Submitted:
17 November 2024
Posted:
18 November 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results and Discussion
2.1. Amorphous Carbon
2.1.1. Structure of Amorphous Carbon
2.1.2. Synthesis of Amorphous Carbon
2.1.3. Uses of Amorphous Carbon in Medicine
2.1.4. Other Uses of Amorphous Carbon
2.2. Graphite
2.2.1. Discovery of Graphite
2.2.2. Structure of Graphite
2.2.3. Synthesis of Graphite
2.2.4. Uses of Graphite in Medicine
2.3. Carbon Nanocones
2.3.1. Discovery of Carbon Nanocones
2.3.2. Structure of Carbon Nanocones
2.3.3. Synthesis of Carbon Nanocones
2.3.4. Uses of Carbon Nanocones in Medicine
2.4. Fullerene (C60)
2.4.1. Discovery of Fullerene
2.4.2. Structure of Fullerene
2.4.3. Synthesis of Fullerene
2.4.4. Uses of Fullerene in Medicine
2.5. Graphene
2.5.1. Discovery and Structure of Graphene
2.5.2. Synthesis of Graphene
2.5.3. Uses of Graphene in Medicine
2.6. Reduced Graphene/Graphite Oxide (RGO)
2.6.1. Synthesis of Reduced Graphene/Graphite Oxides
2.6.2. Structure of Graphene Oxide
2.6.3. Synthesis of Reduced Graphite Oxide
2.6.4. Uses of Graphite Oxide in Medicine
2.7. Single-Walled Carbon Nanotubes (SWCNT)
2.7.1. Discovery of Carbon Nanotubes
2.7.2. Structure of Carbon Nanotubes
2.7.3. Synthesis of Carbon Nanotubes
2.7.4. Uses of Carbon Nanotubes in Medicine
2.8. Nanodiamond
2.8.1. Discovery of Nanodiamond
2.8.2. Structure of Nanodiamond
2.8.3. Synthesis of Nanodiamond
2.8.4. Uses of Nanodiamond in Medicine
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeinalipour-Yazdi, C.D.; Pullman, D.P. Quantitative Structure—Property Relationships for Longitudinal, Transverse, and Molecular Static Polarizabilities in Polyynes. Journal of Physical Chemistry B 2008, 112, 7377–7386. [Google Scholar] [CrossRef] [PubMed]
- Zeinalipour-Yazdi, C.D.; Christofides, C. Linear Correlation between Binding Energy and Young’s Modulus in Graphene Nanoribbons. Journal of Applied Physics 2009, 106, 054318-23. [Google Scholar] [CrossRef]
- Zeinalipour-Yazdi, C.D. Electronic Structure and Interlayer Binding Energy of Graphite. University of California, San Diego and San Diego State University, San Diego, Digital Dissertations 2006, 1–183.
- Akase, Z.M.; Nakamura, Y.; Sergiienko, T.; Shibata, R.; Shindo, E.; Suwa, H.D. Synthesis of Amorphous Carbon Nanoparticles and Carbon Encapsulated Metal Nanoparticles in Liquid Benzene by an Electric Plasma Discharge in Ultrasonic Cavitation Field. Ultrasonics Sonochemistry 2006, 13, 6–12. [Google Scholar] [CrossRef]
- Falcao, E.; Wudl, F. Carbon Allotropes: Beyond Graphite and Diamond. Chemical Technology and Biotechnology 2007, 82, 524–541. [Google Scholar] [CrossRef]
- Rafique, I.; Kausar, A.; Anwar, Z.; Muhammad, B. Exploration of Epoxy Resins, Hardening Systems and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review. Polymer-Plastics Technology and Engineering 2019, 55, 312–333. [Google Scholar] [CrossRef]
- Cai, M.; Thorpe, D.; Adamson, D.H.; Schniepp, H.C. Methods of Graphite Exfoliation. Journal of Materials Chemistry 2012, 22, 24992–25000. [Google Scholar] [CrossRef]
- Eid, M.E.-S. Polyethylenimine-Functionalized Magnetic Amorphous Carbon Fabricated from Oil Palm Leaves as a Novel Adsorbent for Hg(Ii) from Aqueous Solutions. Egyptian Journal of Petroleum 2018, 27, 1051–1060. [Google Scholar] [CrossRef]
- Clough, F.J.; Paul, S. Use of Amorphous Carbon as a Gate Insulator for Gaas and Related Compounds. Microelectric Engineering 2003, 70, 78–82. [Google Scholar] [CrossRef]
- Zeinalipour-Yazdi, C.D. A Dft Study of the Interaction of Aspirin, Paracetamol and Caffeine with One Water Molecule. Journal of Molecular Modeling 2022, 28, 285. [Google Scholar] [CrossRef]
- Miriyala, N.; Ouyang, D.; Perrie, Y.; Lowry, D.; Kirby, D.J. Activated Carbon as a Carrier for Amorphous Drug Delivery: Effect of Drug Characteristics and Carrier Wettability. Eur J Pharm Biopharm. 2017, 115, 197–205. [Google Scholar] [CrossRef]
- Barlow, A.J.; McCulloch, D.G.; McKenzie, D.R.; Murdoch, B.J.; Partridge, J.G.; Raeber, T.J.; Zhao, Z.C. Light-Gated Amorphous Carbon Memristors with Indium-Free Transparent Electrodes. Carbon 2019, 152, 59–65. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, X.; Mao, J.; Lan, Z.; Huang, X.; Lu, Y.; Luo, B.; Liu, M.; Chen, M.; Chen, L. Synergistic Catalysis in Monodispersed Transition Metal Oxide Nanoparticles Anchored on Amorphous Carbon for Excellent Low-Temperature Dehydrogenation of Magnesium Hydride. Materials Today Energy 2019, 12, 146–154. [Google Scholar] [CrossRef]
- Zeinalipour-Yazdi, Constantinos. Supervisor: David P. Pullman Electronic Structure and Interlayer Binding Energy of Graphite. Digital Dissertations, 2006.
- Zeinalipour-Yazdi, C.D.; Pullman, D.P. A New Interpretation of the Scanning Tunneling Microscope Image of Graphite. Chemical Physics 2008, 348, 233–236. [Google Scholar] [CrossRef]
- Zeinalipour-Yazdi, C.D.; Pullman, D.P. Study of Rhombohedral Graphite X-Ray Filter Using the Sphere-in-Contact Model. Chem. Phys. Lett. 2019, 734, 136717. [Google Scholar] [CrossRef]
- Persson, Kristin, Materials Data on C (Sg:194) by Materials Project, 7/2014, https://materialsproject.org/docs/calculations. [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Materials 2013, 1, 011002. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy—from Birth to Adolescence. Rev. Mod. Phys. 1987, 59, 615. [Google Scholar] [CrossRef]
- Zhang, J.; Kan, Y.; Gu, L.; Wang, C.; Zhang, Y. Wang, and Y. Zhang. Graphite Carbon Nitride and Its Composites for Medicine and Health Applications. Chem. Asian J. 2021, 16, 2003. [Google Scholar] [CrossRef]
- Narjabadifam, A.; Vakili-Tahami, F.; Zehsaz, M. Modal Analysis of Multi-Walled Carbon Nanocones Using Molecular Dynamics Simulation. Computational Materials Science 2017, 137, 55–66. [Google Scholar] [CrossRef]
- Naess, S.N.; Elgsaeter, A.; Helgesen, G.; Knudsen, K.D. Carbon Nanocones: Wall Structure and Morphology. Science and Technology of Advanced Materials 2009, 10, 065002. [Google Scholar] [CrossRef]
- Ge, M.; Sattler, K. Observation of Fullerene Cones. Chemical Physics Letters 1994, 220, 192–196. [Google Scholar] [CrossRef]
- Ardeshana, B.A.; Jani, U.B.; Patel, A.M.; Joshi, A.Y. Characterizing the Vibration Behavior of Double Walled Carbon Nano Cones for Sensing Applications. Materials Technology 2018, 33, 451–466. [Google Scholar] [CrossRef]
- Charlier, J.-C.; Rignanese, G.-M. Electronic Structure of Carbon Nanocones. Physical Review Letters 2001, 86, 5970–5973. [Google Scholar] [CrossRef]
- El-Barbary, A.A.; Kamel, M.A.; Eid, M.A.; Taha, H.O.; Mohamed, R.A.; Al-Khateeb, M.A. The Surface Reactivity of Pure and Monohydrogenated Nanocones Formed from Graphene Sheets. Graphene 2015, 4, 75–83. [Google Scholar] [CrossRef]
- Ansari, R.; Mahmoudinezhad, E. Characterizing the Mechanical Properties of Carbon Nanocones Using an Accurate Spring-Mass Model. Computational Materials Science 2015, 101, 260–266. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. . C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Smalley, R.E. Discovering the Fullerenes, Nobel Lecture. Chemistry 1996, 89–103. [Google Scholar] [CrossRef]
- Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R.; Kr, W. Solid C60: A New Form of Carbon. Nature 1990, 347, 354–358. [Google Scholar] [CrossRef]
- Voicu, I.; Armand, X.; Cauchetier, M.; Herlin, N.; Bourcier, S. Laser Synthesis of Fullerenes from Benzene-Oxygen Mixtures. Chemical Physics Letters 1996, 256, 261–268. [Google Scholar] [CrossRef]
- Howard, J.B.; McKinnon, J.T.; Makarovsky, Y.; Lafleur, A.L.; Johnson, M.E. Fullerenes C60 and C70 in Flames. Nature 1991, 352, 139–141. [Google Scholar] [CrossRef]
- Bakry, R.; Vallant, R.M.; Najam-Ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal Applications of Fullerenes. Int J Nanomedicine 2007, 2, 639–649. [Google Scholar] [CrossRef]
- Chen, Z.; Mao, R.; Liu, Y. Fullerenes for Cancer Diagnosis and Therapy: Preparation, Biological and Clinical Perspectives. Current Drug Metabolism 2012, 13, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Mohan Gokhale, M.; Ravindra Somani, R. Fullerenes: Chemistry and It’s Applications. Mini Reviews in Organic Chemistry 2015, 12, 355–366. [Google Scholar] [CrossRef]
- Grushko, Y.S.; Sedov, V.P.; Shilin, V.A. Technology for Manufacture of Pure Fullerenes C60, C70 and a Concentrate of Higher Fullerenes. Russian Journal of Applied Chemistry 2007, 448–455. [Google Scholar] [CrossRef]
- Vidal, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Fullerenes for Catalysis: Metallofullerenes in Hydrogen Transfer Reactions. Chem. Commun. 2017, 53, 4842–4844. [Google Scholar] [CrossRef]
- Lieber, C.M.; Chen, C.-C. Preparation of Fullerenes and Fullerene-Based Materials. Solid State Physics 1994, 48, 109–148. [Google Scholar] [CrossRef]
- Nimibofa, A.; Newton, E.A.; Cyprain, A.Y.; Donbebe, W. Fullerenes: Synthesis and Applications. Journal of Materials Science Research 2018, 7, 22–36. [Google Scholar] [CrossRef]
- Yang, S.; Pettiette, C.; Conceição, J.; Cheshnovsky, O.; Smalley, R. . Ups of Buckminsterfullerene and Other Large Clusters of Carbon. Chemical Physics Letters 2013, 589, 31–34. [Google Scholar] [CrossRef]
- Casadei, N.; Mireille, M.; Guillaume, Y.; André, C. A Humic Acid Stationary Phase for the High Performance Liquid Chromatography Separation of Buckminsterfullerenes: Theoretical and Practical Aspects. Analytica Chimica Acta 2007, 588, 268–273. [Google Scholar] [CrossRef]
- Kroto, W.H. The Stability of the Fullerenes Cn, with N = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–531. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Ruoff, R.S.; Bielawski, C.W. From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew. Chem. Int. Ed. 2010, 49, 9336–9344. [Google Scholar] [CrossRef]
- Prekodravac, J.R.; Kepić, D.P.; Colmenares, J.C.; Giannakoudakis, D.A.; Jovanović, S.P. A Comprehensive Review on Selected Graphene Synthesis Methods: From Electrochemical Exfoliation through Rapid Thermal Annealing Towards Biomass Pyrolysis. J. Mater. Chem. C 2021, 9, 6722–6748. [Google Scholar] [CrossRef]
- Yuan, L.; Ge, J.; Peng, X.; Zhang, Q.; Wu, Z.; Jian, Y.; Xiong, X.; Yin, H.; Han, J. A Reliable Way of Mechanical Exfoliation of Large Scale Two Dimensional Materials with High Quality. AIP advances 2016, 6, 125201. [Google Scholar] [CrossRef]
- Bharech, S.; Kumar, R. A Review on the Properties and Applications of Graphene. Journal of Material Science and Mechanical Engineering 2015, 2, 70–73. [Google Scholar]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Review of modern physics 2009, 81, 109. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nature Materials 2011, 10, 569–581. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nature nanotechnology 2013, 8, 235–246. [Google Scholar] [CrossRef]
- Homaeigohar, S.; Elbahri, M. Graphene Membranes for Water Desalination. NPG Asia Mater. 2017, 9, e417. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical Functionalization of Graphene and Its Applications, Progress in Materials Science. Progress in Materials Science 2012, 57, 1061–1105. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. . Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews 2012, 112, 6156–6214. [Google Scholar] [CrossRef]
- Wei, W.; Qu, X. Extraordinary Physical Properties of Functionalized Graphene. Small 2012, 8, 2138–2151. [Google Scholar] [CrossRef]
- Lü, P.; Feng, Y.; Zhang, X.; Li, Y.; Feng, W. Recent Progresses in Application of Functionalized Graphene Sheets. Science China Technological Sciences 2010, 53, 2311–2319. [Google Scholar] [CrossRef]
- Abdullaeva, Z.; Kelgenbaeva, Z.; Masayuki, T.; Hirano, M.; Nagaoka, S.; Shirosaki, T. Graphene Sheets with Modified Surface by Sodium Lauryl Sulfate Surfactant for Biomedical Applications. Graphene 2016, 5, 155–165. [Google Scholar] [CrossRef]
- Gadakh, D.; Dashora, P.; Wadhankar, G. A Review Paper on Graphene Coated Fibres. Graphene 2019, 8, 53–74. [Google Scholar] [CrossRef]
- Atif, R.; Inam, F. The Dissimilarities between Graphene and Frame-Like Structures. Graphene 2016, 5, 55–72. [Google Scholar] [CrossRef]
- Randviir, E.P.; Brownson, D.A.C.; Banks, C.E. A Decade of Graphene Research: Production, Applications and Outlook. Materials Today Energy 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Dimitrakopoulos, C.; Avouris, P. Graphene: Synthesis and Applications. Materials Today Energy 2012, 15, 86–97. [Google Scholar] [CrossRef]
- Adetayo, A.; Runsewe, D. Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open Journal of Composite Materials 2019, 9, 207–229. [Google Scholar] [CrossRef]
- Reshma, S.; Mohanan, P. Graphene: A Multifaceted Nanomaterial for Cutting Edge Biomedical Application. International Journal of Medical Nano Research 2014, 1–6. [Google Scholar]
- Cai, X.; Lai, L.; Shen, Z.; Lin, J. Graphene and Graphene-Based Composites as Li-Ion Battery Electrode Materials and Their Application in Fuel Cells. Journal of Materials Chemistry A 2017, 5, 15423–15446. [Google Scholar] [CrossRef]
- Pumera, M. Graphene in Biosensing. Materials Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Avouris, P.; Xia, F. Graphene Applications in Electronics and Photonics. Graphene Fundamentals and Functionality. Cambridge University Press 2012, 37, 1225–1234. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Ruoff, R.S.; Bielawski, C.W. From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew. Chem. Int. Ed. 2010, 49, 9336–9344. [Google Scholar] [CrossRef] [PubMed]
- Cote, L.; Kim, F.; Huang, J. Langmuir−Blodgett Assembly of Graphite Oxide Single Layers. Journal of the American Chemical Society 2009, 131, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Shi, T.; Zhang, L. Preparation and Properties of Amine-Functionalized Reduced Graphene Oxide/Waterborne Polyurethane Nanocomposites. High Performance Polymers 2015, 28, 453–465. [Google Scholar] [CrossRef]
- Marcano, D.; Kosynkin, D.; Berlin, J.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.; Lu, W.; Tour, J. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sun, Z.; Slesarev, A.S.; Alemany, L.B.; Lu, W.; Tour, J.M. Correction to Improved Synthesis of Graphene Oxide. ACS Nano 2018, 12, 2078. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Dideikin, A.T.; Vul’, A.Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Frontiers in Physics 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Meyer, J.; Sundaram, R.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Letters 2010, 10, 1144–1148. [Google Scholar] [CrossRef]
- Hidayah, N.; Liu, W.; Lai, C.; Noriman, N.; Khe, C.; Hashim, U.; Lee, H. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017, 1892, 150002. [Google Scholar] [CrossRef]
- Yang, H.; Cao, Y.; He, J.; Zhang, Y.; Jin, B.; Sun, J.; Wang, Y.; Zhao, Z. Highly Conductive Free-Standing Reduced Graphene Oxide Thin Films for Fast Photoelectric Devices. Carbon 2017, 115, 561–570. [Google Scholar] [CrossRef]
- Smith, A.; LaChance, A.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Materials Science 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Radushkevich, L.V.; Lukyanovich, V.M. The Structure of Carbon Forming in Thermal Decomposition of Carbon Monoxide on an Iron Catalyst. Russian Journal of Physical Chemistry 1952, 26, 88–95. [Google Scholar]
- Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-Nm Diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Bethune, D.S.; Kiang, C.H.; de Vries, M.S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature 1993, 363, 605–607. [Google Scholar] [CrossRef]
- Monthioux, M.; Kuznetsov, V. Who Should Be Given the Credit for the Discovery of Carbon Nanotubes? Carbon 2006, 1621–1623. [Google Scholar] [CrossRef]
- Deshpande, P.; Mahendru, A. A Review of Single Wall Carbon Nanotube: Structure and Preparation. International Journal of Scientific and Technology Research 2018, 132–134. [Google Scholar]
- Karthikeyan, S.; Mahalingam, P.; Karthik, M. Large Scale Synthesis of Carbon Nanotubes. Journal of chemistry 2008, 6, 1–12. [Google Scholar] [CrossRef]
- Sun, D.L.; Hong, R.Y.; Liu, J.Y.; Wang, F.; Wang, Y.F. Preparation of Carbon Nanomaterials Using Two-Group Arc Discharge Plasma. Chemical Engineering Journal 2016, 303, 217–230. [Google Scholar] [CrossRef]
- Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xie, Y.; Zhang, Y.; Huang, H.; Huang, S.; Hou, L.; Zhang, H.; Li, Z.; Shi, J.; Zhang, Z. Thermo-Sensitive Liposomes Loaded with Doxorubicin and Lysine Modified Single-Walled Carbon Nanotubes as Tumor-Targeting Drug Delivery System. J Biomater Appl. 2014, 29, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon Nanotube—a Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sensors International 2020, 1, 100003. [Google Scholar] [CrossRef]
- Burke, A.; Ding, X.; Singh, R.; Kraft, R.A.; Levi-Polyachenko, N.; Rylander, M.N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J.; et al. Long-Term Survival Following a Single Treatment of Kidney Tumors with Multiwalled Carbon Nanotubes and near-Infrared Radiation. Proc Natl Acad Sci USA 2009, 106, 12897–12902. [Google Scholar] [CrossRef]
- He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed Res Int. 2013, 578290, 1–12. [Google Scholar] [CrossRef]
- Danilenko, V.V. On the History of the Discovery of Nanodiamond Synthesis. Phys. Solid State 2004, 46, 595–599. [Google Scholar] [CrossRef]
- Narayan, J.; Bhaumik, A. Research Update: Direct Conversion of Amorphous Carbon into Diamond at Ambient Pressures and Temperatures in Air. APL Materials 2015, 3, 100702. [Google Scholar] [CrossRef]
- Xu, J.; Chow, E.K.-H. Biomedical Applications of Nanodiamonds: From Drug-Delivery to Diagnostics. SLAS Technology 2023, 28, 214–222. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).