebral EEG. Brain topography 2016, 29, 752–765. [Google Scholar] [CrossRef] [PubMed]
  93. Jmail, N.; Gavaret, M.; Wendling, F.; Kachouri, A.; Hamadi, G.; Badier, J.-M.; Bénar, C.-G. A comparison of methods for separation of transient and oscillatory signals in EEG. Journal of neuroscience methods 2011, 199, 273–289. [Google Scholar] [CrossRef] [PubMed]
  94. Jung, T.-P.; Makeig, S.; Humphries, C.; Lee, T.-W.; Mckeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef]
  95. Jung, T.-P.; Sejnowski, T.J. Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing. IEEE Transactions on Affective Computing 2019, 13, 96–107. [Google Scholar]
  96. Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease. Journal of neural engineering 2018, 15, 026023. [Google Scholar] [CrossRef] [PubMed]
  97. Kabbara, A.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M. The dynamic functional core network of the human brain at rest. Scientific Reports 2017, 7, 2936. [Google Scholar] [CrossRef] [PubMed]
  98. Kakkos, I.; Dimitrakopoulos, G.N.; Gao, L.; Zhang, Y.; Qi, P.; Matsopoulos, G.K.; Thakor, N.; Bezerianos, A.; Sun, Y. Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2019, 27, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
  99. Kannan, M.A.; Ab Aziz, N.A.; Ab Rani, N.S.; Abdullah, M.W.; Rashid, M.H.M.; Shab, M.S.; Ismail, N.I.; Ab Ghani, M.A.; Reza, F.; Muzaimi, M. A review of the holy Quran listening and its neural correlation for its potential as a psycho-spiritual therapy. Heliyon 2022, 8. [Google Scholar] [CrossRef] [PubMed]
  100. Karimi-Rouzbahani, H.; Bagheri, N.; Ebrahimpour, R. Average activity, but not variability, is the dominant factor in the representation of object categories in the brain. Neuroscience 2017, 346, 14–28. [Google Scholar] [CrossRef]
  101. Karimi-Rouzbahani, H.; Bagheri, N.; Ebrahimpour, R. Hard-wired feed-forward visual mechanisms of the brain compensate for affine variations in object recognition. Neuroscience 2017, 349, 48–63. [Google Scholar] [CrossRef]
  102. Keshavan, M.S.; Song, S.H.M.; Zhang, Y.; Lizano, P. Neuroscience in pictures: 1. History of psychiatric neuroscience. Asian Journal of Psychiatry 2024, 92, 103869. [Google Scholar] [CrossRef]
  103. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews 1999, 29, 169–195. [Google Scholar] [CrossRef]
  104. Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in cognitive sciences 2012, 16, 606–617. [Google Scholar] [CrossRef]
  105. Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: the inhibition–timing hypothesis. Brain research reviews 2007, 53, 63–88. [Google Scholar] [CrossRef]
  106. Klug, M.; Gramann, K. Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments. European Journal of Neuroscience 2021, 54, 8406–8420. [Google Scholar] [CrossRef]
  107. Knyazev, G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A. Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience 2009, 164, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
  108. Knyazev, G.G. Is cortical distribution of spectral power a stable individual characteristic? International Journal of Psychophysiology 2009, 72, 123–133. [Google Scholar] [CrossRef] [PubMed]
  109. Knyazev, G.G. Cross-frequency coupling of brain oscillations: an impact of state anxiety. International Journal of Psychophysiology 2011, 80, 236–245. [Google Scholar] [CrossRef] [PubMed]
  110. Knyazev, G.G. Comparison of spatial and temporal independent component analyses of electroencephalographic data: a simulation study. Clinical neurophysiology 2013, 124, 1557–1569. [Google Scholar] [CrossRef]
  111. Knyazev, G.G. EEG correlates of self-referential processing. Frontiers in human neuroscience 2013, 7, 264. [Google Scholar] [CrossRef]
  112. Knyazev, G.G.; Bocharov, A.V.; Levin, E.A.; Savostyanov, A.N.; Slobodskoj-Plusnin, J.Y. Anxiety and oscillatory responses to emotional facial expressions. Brain research 2008, 1227, 174–188. [Google Scholar] [CrossRef]
  113. Knyazev, G.G.; Bocharov, A.V.; Pylkova, L.V. Extraversion and fronto-posterior EEG spectral power gradient: An independent component analysis. Biological Psychology 2012, 89, 515–524. [Google Scholar] [CrossRef]
  114. Knyazev, G.G.; Bocharov, A.V.; Savostyanov, A.N.; Slobodskoy-Plusnin, J. Predisposition to depression and implicit emotion processing. Journal of clinical and experimental neuropsychology 2015, 37, 701–709. [Google Scholar] [CrossRef]
  115. Knyazev, G.G.; Bocharov, A.V.; Slobodskoj-Plusnin, J.Y. Hostility-and gender-related differences in oscillatory responses to emotional facial expressions. Aggressive Behavior: Official Journal of the International Society for Research on Aggression 2009, 35, 502–513. [Google Scholar] [CrossRef]
  116. Knyazev, G.G.; Levin, E.A.; Savostyanov, A.N. Impulsivity, anxiety, and individual differences in evoked and induced brain oscillations. International Journal of Psychophysiology 2008, 68, 242–254. [Google Scholar] [CrossRef] [PubMed]
  117. Knyazev, G.G.; Savostyanov, A.N.; Bocharov, A.V.; Rimareva, J.M. Anxiety, depression, and oscillatory dynamics in a social interaction model. Brain research 2016, 1644, 62–69. [Google Scholar] [CrossRef] [PubMed]
  118. Knyazev, G.G.; Savostyanov, A.N.; Volf, N.V.; Liou, M.; Bocharov, A.V. EEG correlates of spontaneous self-referential thoughts: a cross-cultural study. International Journal of Psychophysiology 2012, 86, 173–181. [Google Scholar] [CrossRef]
  119. Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V. Gender differences in implicit and explicit processing of emotional facial expressions as revealed by event-related theta synchronization. Emotion 2010, 10, 678. [Google Scholar] [CrossRef] [PubMed]
  120. Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V.; Pylkova, L.V. The default mode network and EEG alpha oscillations: an independent component analysis. Brain research 2011, 1402, 67–79. [Google Scholar] [CrossRef]
  121. Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V.; Pylkova, L.V. Cortical oscillatory dynamics in a social interaction model. Behavioural brain research 2013, 241, 70–79. [Google Scholar] [CrossRef] [PubMed]
  122. Kocak, M.; García-Zorita, C.; Marugán-Lázaro, S.; Çakır, M.P.; Sanz-Casado, E. Mapping and clustering analysis on neuroscience literature in Turkey: a bibliometric analysis from 2000 to 2017. Scientometrics 2019, 121, 1339–1366. [Google Scholar] [CrossRef]
  123. Krishna, S.; Choudhury, A.; Keough, M.B.; Seo, K.; Ni, L.; Kakaizada, S.; Lee, A.; Aabedi, A.; Popova, G.; Lipkin, B. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023, 617, 599–607. [Google Scholar] [CrossRef]
  124. Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Human brain mapping 1999, 8, 194–208. [Google Scholar] [CrossRef]
  125. Li, G.; Yan, W.; Li, S.; Qu, X.; Chu, W.; Cao, D. A temporal–spatial deep learning approach for driver distraction detection based on EEG signals. IEEE Transactions on Automation Science and Engineering 2021, 19, 2665–2677. [Google Scholar] [CrossRef]
  126. Lim, J.-H.; Cho, J.-H.; Kim, J.-H.; Kim, L.; Kang, H.-W.; Kim, B.-K. A Review on Clinical Research of Acupuncture Using Electroencephalogram. Journal of Oriental Neuropsychiatry 2021, 32, 345–378. [Google Scholar]
  127. Litvak, V.; Mattout, J.; Kiebel, S.; Phillips, C.; Henson, R.; Kilner, J.; Barnes, G.; Oostenveld, R.; Daunizeau, J.; Flandin, G. EEG and MEG data analysis in SPM8. Computational intelligence and neuroscience 2011. [Google Scholar] [CrossRef] [PubMed]
  128. Lopez-Calderon, J.; Luck, S.J. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience 2014, 8, 213. [Google Scholar] [CrossRef] [PubMed]
  129. Lotka, A.J. The frequency distribution of scientific productivity. Journal of the Washington academy of sciences 1926, 16, 317–323. [Google Scholar]
  130. Luck, S.J. (2014). An introduction to the event-related potential technique. MIT press.
  131. Makeig, S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and clinical neurophysiology 1993, 86, 283–293. [Google Scholar] [CrossRef]
  132. Makeig, S.; Jung, T.-P. Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. cognitive brain research 1996, 4, 15–25. [Google Scholar] [CrossRef]
  133. Maris, E.; Oostenveld, R. Nonparametric statistical testing of EEG-and MEG-data. Journal of neuroscience methods 2007, 164, 177–190. [Google Scholar] [CrossRef]
  134. Mecarelli, O. Past, Present and Future of the EEG. Clinical Electroencephalography 2019, 3–8. [Google Scholar]
  135. Meng, J.; Hu, L.; Shen, L.; Yang, Z.; Chen, H.; Huang, X.; Jackson, T. Emotional primes modulate the responses to others’ pain: an ERP study. Experimental brain research 2012, 220, 277–286. [Google Scholar] [CrossRef]
  136. Meng, J.; Jackson, T.; Chen, H.; Hu, L.; Yang, Z.; Su, Y.; Huang, X. Pain perception in the self and observation of others: an ERP investigation. NeuroImage 2013, 72, 164–173. [Google Scholar] [CrossRef]
  137. Mheich, A.; Hassan, M.; Dufor, O.; Khalil, M.; Berrou, C.; Wendling, F. (2015). Spatiotemporal analysis of brain functional connectivity. 6th European Conference of the International Federation for Medical and Biological Engineering: MBEC 2014, 7-11 September 2014, Dubrovnik, Croatia,.
  138. Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011, 48, 229–240. [Google Scholar] [CrossRef] [PubMed]
  139. Mutanen, T.P.; Biabani, M.; Sarvas, J.; Ilmoniemi, R.J.; Rogasch, N.C. Source-based artifact-rejection techniques available in TESA, an open-source TMS–EEG toolbox. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation 2020, 13, 1349–1351. [Google Scholar] [CrossRef] [PubMed]
  140. Newsletter, E. (2024). EEGLAB is 20!;. https://sccn.ucsd.edu/eeglab/EEGLAB_Newsletter.php.
  141. Niso, G.; Krol, L.R.; Combrisson, E.; Dubarry, A.S.; Elliott, M.A.; François, C.; Héjja-Brichard, Y.; Herbst, S.K.; Jerbi, K.; Kovic, V. Good scientific practice in EEG and MEG research: Progress and perspectives. NeuroImage 2022, 257, 119056. [Google Scholar] [CrossRef] [PubMed]
  142. Noda, Y.; Zomorrodi, R.; Cash, R.F.; Barr, M.S.; Farzan, F.; Rajji, T.K.; Chen, R.; Daskalakis, Z.J.; Blumberger, D.M. Characterization of the influence of age on GABAA and glutamatergic mediated functions in the dorsolateral prefrontal cortex using paired-pulse TMS-EEG. Aging (Albany NY) 2017, 9, 556. [Google Scholar] [CrossRef]
  143. Norton, J.J.; Lee, D.S.; Lee, J.W.; Lee, W.; Kwon, O.; Won, P.; Jung, S.-Y.; Cheng, H.; Jeong, J.-W.; Akce, A. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proceedings of the National Academy of Sciences 2015, 112, 3920–3925. [Google Scholar] [CrossRef]
  144. Oldfield, R.C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
  145. Omar II, A.T.; Chan, K.I.P.; Ong, E.P.; Dy, L.F.; Go, D.A.D.; Capistrano, M.P.; Cua, S.K.N.; Diestro, J.D.B.; Espiritu, A.I.; Spears, J. Neurosurgical research in Southeast Asia: A bibliometric analysis. Journal of Clinical Neuroscience 2022, 106, 159–165. [Google Scholar] [CrossRef]
  146. Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
  147. Park, W.; Jamil, M.H.; Eid, M. Neural activations associated with friction stimulation on touch-screen devices. Frontiers in neurorobotics 2019, 13, 27. [Google Scholar] [CrossRef]
  148. Park, W.; Kim, D.-H.; Kim, S.-P.; Lee, J.-H.; Kim, L. Gamma EEG correlates of haptic preferences for a dial interface. IEEE Access 2018, 6, 22324–22331. [Google Scholar] [CrossRef]
  149. Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002, 24 (Suppl D), 5–12. [Google Scholar] [PubMed]
  150. Pavlov, Y.G.; Adamian, N.; Appelhoff, S.; Arvaneh, M.; Benwell, C.S.; Beste, C.; Bland, A.R.; Bradford, D.E.; Bublatzky, F.; Busch, N.A. # EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex 2021, 144, 213–229. [Google Scholar] [PubMed]
  151. Peng, W.; Hu, L.; Zhang, Z.; Hu, Y. Causality in the association between P300 and alpha event-related desynchronization. PLoS One 2012, 7, e34163. [Google Scholar] [CrossRef] [PubMed]
  152. Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
  153. Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef]
  154. Polich, J. Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
  155. Putze, F.; Hesslinger, S.; Tse, C.-Y.; Huang, Y.; Herff, C.; Guan, C.; Schultz, T. Hybrid fNIRS-EEG based classification of auditory and visual perception processes. Frontiers in neuroscience 2014, 8, 83339. [Google Scholar] [CrossRef]
  156. R. (2023). R: A Language and Environment for Statistical Computing. In R Core Team. https://www.R-project.org/.
  157. Regional Commissions. https://research.un.org/c.php?g=98272&p=5600641#:~:text=ECE%3A%20Economic%20Commission%20for%20Europe,Social%20Commission%20for%20Western%20Asia.
  158. Ren, S.; Li, J.; Taya, F.; DeSouza, J.; Thakor, N.V.; Bezerianos, A. Dynamic functional segregation and integration in human brain network during complex tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2016, 25, 547–556. [Google Scholar] [CrossRef]
  159. Röder, B.; Ley, P.; Shenoy, B.H.; Kekunnaya, R.; Bottari, D. Sensitive periods for the functional specialization of the neural system for human face processing. Proceedings of the National Academy of Sciences 2013, 110, 16760–16765. [Google Scholar] [CrossRef]
  160. Rogasch, N.C.; Daskalakis, Z.J.; Fitzgerald, P.B. Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: A TMS–EEG study. Cortex 2015, 64, 68–77. [Google Scholar] [CrossRef]
  161. Rogasch, N.C.; Fitzgerald, P.B. Assessing cortical network properties using TMS–EEG. Human brain mapping 2013, 34, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
  162. Rogasch, N.C.; Thomson, R.H.; Daskalakis, Z.J.; Fitzgerald, P.B. Short-latency artifacts associated with concurrent TMS–EEG. Brain stimulation 2013, 6, 868–876. [Google Scholar] [CrossRef] [PubMed]
  163. Rogasch, N.C.; Thomson, R.H.; Farzan, F.; Fitzgibbon, B.M.; Bailey, N.W.; Hernandez-Pavon, J.C.; Daskalakis, Z.J.; Fitzgerald, P.B. Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties. NeuroImage 2014, 101, 425–439. [Google Scholar] [CrossRef]
  164. Rossini, P.M.; Di Iorio, R.; Vecchio, F.; Anfossi, M.; Babiloni, C.; Bozzali, M.; Bruni, A.C.; Cappa, S.F.; Escudero, J.; Fraga, F.J. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clinical neurophysiology 2020, 131, 1287–1310. [Google Scholar] [CrossRef]
  165. Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
  166. Sadiq, M.T.; Yu, X.; Yuan, Z.; Aziz, M.Z.; Siuly, S.; Ding, W. A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject-specific tasks. IEEE Transactions on Cognitive and Developmental Systems 2020, 14, 375–387. [Google Scholar] [CrossRef]
  167. Sajovic, I.; Boh Podgornik, B. Bibliometric analysis of visualizations in computer graphics: a study. Sage Open 2022, 12, 21582440211071105. [Google Scholar] [CrossRef]
  168. Savostyanov, A.N.; Tsai, A.C.; Liou, M.; Levin, E.A.; Lee, J.-D.; Yurganov, A.V.; Knyazev, G.G. EEG-correlates of trait anxiety in the stop-signal paradigm. Neuroscience Letters 2009, 449, 112–116. [Google Scholar] [CrossRef]
  169. Shalbaf, A.; Bagherzadeh, S.; Maghsoudi, A. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Physical and Engineering Sciences in Medicine 2020, 43, 1229–1239. [Google Scholar] [CrossRef]
  170. Sourav, S.; Bottari, D.; Kekunnaya, R.; Röder, B. Evidence of a retinotopic organization of early visual cortex but impaired extrastriate processing in sight recovery individuals. Journal of vision 2018, 18, 22–22. [Google Scholar] [CrossRef]
  171. Stegman, P.; Crawford, C.S.; Andujar, M.; Nijholt, A.; Gilbert, J.E. Brain–computer interface software: A review and discussion. IEEE Transactions on Human-Machine Systems 2020, 50, 101–115. [Google Scholar] [CrossRef]
  172. Sun, Y.; Lim, J.; Kwok, K.; Bezerianos, A. Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks. Brain and cognition 2014, 85, 220–230. [Google Scholar] [CrossRef]
  173. Sun, Y.; Lim, J.; Meng, J.; Kwok, K.; Thakor, N.; Bezerianos, A. Discriminative analysis of brain functional connectivity patterns for mental fatigue classification. Annals of biomedical engineering 2014, 42, 2084–2094. [Google Scholar] [CrossRef]
  174. Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: a user-friendly application for MEG/EEG analysis. Computational intelligence and neuroscience 2011, 2011, 1–13. [Google Scholar] [CrossRef]
  175. Tang, D.; Hu, L.; Chen, A. The neural oscillations of conflict adaptation in the human frontal region. Biological Psychology 2013, 93, 364–372. [Google Scholar] [CrossRef]
  176. Tremblay, S.; Rogasch, N.C.; Premoli, I.; Blumberger, D.M.; Casarotto, S.; Chen, R.; Di Lazzaro, V.; Farzan, F.; Ferrarelli, F.; Fitzgerald, P.B. Clinical utility and prospective of TMS–EEG. Clinical neurophysiology 2019, 130, 802–844. [Google Scholar] [CrossRef]
  177. Tu, Y.; Zhang, Z.; Tan, A.; Peng, W.; Hung, Y.S.; Moayedi, M.; Iannetti, G.D.; Hu, L. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Human brain mapping 2016, 37, 501–514. [Google Scholar] [CrossRef]
  178. United Nations Economic and Social Commission for Western Asia. (2024). https://data.unescwa.org/.
  179. Valentini, E.; Hu, L.; Chakrabarti, B.; Hu, Y.; Aglioti, S.M.; Iannetti, G.D. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. NeuroImage 2012, 59, 1571–1581. [Google Scholar] [CrossRef]
  180. Vijayalakshmi, R.; Nandagopal, D.; Dasari, N.; Cocks, B.; Dahal, N.; Thilaga, M. Minimum connected component–a novel approach to detection of cognitive load induced changes in functional brain networks. Neurocomputing 2015, 170, 15–31. [Google Scholar] [CrossRef]
  181. Wang, H.; Dragomir, A.; Abbasi, N.I.; Li, J.; Thakor, N.V.; Bezerianos, A. A novel real-time driving fatigue detection system based on wireless dry EEG. Cognitive neurodynamics 2018, 12, 365–376. [Google Scholar] [CrossRef]
  182. Wang, H.; Liu, X.; Hu, H.; Wan, F.; Li, T.; Gao, L.; Bezerianos, A.; Sun, Y.; Jung, T.-P. Dynamic reorganization of functional connectivity unmasks fatigue related performance declines in simulated driving. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
  183. Wang, Z.; Wang, Y.; Hu, C.; Yin, Z.; Song, Y. Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model. IEEE Sensors Journal 2022, 22, 4359–4368. [Google Scholar] [CrossRef]
  184. Wang, Z.; Wang, Y.; Zhang, J.; Hu, C.; Yin, Z.; Song, Y. Spatial-temporal feature fusion neural network for EEG-based emotion recognition. IEEE Transactions on Instrumentation and Measurement 2022, 71, 1–12. [Google Scholar] [CrossRef]
  185. Whitham, E.M.; Pope, K.J.; Fitzgibbon, S.P.; Lewis, T.; Clark, C.R.; Loveless, S.; Broberg, M.; Wallace, A.; DeLosAngeles, D.; Lillie, P. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical neurophysiology 2007, 118, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
  186. Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clinical neurophysiology 2002, 113, 767–791. [Google Scholar] [CrossRef]
  187. Yahya, F.; Hassanin, O.; Tariq, U.; Al-Nashash, H. (2020). EEG-Based Semantic Vigilance Level Classification Using Directed Connectivity Patterns and Graph Theory Analysis.
  188. Yahya, F.; Tariq, U.; Hassanin, O.; Mir, H.; Babiloni, F.; Al-Nashash, H. (2019). Brain Connectivity Analysis Under Semantic Vigilance and Enhanced Mental States.
  189. Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H. Cognitive workload modulation through degraded visual stimuli: A single-trial EEG study. Journal of neural engineering 2015, 12, 046020. [Google Scholar] [CrossRef]
  190. Yu, M.; Xiao, S.; Hua, M.; Wang, H.; Chen, X.; Tian, F.; Li, Y. EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features. Biomedical Signal Processing and Control 2022, 72, 103349. [Google Scholar] [CrossRef]
  191. Zhang, Y.; Li, Q.; Wang, Z.; Liu, X.; Zheng, Y. Temporal dynamics of reward anticipation in the human brain. Biological Psychology 2017, 128, 89–97. [Google Scholar] [CrossRef]
  192. Zhang, Z.G.; Hu, L.; Hung, Y.S.; Mouraux, A.; Iannetti, G. Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. Journal of Neuroscience 2012, 32, 7429–7438. [Google Scholar] [CrossRef]
  193. Zhao, C.; Lu, L.; Liu, W.; Zhou, D.; Wu, X. Complementary and alternative medicine for treating epilepsy in China: a systematic review. Acta Neurologica Scandinavica 2022, 146, 775–785. [Google Scholar] [CrossRef]
  194. Zheng, Y.; Li, Q.; Zhang, Y.; Li, Q.; Shen, H.; Gao, Q.; Zhou, S. Reward processing in gain versus loss context: An ERP study. Psychophysiology 2017, 54, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
  195. Zhou, Y.; Huang, S.; Xu, Z.; Wang, P.; Wu, X.; Zhang, D. Cognitive workload recognition using EEG signals and machine learning: A review. IEEE Transactions on Cognitive and Developmental Systems 2021, 14, 799–818. [Google Scholar] [CrossRef]
Figure 1. The co-occurrence network of WoS subject (9 clusters with different colors.).
Figure 1. The co-occurrence network of WoS subject (9 clusters with different colors.).
Preprints 139123 g001
Figure 2. The co- citation network papers in Six Regions.
Figure 2. The co- citation network papers in Six Regions.
Preprints 139123 g002
Table 1. The Bibliometric indices group by Database and Subregions until 03/28/2024.
Table 1. The Bibliometric indices group by Database and Subregions until 03/28/2024.
Database WoS Scopus
Subregions All Subregions All
World* ESCAP & ESCWA ENEA NCA PACIFIC SEA SSWA Arab States World
Indices
From (Year) 2004 2004 2005 2005 2004 2008 2007 2007 2004
To (Year) 2023 2024 2024 2023 2024 2024 2024 2024 2024
Documents 12,700 4,836 3,168 172 836 276 564 155 15,827
Sources 1,125 975 652 88 291 159 289 102 2,072
Authors 29,125 12,140 7,665 538 2,569 917 1,673 564 33,070
Keywords 19,062 9,375 6,729 557 2,113 848 1,719 541 21,384
References 279,617 134,022 94,266 8,576 33,891 11,719 22,987 7,057 763,160
Annual Growth Rate 28.12% 20.85% 15.37% 15.31% 14.11% 10.58% 15.15% 9.93% 18.63%
International Co-Authorship 37.27% 42.39% 35.95% 56.40% 65.79% 71.01% 48.76% 81.29% 34.8%
Co-Authors per Doc 4.89 5.42 5.58 5.28 5.69 5.41 4.70 5.28 5.14
Document Average Age 5.03 4.88 4.66 6.97 5.36 5.64 4.34 4.86 5.85
Average Citation per Doc 22.51 13.97 12.54 19.74 19.21 19.85 12.44 13.12 23.02
*They are extracted from (Fayaz, 2023) until 08/27/2023; Abbreviations: United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), East and North East Asia (ENEA),North and Central Asia (NCA),Pacific (PACIFIC),South East Asia (SEA),South and South West Asia (SSWA),United Nations Economic and Social Commission for West Asia (ESCWA)
Table 2. - The Lotka’s Statistics.
Table 2. - The Lotka’s Statistics.
Region C Beta R2 P-Value
ENEA 0.17 2.12 0.99 0.98
NCA 0.68 2.44 0.99 0.75
PACIFIC 0.70 2.35 0.98 0.40
SEA 0.69 2.43 0.97 0.40
SSWA 0.89 2.71 0.95 0.16
Arab States 0.58 2.37 0.93 0.40
All 0.75 2.22 0.99 0.75
Table 4. The Most Global Cited Documents Group by Database and Region after 2022.
Table 4. The Most Global Cited Documents Group by Database and Region after 2022.
Database Region Ref TC Title/Description
WoS ESCAP & ESCWA (Wang, Wang, Hu, et al., 2022)* 49 Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model
(Li et al., 2021)* 38 A Temporal–Spatial Deep Learning Approach for Driver Distraction Detection Based on EEG Signals
(Aslan & Akin, 2022)* 33 A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
(Hill et al., 2022) 33 Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood
(Sadiq et al., 2020) 32 A Matrix Determinant Feature Extraction Approach for Decoding Motor and Mental Imagery EEG in Subject Specific Tasks
(Zhou et al., 2021) 31 A Review about Cognitive Workload Recognition Using EEG Signals and Machine Learning.
(Cho et al., 2021) 27 NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework
(Guney et al., 2021) 26 A Deep Neural Network for SSVEP-based BCIs
(Yu et al., 2022) 25 EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features
(Wang, Wang, Zhang, et al., 2022) 25 Spatial-temporal feature fusion neural network for EEG-based emotion recognition
Scopus All World (Jung & Sejnowski, 2019) 89 Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing
(Cecchetti et al., 2022) 58 Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study
(Wang, Wang, Hu, et al., 2022)* 57 Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model
(Amorim et al., 2023) 47 The international cardiac arrest research consortium electroencephalography database
(Li et al., 2021)* 42 A Temporal–Spatial Deep Learning Approach for Driver Distraction Detection Based on EEG Signals
(Aslan & Akin, 2022)* 42 A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
(Di Gregorio et al., 2022) 42 Tuning alpha rhythms to shape conscious visual perception
(Attaheri et al., 2022) 42 Delta-and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants
(Apicella et al., 2022) 41 EEG-based measurement system for monitoring student engagement in learning 4.0
(Krishna et al., 2023) 41 Glioblastoma remodelling of human neural circuits decreases survival
Abbreviations: TC (Total Citations), * indicate the three common articles in both databases.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated