Submitted:
01 April 2025
Posted:
03 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review Process
3. Electroencephalography (EEG): Foundations and Applications
3.1. Brain Anatomy Relevant to EEG
3.2. EEG Signals and Their Properties
3.3. Feature Extraction from EEG Signals
4. Emotion Recognition and Biometric Identification Using EEG
4.1. Biometric from EEG Signals
4.2. Emotion Recognition from EEG Signals
4.3. Emotion-Aware Biometric Identification
4.4. Ethical Considerations
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zapata, J.C.; Duque, C.M.; Gonzalez, M.E.; Becerra, M.A. Data Fusion Applied to Biometric Identification – A Review. Advances in Computing and Data Sciences 2017, 721, 721–733. [Google Scholar] [CrossRef]
- Zhong, Wenxiaoa, b;An, Xingweia;Di, Yanga;Zhang, Lixina, b;Ming, Donga, b. Review on identity feature extraction methods based on electroencephalogram signals 2021. 38. [CrossRef]
- Belhadj, F. Biometric system for identification aBelhadj, F. (2017). Biometric system for identification and authentication.nd authentication 2017.
- Moreno-Revelo, M.; Ortega-Adarme, M.; Peluffo-Ordoñez, D.; Alvarez-Uribe, K.; Becerra, M. Comparison among physiological signals for biometric identification; Vol. 10585 LNCS, 2017. [CrossRef]
- Alyasseri, Z.A.A.; Alomari, O.A.; Makhadmeh, S.N.; Mirjalili, S.; Al-Betar, M.A.; Abdullah, S.; Ali, N.S.; Papa, J.P.; Rodrigues, D.; Abasi, A.K. EEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizer. IEEE Access 2022, 10, 10500–10513. [Google Scholar] [CrossRef]
- Abdi Alkareem Alyasseri, Z.; Alomari, O.A.; Al-Betar, M.A.; Awadallah, M.A.; Hameed Abdulkareem, K.; Abed Mohammed, M.; Kadry, S.; Rajinikanth, V.; Rho, S. EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications. Computational Intelligence and Neuroscience 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- R.A., R.S.E.T.A.W.A.R. Deep Learning Approaches for Personal Identification Based on EGG Signals. Lecture Notes on Data Engineering and Communications Technologies 2022, 100, 30–39. [CrossRef]
- Hendrawan, M.A.; Saputra, P.Y.; Rahmad, C. Identification of optimum segment in single channel EEG biometric system. Indonesian Journal of Electrical Engineering and Computer Science 2021, 23, 1847–1854. [Google Scholar] [CrossRef]
- Sakalle A., Tomar P.a., B.H.A.D.B.A. A LSTM based deep learning network for recognizing emotions using wireless brainwave driven system 2021. [CrossRef]
- Galvão F., Alarcão S.M.., F.M. Predicting exact valence and arousal values from EEG 2021. 21. [CrossRef]
- Özerdem, M.S.; Polat, H. Emotion recognition based on EEG features in movie clips with channel selection. Brain Informatics 2017, 4, 241–252. [Google Scholar] [CrossRef]
- Maiorana, E. Deep learning for EEG-based biometric recognition. Neurocomputing 2020, 410, 374–386. [Google Scholar] [CrossRef]
- Prabowo, D.W.; Nugroho, H.A.; Setiawan, N.A.; Debayle, J. A systematic literature review of emotion recognition using EEG signals. Cognitive Systems Research 2023, 82, 101152. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.; Yang, Y.; Zhang, X. Multi-modal emotion recognition using EEG and speech signals. Computers in Biology and Medicine 2022, 149, 105907. [Google Scholar] [CrossRef]
- Kouka, N.; Fourati, R.; Fdhila, R.; Siarry, P.; Alimi, A.M. EEG channel selection-based binary particle swarm optimization with recurrent convolutional autoencoder for emotion recognition. Biomedical Signal Processing and Control 2023, 84, 104783. [Google Scholar] [CrossRef]
- Huang, G.; Hu, Z.; Chen, W.; Zhang, S.; Liang, Z.; Li, L.; Zhang, L.; Zhang, Z. M3CV: A multi-subject, multi-session, and multi-task database for EEG-based biometrics challenge. NeuroImage 2022, 264, 119666. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, V.P. Human Recognition Using Deep Neural Networks and Spatial Patterns of SSVEP Signals 2023. 23. [CrossRef]
- BALCI, F. DM-EEGID: EEG-Based Biometric Authentication System Using Hybrid Attention-Based LSTM and MLP Algorithm. Traitement Du Signal 2023, 40, 1–14. [Google Scholar] [CrossRef]
- Bak, S.J.; Jeong, J. User Biometric Identification Methodology via EEG-Based Motor Imagery Signals. IEEE Access 2023, XX. [Google Scholar] [CrossRef]
- |, J.O..K.M.; Pereda, J.F.G..E. Brainprint based on functional connectivity and asymmetry indices of brain regions: A case study of biometric person identification with non-expensive electroencephalogram headsets 2023. [CrossRef]
- Alsumari, W.; Hussain, M.; Alshehri, L.; Aboalsamh, H.A. EEG-Based Person Identification and Authentication Using Deep Convolutional Neural Network. Axioms 2023, 12. [Google Scholar] [CrossRef]
- TajDini, M.; Sokolov, V.; Kuzminykh, I.; Ghita, B. Brainwave-based authentication using features fusion. Computers and Security 2023, 129, 103198. [Google Scholar] [CrossRef]
- Cui, G.; Li, X.; Touyama, H. Emotion recognition based on group phase locking value using convolutional neural network. Scientific Reports 2023, 13, 1–9. [Google Scholar] [CrossRef]
- Khubani, J.; Kulkarni, S. Inventive deep convolutional neural network classifier for emotion identification in accordance with EEG signals. Social Network Analysis and Mining 2023, 13. [Google Scholar] [CrossRef]
- Zali-Vargahan, B.; Charmin, A.; Kalbkhani, H.; Barghandan, S. Deep time-frequency features and semi-supervised dimension reduction for subject-independent emotion recognition from multi-channel EEG signals. Biomedical Signal Processing and Control 2023, 85, 104806. [Google Scholar] [CrossRef]
- Vahid, A.; Arbabi, E. Human identification with EEG signals in different emotional states. 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, ICBME 2016, 2017; 242–246. [Google Scholar] [CrossRef]
- Arnau-Gonzalez P.a,Arevalillo-Herraez M.b,Katsigiannis S.a, R.N. On the Influence of Affect in EEG-Based Subject Identification. IEEE Transactions on Affective Computing 2021, 12, 391–401. [CrossRef]
- Kaur, B.; Kumar, P.; Roy, P.P.; Singh, D. Impact of Ageing on EEG Based Biometric Systems. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 11; 2017; pp. 459–464. [Google Scholar] [CrossRef]
- Diamond, M.C.; Scheibel, A.B.; Elson, L.M. libro de trabajo el Cerebro Humano 2014.
- Romeo Urrea, H. El Dominio de los Hemisferios Cerebrales. Ciencia Unemi 2015, 3, 8–15. [Google Scholar] [CrossRef]
- Buzsáki, G.; Draguhn, A. Neuronal Oscillations in Cortical Networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef]
- Hestermann, E.; Schreve, K.; Vandenheever, D. Enhancing Deep Sleep Induction Through a Wireless In-Ear EEG Device Delivering Binaural Beats and ASMR: A Proof-of-Concept Study. Sensors 2024, 24, 7471. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tan, Z.; Xia, W.; Gomes, C.A.; Zhang, X.; Zhou, W.; Liang, S.; Axmacher, N.; Wang, L. Theta oscillations synchronize human medial prefrontal cortex and amygdala during fear learning. Science Advances 2021, 7. [Google Scholar] [CrossRef]
- Mikicin, M.; Kowalczyk, M. Audio-Visual and Autogenic Relaxation Alter Amplitude of Alpha EEG Band, Causing Improvements in Mental Work Performance in Athletes. Applied Psychophysiology and Biofeedback 2015, 40, 219–227. [Google Scholar] [CrossRef]
- Lundqvist, M.; Herman, P.; Warden, M.R.; Brincat, S.L.; Miller, E.K. Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communications 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.H.; Yang, Y.R.; Chou, L.W.; Huang, Y.C.; Wang, R.Y. The Brain Waves During Reaching Tasks in People With Subacute Low Back Pain: A Cross-Sectional Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2025, 33, 183–190. [Google Scholar] [CrossRef]
- Subha, D.P.; Joseph, P.K.; U, R.A.; Lim, C. EEG Signal Analysis: A Survey. Journal of Medical Systems 2010, 34, 195–212. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Q.Q.; Chen, H.; Hu, X.Q.; Li, W.G.; Bai, Y.; Han, J.X.; Wang, Y.; Liang, Z.H.; Chen, D.; et al. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Military Medical Research 2023, 10, 67. [Google Scholar] [CrossRef]
- Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomedical Signal Processing and Control 2014, 14, 19–29. [Google Scholar] [CrossRef]
- Jaipriya, D.; Sriharipriya, K.C. Brain Computer Interface-Based Signal Processing Techniques for Feature Extraction and Classification of Motor Imagery Using EEG: A Literature Review. Biomedical Materials & Devices 2024, 2, 601–613. [Google Scholar] [CrossRef]
- Egorova, L.; Kazakovtsev, L.; Vaitekunene, E. Nonlinear Features and Hybrid Optimization Algorithm for Automated Electroencephalogram Signal Analysis; 2024; pp. 233–243. [CrossRef]
- A. K. Jain, A.R.; Nandakumar, K. An introduction to biometrics. International Conference on Pattern Recognition 2008, pp. 1–1. [CrossRef]
- Ibrahim, H. EEG-Based Biometric Close-Set Identification Using CNN-ECOC-SVM 2021. pp. 723–732. [CrossRef]
- Chi Qin Lai, Haidi Ibrahim, Shahrel Azmin Suandi, M.Z.A. Convolutional Neural Network for Closed-Set Identification from Resting State Electroencephalography 2022. 10, 3442–3442. [CrossRef]
- Yingnan Sun, Frank P.-W. Lo, B.L. EEG-based user identification system using 1D-convolutional long short-term memory neural networks 2019. 125, 259–267. [CrossRef]
- Bhawna Kaliraman, Sweety Nain, Rashmi Verma, Yash Dhankhar, P.B.H. Pre-processing of EEG signal using Independent Component Analysis 2022. pp. 1–5. [CrossRef]
- Masato Yamashita1, Minoru Nakazawa1, Yukinobu Nishikawa1, N.A. Examination and It’s Evaluation of Preprocessing Method for Individual Identification in EEG 2020. pp. 239–246. [CrossRef]
- Bhawna, K.; Priyanka.; Duhan, M. Electroencephalogram Based Biometric System: A Review. Lecture Notes in Electrical Engineering 2021, 668, 57–77. [CrossRef]
- Divya Acharya1, Mansi Lende2, Kartavya Lathia3, Sanjana Shirgurkar4, Nikhil Kumar, Sakshi Madrecha5, A.B. Comparative Analysis of Feature Extraction Technique on EEG-Based Dataset 2020. pp. 405–416. [CrossRef]
- Kamaraju, S.P.; Das, K.; Pachori, R.B. EEG Based Biometric Authentication System Using Multivariate FBSE Entropy, 2023. [CrossRef]
- Ortega-Rodríguez, J.; Gómez-González, J.F.; Pereda, E. Selection of the Minimum Number of EEG Sensors to Guarantee Biometric Identification of Individuals. Sensors 2023, 23, 4239. [Google Scholar] [CrossRef] [PubMed]
- M. Benomar, Steven Cao, Manoj Vishwanath, Khuong Quoc Vo, H.C. Investigation of EEG-Based Biometric Identification Using State-of-the-Art Neural Architectures on a Real-Time Raspberry Pi-Based System 2022. 22, 9547–9547. [CrossRef]
- Tian, W.; Li, M.; Hu, D., Multi-band Functional Connectivity Features Fusion Using Multi-stream GCN for EEG Biometric Identification; 2023; pp. 3196–3203. [CrossRef]
- Kralikova, I.; Babusiak, B.; Smondrk, M. EEG-Based Person Identification during Escalating Cognitive Load. Sensors 2022, 22, 7154. [Google Scholar] [CrossRef] [PubMed]
- Wibawa, A.D.; Mohammad, B.S.Y.; Fata, M.A.K.; Nuraini, F.A.; Prasetyo, A.; Pamungkas, Y. Comparison of EEG-Based Biometrics System Using Naive Bayes, Neural Network, and Support Vector Machine. In Proceedings of the 2022 International Conference on Electrical and Information Technology (IEIT). IEEE, 9 2022, pp. 408–413. [CrossRef]
- Hendrawan, M.A.; Rosiani, U.D.; Sumari, A.D.W. Single Channel Electroencephalogram (EEG) Based Biometric System. In Proceedings of the 2022 IEEE 8th Information Technology International Seminar (ITIS). IEEE, 10 2022, pp. 307–311. [CrossRef]
- Lai, C.Q.; Ibrahim, H.; Abdullah, M.Z.; Suandi, S.A. EEG-Based Biometric Close-Set Identification Using CNN-ECOC-SVM; 2022; pp. 723–732. [CrossRef]
- Jijomon, C.M.; Vinod, A.P. EEG-based Biometric Identification using Frequently Occurring Maximum Power Spectral Features. In Proceedings of the 2018 IEEE Applied Signal Processing Conference (ASPCON). IEEE, 12 2018, pp. 249–252. [CrossRef]
- Waili, T.; Johar, M.G.M.; Sidek, K.A.; Nor, N.S.H.M.; Yaacob, H.; Othman, M. EEG Based Biometric Identification Using Correlation and MLPNN Models. International Journal of Online and Biomedical Engineering (iJOE) 2019, 15, 77–90. [Google Scholar] [CrossRef]
- Jijomon Chettuthara Monsy, A.P.V. EEG-based biometric identification using frequency-weighted power feature. The Institution of Engineering and Technology 2020, 9, 251–258. [Google Scholar] [CrossRef]
- Mishra, A.; Bhateja, V.; Gupta, A.; Mishra, A.; Satapathy, S.C., Feature Fusion and Classification of EEG/EOG Signals; 2019; pp. 793–799. [CrossRef]
- Barra, S.; Casanova, A.; Fraschini, M.; Nappi, M., EEG/ECG Signal Fusion Aimed at Biometric Recognition; 2015; pp. 35–42. [CrossRef]
- Zhang, X.; Yao, L.; Huang, C.; Gu, T.; Yang, Z.; Liu, Y. DeepKey. ACM Transactions on Intelligent Systems and Technology 2020, 11, 1–24. [Google Scholar] [CrossRef]
- Moreno-Rodriguez, J.C.; Ramirez-Cortes, J.M.; Atenco-Vazquez, J.C.; Arechiga-Martinez, R. EEG and voice bimodal biometric authentication scheme with fusion at signal level. In Proceedings of the 2021 IEEE Mexican Humanitarian Technology Conference (MHTC). IEEE, 4 2021, pp. 52–58. [CrossRef]
- Du, Y.; Xu, Y.; Wang, X.; Liu, L.; Ma, P. EEG temporal–spatial transformer for person identification. Scientific Reports 2022, 12, 14378. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, Y.; Meng, J.; Zhao, Q. A Federated Attention-Based Multimodal Biometric Recognition Approach in IoT. Sensors 2023, 23, 6006. [Google Scholar] [CrossRef]
- Delvigne, V.; Wannous, H.; Vandeborre, J.P.; Ris, L.; Dutoit, T. Spatio-Temporal Analysis of Transformer based Architecture for Attention Estimation from EEG. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 8 2022, pp. 1076–1082. [CrossRef]
- Moctezuma, L.A.; Molinas, M. Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection. Scientific Reports 2020, 10, 14917. [Google Scholar] [CrossRef]
- Carla, F.; Yanina, W.; Daniel Gustavo, P. ¿Cuántas Son Las Emociones Básicas? Anuario de Investigaciones 2017, 26, 253–257. [Google Scholar]
- LeDoux, J.E. Emotion Circuits in the Brain. Annual Review of Neuroscience 2000, 23, 155–184. [Google Scholar] [CrossRef]
- Bradley, M.M. Natural selective attention: Orienting and emotion. Psychophysiology 2009, 46, 1–11. [Google Scholar] [CrossRef]
- Carlos Gantiva, K.C. CARACTERISTICAS DE LA RESPUESTA EMOCIONAL GENERADA POR LAS PALABRAS: UN ESTUDIO EXPERIMENTAL DESDE LA EMOCIÓN Y LA MOTIVACIÓN 2016. 10, 55–62.
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis ;Using Physiological Signals, 2012. [CrossRef]
- M. Soleymani, J. Lichtenauer, T.P.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging 2012. 3, 42–55. [CrossRef]
- Zheng, W.L.; Guo, H.T.; Lu, B.L. Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, apr 2015, pp. 154–157. [CrossRef]
- Erhan Ekmekcioglu, Y.C. Loughborough University Multimodal Emotion Dataset-2, 2020.
- Li, J.W.; Lin, D.; Che, Y.; Lv, J.J.; Chen, R.J.; Wang, L.J.; Zeng, X.X.; Ren, J.C.; Zhao, H.M.; Lu, X. An innovative EEG-based emotion recognition using a single channel-specific feature from the brain rhythm code method. Frontiers in Neuroscience 2023, 17. [Google Scholar] [CrossRef]
- Murugappan, M.; Ramachandran, N.; Sazali, Y. Classification of human emotion from EEG using discrete wavelet transform. Journal of Biomedical Science and Engineering 2010, 03, 390–396. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Hsieh, S. Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns. PLoS ONE 2014, 9, e95415. [Google Scholar] [CrossRef]
- Iacoviello, D.; Petracca, A.; Spezialetti, M.; Placidi, G. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions. Computer Methods and Programs in Biomedicine 2015, 122, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Khaund, K.; Hazarika, S.M. Bispectral Analysis of EEG for Emotion Recognition. Procedia Computer Science 2016, 84, 31–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Ji, X. EEG-based classification of emotions using empirical mode decomposition and autoregressive model. Multimedia Tools and Applications 2018, 77, 26697–26710. [Google Scholar] [CrossRef]
- Garcia-Martinez, B.; Fernandez-Caballero, A.; Alcaraz, R.; Martinez-Rodrigo, A. Application of Dispersion Entropy for the Detection of Emotions With Electroencephalographic Signals. IEEE Transactions on Cognitive and Developmental Systems 2022, 14, 1179–1187. [Google Scholar] [CrossRef]
- DAŞDEMİR, Y.; YILDIRIM, E.; YILDIRIM, S. Emotion Analysis using Different Stimuli with EEG Signals in Emotional Space. Natural and Engineering Sciences 2017, 2, 1–10. [Google Scholar] [CrossRef]
- Singh, M.I.; Singh, M. Development of low-cost event marker for EEG-based emotion recognition. Transactions of the Institute of Measurement and Control 2017, 39, 642–652. [Google Scholar] [CrossRef]
- Nakisa, B.; Rastgoo, M.N.; Rakotonirainy, A.; Maire, F.; Chandran, V. Long Short Term Memory Hyperparameter Optimization for a Neural Network Based Emotion Recognition Framework. IEEE Access 2018, 6, 49325–49338. [Google Scholar] [CrossRef]
- Sovatzidi, G.; Iakovidis, D.K. Interpretable EEG-Based Emotion Recognition Using Fuzzy Cognitive Maps; 2023. [CrossRef]
- Ong, Z.Y.; Saidatul, A.; Vijean, V.; Ibrahim, Z. Non Linear Features Analysis between Imaginary and Non-imaginary Tasks for Human EEG-based Biometric Identification. IOP Conference Series: Materials Science and Engineering 2019, 557, 012033. [Google Scholar] [CrossRef]
- Brás, S.; Ferreira, J.H.T.; Soares, S.C.; Pinho, A.J. Biometric and Emotion Identification: An ECG Compression Based Method. Frontiers in Psychology 2018, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Wang, C.; Ruan, Q. DE-CNN: An Improved Identity Recognition Algorithm Based on the Emotional Electroencephalography. Computational and Mathematical Methods in Medicine 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Chen, J.X.; Mao, Z.J.; Yao, W.X.; Huang, Y.F. EEG-based biometric identification with convolutional neural network. Multimedia Tools and Applications 2020, 79, 10655–10675. [Google Scholar] [CrossRef]
- Pandharipande, M.; Chakraborty, R.; Kopparapu, S.K. Modeling of Olfactory Brainwaves for Odour Independent Biometric Identification. In Proceedings of the 2023 31st European Signal Processing Conference (EUSIPCO). IEEE, 9 2023, pp. 1140–1144. [CrossRef]
- Duque-Mejía, C.; Castro, A.; Duque, E.; Serna-Guarín, L.; Lorente-Leyva, L.L.; Peluffo-Ordóñez, D.; Becerra, M.A. Methodology for biometric identification based on EEG signals in multiple emotional states; [Metodología para la identificación biométrica a partir de señales EEG en múltiples estados emocionales]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2023, 2023, 281–288. [Google Scholar]
- Zhang, D.; Yao, L.; Zhang, X.; Wang, S.; Chen, W.; Boots, R. Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface, 2021. arXiv:cs.HC/1708.06578].
- Kumar, A.; Kumar, A. DEEPHER: Human Emotion Recognition Using an EEG-Based DEEP Learning Network Model. Engineering Proceedings 2021, 10, 32. [Google Scholar] [CrossRef]
- McCall, I.C.; Wexler, A. Peering into the mind? The ethics of consumer neuromonitoring devices; 2020; pp. 1–22. [CrossRef]
- Kiran, A.; Ahmed, A.B.G.E.; Khan, M.; Babu, J.C.; Kumar, B.P.S. An efficient method for privacy protection in big data analytics using oppositional fruit fly algorithm. Indonesian Journal of Electrical Engineering and Computer Science 2025, 37, 670. [Google Scholar] [CrossRef]
- Green, D.J.; Barnes, T.A.; Klein, N.D. Emotion regulation in response to discrimination: Exploring the role of self-control and impression management emotion-regulation goals. Scientific Reports 2024, 14, 26632. [Google Scholar] [CrossRef] [PubMed]
- Sumari, M.A.H.U.D.R.A.D.W. Single Channel Electroencephalogram (EEG) Based Biometric System. Information Technology International Seminar (ITIS), 2022. https://ieeexplore.ieee.org/document/10010103.
- Jalaly Bidgoly, A.; Jalaly Bidgoly, H.; Arezoumand, Z. A survey on methods and challenges in EEG based authentication. Computers and Security 2020, 93, 101788. [Google Scholar] [CrossRef]
- Jie Zhu, Tiecheng Song, H.C. Subject-Independent EEG Emotion Recognition Based on Genetically Optimized Projection Dictionary Pair Learning 2023. 13, 977–977. [CrossRef]
- Rajamanickam Yuvaraj, A. Amalin Prince, M.M. Emotion Recognition from Spatio-Temporal Representation of EEG Signals via 3D-CNN with Ensemble Learning Techniques. Emerging Trends of Biomedical Signal Processing in Intelligent Emotion Recognition 2023, 13, 685–685. [Google Scholar] [CrossRef]
- Xiaopeng Si, Dong Huang, Yulin Sun, He Huang, D.M. Transformer-based ensemble deep learning model for EEG-based emotion recognition. Brain science advances 2023, 9. https://doi.org/https://www.doi.org/10.26599/bsa.2023.9050016. [CrossRef]
- Zhihao Qu, X.Z. EEG Emotion Recognition Based on Temporal and Spatial Features of Sensitive signals. Journal of Electrical and Computer Engineering 2022, 2022, 5130184–1. [Google Scholar] [CrossRef]
- Yerim Ji, S.Y.D. Deep learning-based self-induced emotion recognition using EEG. Frontiers in neuroscience 2022, 16. [Google Scholar] [CrossRef]
- Xin Deng, Xiangwei Lv, Pengfei Yang, Ke Liu, K.S. Emotion Recognition Method Based on EEG in Few Channels. Data Driven Control and Learning Systems (DDCLS) 2022, pp. 1291–1296. https://ieeexplore.ieee.org/document/9858390.



| Ref. | Database | Feature Extraction | Clasification Method | Accuracy | Year |
|---|---|---|---|---|---|
| [17] | They have used two SSVEP datasets for pi, the speller dataset and the EPOC dataset | auto-regressive (AR) modeling, power spectral density (PSD) energy of EEG channels, wavelet packet decomposition (WPD), and phase locking values (PLV). | combines common spatial patterns with specialized deep-learning neural networks. | recognition rate of 99 | 2023 |
| [18] | The paper doesn’t mention the name of the dataset; it only includes citation 32. Upon reviewing the article, it appears that the dataset used is BCI200 | The system uses a Random Forest based binary feature selection method to filter out meaningless channels and determine the optimum number of channels for the highest accuracy | Hybrid Attention-based LSTM-MLP | 99.96% and 99.70% accuracy percentages for eyes-closed and eyes-open datasets | 2023 |
| [19] | The authors used the dataset of ’Big Data of 2-classes MI’ and Dataset IVa | In this study, we used CSP, ERD/S, AR, and FFT to transform segmented data into informative features. The TDP method is excluded from this work because it is suitable for motor execution rather than motor imagination | SVM, GNB | SVM (CSP (98.97%), ERD/S (98.94%), AR (98.93%), and FFT (97.92%)).GNB (CSP (97.47%), ERD/S (94.58%), FFT(53.80%), and AR (50.24%)). | 2023 |
| [20] | Dataset I was the main one and con-sisted of a self-collected dataset using a non-expensive EEG device. Dataset II was used to test the proposed method with a large number of subjects. This is a widely used dataset from PhysioNet BCI [41]. | EEG signals were processed using the FieldTrip toolbox for Matlab. The toolbox provides various useful tools to process EEG, MEG, and invasive electrophysiological data. EEG signals were processed by first applying a baseline correction relative to the mean voltage, and then a finite impulse response (FIR) bandpass filter from 5 to 40 Hz for noise reduction. These preprocessing steps were necessary to smooth the classification procedures and remove or minimize undesired noise nuisance. | Support Vector Machines (SVM), Neural Networks (NN), and Discriminant Analysis (DA). | identification accuracy rates of up to 100% with a low-cost EEG device | 2023 |
| Ref. | Database | Feature Extraction | Clasification Method | Accuracy | Year |
|---|---|---|---|---|---|
| [21] | dataset | uses only two EEG channels and a signal measured over a short temporal window of 5 seconds | CNN | identification result of 99% and an equal error rate of authentication performance of 0.187%. | 2023 |
| [22] | The data is collected from 50 volunteer | 1) spectral information, 2) coherence, 3) mutual correlation coefficient, and 4) mutual information. | SVM | authentication error rate (ERR) was found to be 0.52%, with a classification rate of 99.06%. | 2023 |
| [23] | DEAP | phase locking value (PLV) | CNN | 85% | 2023 |
| [24] | SEED and DEAP | The proposed model uses an Inventive brain optimization algorithm and frequency features to enhance detection accuracy. | optimized deep convolutional neural network (DCNN) K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Deep Belief Network (DBN). | (DCNN) model achieved an accuracy of 97.12% at 90% of training and 96.83% according to K-fold analysis | 2023 |
| [25] | SEED https://github.com/ heibaipei/DE-CNNv in this link we can find the code of this article | The proposed method consists of the following steps: Obtaining the time-frequency content of EEG signals using the modified Stockwell transform. Extracting deep features from each channel’s time-frequency content using a deep convolutional neural network. Fusing the reduced features of all channels to construct the final feature vector. Utilizing semi-supervised dimension reduction to reduce the features. | CNNs The Inception-V3 CNN and support vector machine (SVM) classifier | ... | 2023 |
| Ref. | Database | Feature Extraction | Clasification Method | Accuracy | Year |
|---|---|---|---|---|---|
| [26] | DEAP | 10-fold cross-validation has been employed for all experiments and scenarios. Sequential floating forward feature (SFFS) selection has been used to select the best features for classification | Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel has been applied for classification | In our study the CCR is in the range of 88%-99%, whilst the Equal Error Rate (EER) in the aforementioned research is in the range of 15%-35% using SVM | 2017 |
| [27] | DEAP, MAHNOB-HCI, and SEED | The feature extraction process involved the use of time-domain and frequency-domain features | classification algorithms used were Support Vector Machines (SVM), Random Forest (RF), and k-Nearest Neighbors (k-NN). | ..... | 2021 |
| [28] | They collected theirs data – 60 users using Emotiv Epoc+ | the signals are filtered by Savitzky-Golay filter to attenuate its short term variations | Hidden Markov Model (HMM) based temporal classifier and Support Vector Machine (SVM) | User identification performance of 97.50% and 93.83% have been recorded with HMM and SVM classifiers, respectively. | 2017 |
| Ref. | Preprocessing | Database | Feature extraction | Biometric classification | Accuracy |
| [50] | Multivariate variational mode decomposition (MVMD) | Own database (35 subjects) | Fourier-Bessel series expansion-based (FBSE) entropies | K-NN | 93.4±7.0% |
| [51] | FieldTrip, bandpass 4-40Hz, beta frequency band 13-30 Hz | Own database (13 subjects) and PhysioNet BCI (109 subjects) | PCA, Wilcoxon test, fast Fourier transform, Power Spectrum (PS), Asymmetry index | RBF-SVM, K-fold, Cross-validation | 99.9±1.39% |
| [52] | PREP pipeline, notch filter, standardScaler, high pass filter 1Hz, low pass filter 50Hz | The BED (Biometric EEG Dataset) 21 subjects | PCA, Wilcoxon test, optimal spatial filtering | Deep learning (DL) | 86.74% |
| [53] | - | - | Functional connectivity (FC) | Multi-stream GCN (MSGCN) | 98.05% |
| [54] | Notch filter, Bandpass filter, common average reference (CAR) | Own database (21 subjects) | 1D-CNN | Cross 5-fold, LDA, SVM, K-NN, DL | 99% |
| [55] | Finite Impulse Response (FIR), Automatic Artifact Removal EOG (AAR-EOG), Artifact Subspace Reconstruction (ASR), and Independent Component Analysis (ICA) | Own database (43 subjects) | Power Spectral Density (PSD) | Naive Bayes, Neural Network, SVM | 97.7% |
| [56] | ICA, Butterworth filter | Own database (8 subjects) | Power Spectral Density (PSD) from delta (0.5–4Hz), theta (4–8Hz), alpha (8–14Hz), beta (14–30Hz), gamma (30–50Hz) bands, LDA | K-NN, SVM | 80% |
| [57] | - | PhysioBank database (109) | CNN | CNN-ECOC-SVM | 98.49% |
| [58] | Matlab edfread, 7.5 second window | PhysioNet database (109) | Power spectral, PSD, Mean Correlation Coefficient (MCC) | Proposed method by the author | Error rate of 0.016 |
| [59] | 2nd order Butterworth filter | Own database (6 subjects) | Daubechies (db8) wavelet, PSD | Multilayer Perceptron Neural Network (MLPNN) | 75.8% |
| [60] | Matlab edfread | PhysioNet database (16 subjects) | Frequency-weighted power (FWP) | Proposed method by the author | EER of 0.0039 |
| Cite | Year | Preprocessing | Extraction and selection | Emotion clasification |
| [78] | 2010 | Filtro de superficie Laplaceano | Transformada wavelet, Fuzzy C Means (FCM) y Fuzzy K-Means (FKM) | Linear Discriminant Analysis (LDA) y K Nearest Neighbor (K-NN) |
| [79] | 2014 | FFT, EEGLAB | Correlación, Coherencia y sincronización de fase | Análisis de discriminante cuadrático |
| [80] | 2015 | Filtro wavelet | PCA | SVM |
| [81] | 2015 | Blind source separation, Filtro de paso de banda 4.0-45.0 Hz | HOSA (Higher order Spectral Analysis) | LS-SVM, Artificial Neural Networks (ANN) |
| [81] | 2016 | Filtro Butterworth | Análisis Biespectral con HOSA | SVM |
| [82] | 2016 | Algoritmo basado en Análisis Independiente de Componentes | Entropía de muestras, Entropía Cuadrática, Distribución de Entropía | SVM |
| [83] | 2016 | Algoritmo basado en Análisis de Componentes Independientes | Entropía de muestras, Entropía Cuadrática, Distribución de Entropía | SVM |
| [84] | 2017 | MARA, AAR | Valor de bloqueo de fase (PLV) con ANOVA para medir significancia | SVM |
| [85] | 2017 | Filtro de superficie Laplaceano | Transformada wavelet | SVM Polinomial |
| [86] | 2018 | Filtro Butterworth y Notch | Algoritmos ACA, SA, GA, SPO | SVM |
| [77] | 2023 | DWT, EMD | Smoothed pseudo-Wigner–Ville distribution (RSPWVD) | K-NN, SVM, LDA y LR |
| [87] | 2023 | Finite Impulse Response, Artefact Subspace Reconstruction (ASR) | Power Spectral Density (PSD) | Naïve Bayes (NB), K-NN, SVM, Fuzzy Cognitive Map (FCM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
