Submitted:
17 November 2024
Posted:
19 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Fundamentals of PDs
| Photodetection mechanism | Brief description | Schematic diagram |
| Photoconductive effect | When photon energies utilized for irradiation are larger than the band gap of a semiconductor, the absorbed photons produced e-h pairs, which can enhance the carrier concentration and thus reduce the resistance of the photoconductor; these carriers can only be collected by an externally applied voltage for producing a current. | ![]() |
| Photogating effect | The photogating effect is a special case of the photoconductivity effect. When electrons or holes generated under light illumination are captured via the trapped states of the semiconductor, the carrier lifetime increases, because the detrapping process takes time for the formation of a high gain. | ![]() |
| Photovoltaic effect | The photogenerated e-h pairs are separated via the built-in electric field formed at a p-n or Schottky junction. | ![]() |
| Photothermoelectric effect | The photothermoelectric effect occurs when the spot size of the laser used is smaller than the device size; a temperature gradient is generated at the channel, which can produce a photothermoelectric voltage and drive the current through the device without external bias. | ![]() |
3. Strategies for Improving Performance of PDs
3.1. Improving Photoresponsivity

3.2. Reducing Response Time
3.3. Expanding Spectral Range
4. Applications
4.1. PDs Based on 2D MoS2 After Simple Functionalization
| Architecture | Main synthesis method | R (A·W-1) | τ | D(Jones) | Wavelength (nm) | Ref. |
| MoS2 | PLD | 50.7 × 10-3 | - | 1.55 × 109 | 445-2717 | [119] |
| MoS2 | ME | 7.5 × 10-3 | 50 ms | - | - | [148] |
| MoS2 | CVD | 11.1 | 7.7 ms | 5.4 × 1013 | 660 | [150] |
| MoS2 | ME | 59 | 42 μs | - | 532 | [151] |
| MoS2 | Hydrothermal | 2.33 | - | - | 375-915 | [152] |
| MoS2 | ME | 2.67 × 106 | 5 ms | - | Vis-NIR | [38] |
| MoS2 | Ultraviolet lithography technology | 104 | - | 2 × 1012 | 532 | [153] |
4.2. PDs Based on 2D MoS2-Based Nanocomposites
| Architecture | Main synthesis method | R (A·W-1) | τ | D (Jones) | Wavelength (nm) | Ref. |
| Au/MoS2 | ME | 186.6 | 1.8 ms | 1.41 × 1012 | Vis | [179] |
| Au/MoS2 | Magnetron sputtering, thermal annealing | 38.57 | - | 9.89 × 109 | Vis | [170] |
| MXene NPs/MoS2 | CVD | 20.67 | - | 5.39 × 1012 | - | [176] |
| Au-MoS2-Au | ME | 1757 | 24 ms | 3.44 × 1010 | - | [171] |
| SnS2 QDs/MoS2 | CVD, spin coating | 435 | 0.1 s | 7.19 × 1012 | Vis | [174] |
| PbSe CQD/MoS2 | ME and spin coating | 137.6 | 0.04 s | 7.7 × 1010 | IR | [175] |

| Architecture | Main synthesis method | R (A·W-1) | τ | D (Jones) | Wavelength (nm) | Ref. |
| ZnO/MoS2 | ME, annealing and spin coating | 24.62, 0.35 | 0.9 s, 140 ms | - | 365 nm,532 nm | [182] |
| CuO/MoS2 | ME, wet-transfer printing and spin-coating | 157.6 | 34.6/51.9 ms (rise/decay) | - | Vis | [184] |
| Si NWA/MoS2 | Thermal decomposition method, spin-coating, chemical etching method | 53.5 | 2.9/7.3 μs (rise/decay) | 2.8 × 1013 | UV-NIR | [138] |
| V2O5/MoS2 | Hydrothermal method, spin-coating | 6.51 × 10-2 | - | - | UV-NIR | [185] |
| GaN/ MoS2 | Molecular beam epitaxy, PLD | 14.22 | 8.2 μs | - | 300-1000 nm | [186] |
| GaAsSb/MoS2 | CVD | 11.7 | 50 μs | 1.64 × 1011 | 532 nm | [180] |
| Architecture | Main synthesis method | R (A·W-1) | τ | D (Jones) | Spectral response |
Ref. |
| CsPbBr3/MoS2 | CVD | 4.40 | 0.72 ms | 2.5 × 1010 | - | [191] |
| Graphene/MoS2 | CVD | 1.26 | - | - | 1400 nm | [194] |
| WS2/MoS2 | CVD | 0.37 | 0.281/0.599 s (rise/decay) | - | Vis | [193] |
| P-GeSe/n-MoS2 | ME | 0.105 | 110/750 ms (rise/decay) | 1.03 × 1010 | 380-1064 nm | [192] |
| n-MoS2/p-GaN | Spin coating | 35.6 | 200 ms | - | Vis-UV | [210] |
| p-rGO/n-MoS2 | CVD | 2.10 | 18 ms | 5 × 1011 | Vis | [211] |
| SiO2/MoS2 | ME | 4.05 × 104 | 0.78/1.13 ms (rise/decay) | 3.32 × 1011 | 447 to 1600 nm | [134] |
| Sb2O3/MoS2 | CVD | 5.3 × 104 | < 60 ms | 2.0 × 1015 | Vis-NIR | [212] |
| PbSe/MoS2 | ME | 23.5 | - | 3.17 × 1010 | Vis-NIR | [213] |
| Cs2Pb(SCN)2Br2/MoS2 | CVD | 1.22 × 105 | 166 ms | 1.16 × 1014 | Vis | [214] |
4.2.4. Other NM-Modified 2D MoS2
| Architecture | Main synthesis method | R (A·W-1) | τ(ms) | D(Jones) | Spectral response |
Ref. |
| CZTS/MoS2 | CVD, magnetron sputtering | 79 | 81/79 (rise/decay) | - | 400-1100 nm | [215] |
| GaN/MoS2 | DC-sputtering | ~103 | 5 | ~1011 | UV | [216] |
| GaN/MoS2 | ME | ~104 | - | - | 280-700 nm | [222] |
| GaN/MoSe2/MoS2 | Wet chemical etching | 82 | - | 1.79 × 1014 | 365 nm | [220] |
| Ag NPs/Si NWAs/MoS2 | Metal-assisted chemical etching, CVD | 402.4 | 37 | 2.34 × 1012 | UV-vis | [221] |
5. Challenges for Future Research
Acknowledgements
Notes
Abbreviations
References
- Long, M.S.; Wang, P.; Fang, H.H.; Hu, W.D. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Malik, M.; Iqbal, M.A.; Choi, J.R.; Pham, P.V. 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Front Chem 2022, 10, 905404. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J.Z. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem Soc Rev 2018, 47, 6101–6127. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hu, G.; Wu, H.; Ding, L.; Zhang, J.; Sun, M.; Li, Y.; Liu, Z.; Shao, Y.; Fang, Y.; Qiao, Y.; Shen, L.; Lin, Y. Highly sensitive water pollution monitoring using colloid-processed organic photodetectors. Nat. Water 2024, 2, 577–588. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Yan, C.-Y.; Lou, Y.-Q. Dual-functional hybrid ZnSnO/Graphene nanocomposites with applications in high-performance UV photodetectors and ozone gas sensors. Ceram. Int. 2022, 48, 3527–3535. [Google Scholar] [CrossRef]
- Godavarthi, S.; Kushvaha, S.S.; Saha, D.; Altaf, M.; Nallabala, N.K.R.; Yuvaraj, C.; Reddy, M.R.; Kesarla, M.K.; Bakash, K.R.; Krishna, G.G.; Rosaiah, P.; Karthik, T.V.K.; Minnam Reddy, V.R. Realization of CO2 gas sensors and broadband photodetectors using metal/high-k CeO2/p-Si heterojunction. Ceram. Int. 2024, 18(Part A), 31845–31858. [Google Scholar] [CrossRef]
- Reddeppa, M.; Park, B.-G.; Murali, G.; Choi, S.H.; Chinh, N.D.; Kim, D.; Yang, W.; Kim, M.-D. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. "Sens. Actuators, B" 2020, 308, 127700. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H. Understanding signal amplification strategies of nanostructured electrochemical sensors for environmental pollutants. Curr. Opin. Electrochem. 2019, 17, 56–64. [Google Scholar] [CrossRef]
- Fan, Y.; Gan, X.; Zhao, H.; Zeng, Z.; You, W.; Quan, X. Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chem. Eng. J. 2022, 427, 131572. [Google Scholar] [CrossRef]
- Ho, W.K.H.; Bao, Z.Y.; Gan, X.; Wong, K.Y.; Dai, J.; Lei, D. Probing Conformation Change and Binding Mode of Metal Ion-Carboxyl Coordination Complex through Resonant Surface-Enhanced Raman Spectroscopy and Density Functional Theory. J Phys Chem Lett 2019, 10, 4692–4698. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Chen, S.; Yu, H.; Quan, X. Three-Dimensional Porous HxTiS2 Nanosheet-Polyaniline Nanocomposite Electrodes for Directly Detecting Trace Cu (II) Ions. Anal. Chem. 2015, 87, 5605–5613. [Google Scholar] [CrossRef] [PubMed]
- Akkanen, S.T.M.; Fernandez, H.A.; Sun, Z. Optical modification of 2D materials: Methods and applications. Adv. Mater. 2022, 34, 2110152. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Teng, F.; He, J.H.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 2019, 29, 1807672. [Google Scholar] [CrossRef]
- Kim, K.S.; Ji, Y.J.; Kim, K.H.; Choi, S.; Kang, D.H.; Heo, K.; Cho, S.; Yim, S.; Lee, S.; Park, J.H.; Jung, Y.S.; Yeom, G.Y. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat Commun 2019, 10, 4701. [Google Scholar] [CrossRef]
- Wang, J.; Gan, X.; Zhu, T.; Ao, Y.; Wang, P. Recent Advances of Single-Atom Metal Supported at Two-Dimensional MoS2 for Electrochemical CO2 Reduction and Water Splitting. Atmosphere 2023, 14. [Google Scholar] [CrossRef]
- Gan, X.; Lei, D.; Wong, K.-Y. Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Mater. Today Energy 2018, 10, 352–367. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Schirhagl, R.; Quan, X. Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochim Acta 2018, 185, 478. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Zhao, H.; Wong, K.-Y.; Lei, D.Y.; Zhang, Y.; Quan, X. Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection. Talanta 2018, 182, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Zhao, H.; Quan, X. Two-dimensional MoS2: A promising building block for biosensors. Biosens Bioelectron 2017, 89 Pt 1, 56–71. [Google Scholar] [CrossRef]
- Gan, X.; Lee, L.Y.S.; Wong, K.-y.; Lo, T.W.; Ho, K.H.; Lei, D.Y.; Zhao, H. 2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies. ACS Appl. Energy Mater. 2018, 1, 4754–4765. [Google Scholar] [CrossRef]
- Shi, W.; Guo, F.; Li, M.; Shi, Y.; Shi, M.; Yan, C. Constructing 3D sub-micrometer CoO octahedrons packed with layered MoS2 shell for boosting photocatalytic overall water splitting activity. Appl. Surf. Sci. 2019, 473, 928–933. [Google Scholar] [CrossRef]
- Gan, X.; Ye, L.; Zhao, H.; Lei, D.; Ao, Y.; Zhao, D.; Wang, P. Microenvironment Control over Electrocatalytic Activity of g-C3N4/2H-MoS2 Superlattice-like Heterostructures for Hydrogen Evolution. Inorg. Chem. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gong, C.; Gan, X.; Zhao, H. Highly sensitive colorimetric detection of Cr (VI) in water through nano-confinement effect of CTAB-MoS2/rGO nanocomposites. J. Environ. Chem. Eng. 2023, 11, 109802. [Google Scholar] [CrossRef]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2014, 27, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Lei, D. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord. Chem. Rev. 2022, 469, 214665. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Lei, D.; Wang, P. Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction. J. Catal. 2020, 391, 424–434. [Google Scholar] [CrossRef]
- Wang, J.; Fang, H.; Wang, X.; Chen, X.; Lu, W.; Hu, W. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. Small 2017, 13, 1700894. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, R.; Li, J.-P.; Cao, J.-Y.; Qiu, F. Photodetectors based on two-dimensional MoS2 and its assembled heterostructures. Chip 2022, 1. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Y.; Kong, L.; Luo, C.; Lu, Z.; Tao, Q.; Song, W.; Ma, L.; Li, Z.; Li, W.; Liu, L.; Li, Q.; Yang, X.; Li, J.; Li, J.; Duan, X.; Liao, L.; Liu, Y. Strain-Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS2. Small 2022, 18, 2107104. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, Y.; Jang, S.K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J.Y.; Kim, H.; Hwang, E.; Lee, S.; Cho, J.H. Dye-Sensitized MoS2 Photodetector with Enhanced Spectral Photoresponse. ACS Nano 2014, 8, 8285–8291. [Google Scholar] [CrossRef]
- Kang, D.H.; Pae, S.R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J.W.; Yu, J.S.; Lee, S.; Shin, B.; Park, J.H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Ma, Y.; Ye, Q.; Lu, J.; Wang, W.; Zheng, Z.; Ma, C.; Yao, J.; Yang, G. Promoting 2D Material Photodetectors by Optical Antennas beyond Noble Metals. Adv. Sens. Res. 2023, 2, 2200079. [Google Scholar] [CrossRef]
- Gan, X.; Zhang, J.; Liu, J.; Bai, Y.; Su, X.; Wang, W.; Cao, Z.; Zhao, H.; Ao, Y.; Wang, P. Polyaniline Functionalization of Defective 1T-MoS2 Nanosheets for Improved Electron and Mass Transfer: Implications for Electrochemical Sensors. ACS Appl. Nano Mater. 2023, 6, 11725–11736. [Google Scholar] [CrossRef]
- Gan, X.; Lei, D.; Ye, R.; Zhao, H.; Wong, K.-Y. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res. 2021, 14, 2003–2022. [Google Scholar] [CrossRef]
- Wang, L.; Zou, X.; Lin, J.; Jiang, J.; Liu, Y.; Liu, X.; Zhao, X.; Liu, Y.F.; Ho, J.C.; Liao, L. Perovskite/Black Phosphorus/MoS2 Photogate Reversed Photodiodes with Ultrahigh Light On/Off Ratio and Fast Response. ACS Nano 2019, 13, 4804–4813. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liang, F.; Wang, D.; Chi, S.; Yu, H.; Lin, Z.; Zhang, H.; Chen, Y.; Wang, J.; Wu, Y. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858. [Google Scholar] [CrossRef]
- Hong, C.; Oh, S.; Dat, V.K.; Pak, S.; Cha, S.; Ko, K.-H.; Choi, G.-M.; Low, T.; Oh, S.-H.; Kim, J.-H. Engineering electrode interfaces for telecom-band photodetection in MoS2/Au heterostructures via sub-band light absorption. Light Sci. Appl. 2023, 12, 280. [Google Scholar] [CrossRef]
- Kim, K.S.; Ji, Y.J.; Kim, K.H.; Choi, S.; Kang, D.-H.; Heo, K.; Cho, S.; Yim, S.; Lee, S.; Park, J.-H. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat. Commun. 2019, 10, 4701. [Google Scholar] [CrossRef]
- Vera-Hidalgo, M.; Giovanelli, E.; Navio, C.; Perez, E.M. Mild covalent functionalization of transition metal dichalcogenides with maleimides: A “click” reaction for 2H-MoS2 and WS2. Journal of the American Chemical Society 2019, 141, 3767–3771. [Google Scholar] [CrossRef]
- Presolski, S.; Pumera, M. Covalent functionalization of MoS2. Mater. Today 2016, 19, 140–145. [Google Scholar] [CrossRef]
- Tuci, G.; Mosconi, D.; Rossin, A.; Luconi, L.; Agnoli, S.; Righetto, M.; Pham-Huu, C.; Ba, H.; Cicchi, S.; Granozzi, G. Surface engineering of chemically exfoliated MoS2 in a “click”: How to generate versatile multifunctional transition metal dichalcogenides-based platforms. Chem. Mater. 2018, 30, 8257–8269. [Google Scholar] [CrossRef]
- Lei, S.; Wang, X.; Li, B.; Kang, J.; He, Y.; George, A.; Ge, L.; Gong, Y.; Dong, P.; Jin, Z. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol. 2016, 11, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Gan, X.; Xiao, Z.; Dai, S.; Xiao, H.; Zhang, S.; Dong, S.; Zhao, H.; Wang, P. Single-atom dispersed Cu or Co on 2H-MoS2 monolayer for improving electrocatalytic activity of overall water splitting. Surf. Interfaces 2021, 27, 101538. [Google Scholar] [CrossRef]
- Stergiou, A.; Tagmatarchis, N. Molecular functionalization of two-dimensional MoS2 nanosheets. Chemistry-A European Journal 2018, 24, 18246–18257. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Czech, K.J.; Zhao, Y.; Zhai, J.; Hamers, R.J.; Wright, J.C.; Jin, S. Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers. ACS Appl. Mater. Interfaces 2017, 9, 12734–12742. [Google Scholar] [CrossRef] [PubMed]
- Knirsch, K.C.; Berner, N.C.; Nerl, H.C.; Cucinotta, C.S.; Gholamvand, Z.; McEvoy, N.; Wang, Z.; Abramovic, I.; Vecera, P.; Halik, M. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 2015, 9, 6018–6030. [Google Scholar] [CrossRef]
- Presolski, S.; Wang, L.; Loo, A.H.; Ambrosi, A.; Lazar, P.; Ranc, V.; Otyepka, M.; Zboril, R.; Tomanec, O. e.; Ugolotti, J. Functional nanosheet synthons by covalent modification of transition-metal dichalcogenides. Chem. Mater. 2017, 29, 2066–2073. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.; Duan, X.; Duan, X. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.-S.; Cotlet, M. Light-induced interfacial phenomena in atomically thin 2D van der Waals material hybrids and heterojunctions. ACS Energy Lett. 2019, 4, 2323–2335. [Google Scholar] [CrossRef]
- Wang, T.; Luo, Z.; Li, C.; Gong, J. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev. 2014, 43, 7469–7484. [Google Scholar] [CrossRef]
- Kim, Y.; Woo, W.J.; Kim, D.; Lee, S.; Chung, S. m.; Park, J.; Kim, H. Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. Adv. Mater. 2021, 33, 2005907. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, Z.; Han, C.; He, J.; Ni, Z.; Chen, W. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Zhang, H.; Bai, L.; Hao, L.; Ma, T.; Huang, H. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147. [Google Scholar] [CrossRef]
- Lu, X.; Sun, L.; Jiang, P.; Bao, X. Progress of photodetectors based on the photothermoelectric effect. Adv. Mater. 2019, 31, 1902044. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, J.; Chen, X.; Wang, X. Design strategies for two-dimensional material photodetectors to enhance device performance. Infomat 2019, 1, 33–53. [Google Scholar] [CrossRef]
- Yue, X.; Fan, J.; Xiang, Q. Internal electric field on steering charge migration: modulations, determinations and energy-related applications. Adv. Funct. Mater. 2022, 32, 2110258. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, W.; Yang, W.; He, J.H.; Fang, X. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909. [Google Scholar] [CrossRef]
- Chen, L.; Ren, J.T.; Yuan, Z.Y. Enabling internal electric fields to enhance energy and environmental catalysis. Adv. Energy Mater. 2023, 13, 2203720. [Google Scholar] [CrossRef]
- Dai, C.; Liu, Y.; Wei, D. Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 2022, 122, 10319–10392. [Google Scholar] [CrossRef]
- Fang, J.; Zhou, Z.; Xiao, M.; Lou, Z.; Wei, Z.; Shen, G. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. Infomat 2020, 2, 291–317. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Hu, W. Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670. [Google Scholar] [CrossRef] [PubMed]
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
- Fuentes-Hernandez, C.; Chou, W.-F.; Khan, T.M.; Diniz, L.; Lukens, J.; Larrain, F.A.; Rodriguez-Toro, V.A.; Kippelen, B. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 2020, 370, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.P.; Li, S.; Liu, X.; Shi, Z.; Fang, X.; He, J.H. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 2021, 33, 2003309. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef]
- Selamneni, V.; Sahatiya, P. Mixed dimensional transition metal dichalcogenides (TMDs) vdW heterostructure based photodetectors: A review. Microelectron. Eng. 2023, 269, 111926. [Google Scholar] [CrossRef]
- Li, G.-S.; Zhang, D.-Q.; Yu, J.C. A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ. Sci. Technol. 2009, 43, 7079–7085. [Google Scholar] [CrossRef]
- Kamat, P.V.; Tvrdy, K.; Baker, D.R.; Radich, E.J. Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 2010, 110, 6664–6688. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Bright, J.; Meng, F.; Senty, T.R.; Zheng, P.; Bristow, A.D.; Wu, N. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 2013, 3, 47–51. [Google Scholar] [CrossRef]
- Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in dye-sensitized solar cells. Chem. Rev. 2019, 119, 7279–7327. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Q.; Xia, Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem. Rev. 2024, 124, 8597–8619. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Sriram, P.; Manikandan, A.; Chuang, F.-C.; Chueh, Y.-L. Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications. Small 2020, 16, 1904271. [Google Scholar] [CrossRef] [PubMed]
- Gelle, A.; Jin, T.; de la Garza, L.; Price, G.D.; Besteiro, L.V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 2019, 120, 986–1041. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.H.; Jang, Y.J.; Kim, S.; Quan, L.N.; Chung, K.; Kim, D.H. Plasmonic solar cells: from rational design to mechanism overview. Chem. Rev. 2016, 116, 14982–15034. [Google Scholar] [CrossRef] [PubMed]
- Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Oshikiri, T.; Sun, Q.; Shi, X.; Misawa, H. Solid-state plasmonic solar cells. Chem. Rev. 2017, 118, 2955–2993. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, X.; Zhang, H.; Bai, X.; Ai, R.; Shao, L.; Wang, J. Gold nanorods: the most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-Y.; Zhong, Y.; Jiang, Z.-Z.; Chen, K.; Ma, S.; Wang, P.-F.; Wang, W.; Zhou, L.; Luoshan, M.-D.; Wang, Q.-Q. A controlled growth of triangular AuCu alloy nanostars and high photocatalytic activities of AuCu@CdS heterostars. J. Mater. Chem. C 2020, 8, 4869–4875. [Google Scholar] [CrossRef]
- Agrawal, A.; Cho, S.H.; Zandi, O.; Ghosh, S.; Johns, R.W.; Milliron, D.J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Lu, Z.; Gao, W.; Wu, M.; Wang, Y.; Wang, Z.; Qi, J.; Dong, J. Three-dimensional AuAg alloy NPs/graphene/AuAg alloy NP sandwiched hybrid nanostructure for surface enhanced Raman scattering properties. J. Mater. Chem. C 2020, 8, 12599–12606. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, T.; Gong, J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Basak, M. Diverse bio-sensing and therapeutic applications of plasmon enhanced nanostructures. Mater. Today 2022, 57, 225–261. [Google Scholar] [CrossRef]
- Howes, P.D.; Rana, S.; Stevens, M.M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev. 2014, 43, 3835–3853. [Google Scholar] [CrossRef] [PubMed]
- Bigall, N.C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L.M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett 2008, 8, 4588–92. [Google Scholar] [CrossRef] [PubMed]
- Yockell-Lelièvre, H.; Lussier, F.; Masson, J.F. Influence of the Particle Shape and Density of Self-Assembled Gold Nanoparticle Sensors on LSPR and SERS. J. Phys. Chem. C 2015, 119, 28577–28585. [Google Scholar] [CrossRef]
- Mizuno, A.; Ono, A. Static and dynamic tuning of surface plasmon resonance by controlling interparticle distance in arrays of Au nanoparticles. Appl. Surf. Sci. 2019, 480, 846–850. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, B.Y.; Haque, F.; Ren, G.; Ou, J.Z. Plasmonic metal oxides and their biological applications. Mater. Horiz. 2022, 9, 2288–2324. [Google Scholar] [CrossRef]
- Liu, X.; Swihart, M.T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 2014, 43, 3908–3920. [Google Scholar] [CrossRef]
- Gómez-Medina, R.; Sáenz, J.J. Unusually Strong Optical Interactions between Particles in Quasi-One-Dimensional Geometries. Phys. Rev. Lett. 2004, 93, 243602. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Tao, L.; Chen, Z.; Li, Z.; Wang, J.; Xu, X.; Xu, J.-B. Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices. Infomat 2021, 3, 36–60. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Shu, K.; Li, L.; Li, J. Improved performances of CVD-grown MoS2 based phototransistors enabled by encapsulation. Adv. Mater. Interfaces 2021, 8, 2100164. [Google Scholar] [CrossRef]
- Jin, H.; Debroye, E.; Keshavarz, M.; Scheblykin, I.G.; Roeffaers, M.B.; Hofkens, J.; Steele, J.A. It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 2020, 7, 397–410. [Google Scholar] [CrossRef]
- Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D.W.; Pan, J.H. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, P.; Liou, J.J.; Liao, W.; Chai, Y. Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics. Nano Res. 2022, 16, 3104–3124. [Google Scholar] [CrossRef]
- Jiang, J.; Ling, C.; Xu, T.; Wang, W.; Niu, X.; Zafar, A.; Yan, Z.; Wang, X.; You, Y.; Sun, L. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, H.; Wang, L.; Yin, R.; Li, B.; Yin, L. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 4017–4056. [Google Scholar] [CrossRef]
- Liu, C.; Su, H.; Pu, Y.; Guo, M.; Zhai, P.; Liu, Z.; Zhang, Z. Deep and shallow level defect passivation via fluoromethyl phosphonate for high performance air-processed perovskite solar cells. Nano Energy 2023, 118, 108990. [Google Scholar] [CrossRef]
- Li, J.; Bai, J.; Meng, M.; Hu, C.; Yuan, H.; Zhang, Y.; Sun, L. Improved Temporal Response of MoS2 Photodetectors by Mild Oxygen Plasma Treatment. Nanomaterials 2022, 12, 1365. [Google Scholar] [CrossRef]
- Sun, C.; Xu, L.; Lai, X.; Li, Z.; He, M. Advanced Strategies of Passivating Perovskite Defects for High-Performance Solar Cells. Energy Environ. Mater. 2021, 4, 293–301. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Lin, J.; Chen, G.; Liu, B.; Huang, J.; Zhang, M.; Liang, G.; Lu, L.; Xu, P. Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI3-xBrx perovskite photovoltaics. J. Mater. Chem. A 2022, 10, 17237–17245. [Google Scholar] [CrossRef]
- He, J.; Yang, Y.; He, Y.; Ge, C.; Zhao, Y.; Gao, L.; Tang, J. Low Noise and Fast Photoresponse of Few-Layered MoS2 Passivated by MA3Bi2Br9. ACS Photonics 2018, 5, 1877–1884. [Google Scholar] [CrossRef]
- Nalwa, H.S. A review of molybdenum disulfide (MoS2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef] [PubMed]
- de Arquer, F.P.G.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef]
- Pena-Alvarez, M.; del Corro, E.; Morales-Garcia, A.; Kavan, L.; Kalbac, M.; Frank, O. Single layer molybdenum disulfide under direct out-of-plane compression: low-stress band-gap engineering. Nano Lett. 2015, 15, 3139–3146. [Google Scholar] [CrossRef]
- Liu, T.; Liu, S.; Tu, K.-H.; Schmidt, H.; Chu, L.; Xiang, D.; Martin, J.; Eda, G.; Ross, C.A.; Garaj, S. Crested two-dimensional transistors. Nat. Nanotechnol. 2019, 14, 223–226. [Google Scholar] [CrossRef]
- Shen, T.; Penumatcha, A.V.; Appenzeller, J. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors. Acs Nano 2016, 10, 4712–4718. [Google Scholar] [CrossRef]
- Dushaq, G.; Paredes, B.; Lu, J.-Y.; Chiesa, M.; Rasras, M. Tuning the photoluminescence of few-layer MoS2 nanosheets by mechanical nanostamping for broadband optoelectronic applications. ACS Appl. Nano Mater. 2020, 3, 10333–10341. [Google Scholar] [CrossRef]
- Sovizi, S.; Angizi, S.; Ahmad Alem, S.A.; Goodarzi, R.; Taji Boyuk, M.R.R.; Ghanbari, H.; Szoszkiewicz, R.; Simchi, A.; Kruse, P. Plasma processing and treatment of 2D transition metal dichalcogenides: tuning properties and defect engineering. Chem. Rev. 2023, 123, 13869–13951. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.-S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin, C.-A.; Li, L.-J.; He, J.-H. Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano 2013, 7, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Mao, J.; Ding, K.; Luo, W.; Hu, W.; Zhang, X.; Zhang, X.; Jie, J. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chuu, C.P.; Huang, J.K.; Chen, C.H.; Tsai, M.L.; Chang, Y.H.; Liang, C.T.; Chen, Y.Z.; Chueh, Y.L.; He, J.H.; Chou, M.Y.; Li, L.J. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 2014, 4, 3826. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Venkata Subbaiah, Y.; Saji, K.; Tiwari, A. Atomically thin MoS2: a versatile nongraphene 2D material. Adv. Funct. Mater. 2016, 26, 2046–2069. [Google Scholar] [CrossRef]
- Ramasubramaniam, A.; Naveh, D.; Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B Condens. Matter 2011, 84, 205325. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, B.; Wang, S.; Wang, D.; Wang, A.; Wang, Z.; Yu, H.; Zhang, H.; Chen, Y.; Zhao, M. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv. Mater. 2017, 29, 1605972. [Google Scholar] [CrossRef]
- Chowdhury, T.; Sadler, E.C.; Kempa, T.J. Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev. 2020, 120, 12563–12591. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Jiang, L.; Yu, H.; Zhao, Y.; Chen, H.; Yuan, X.; Liang, J.; Li, H.; Wu, Z. Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 2022, 427, 130991. [Google Scholar] [CrossRef]
- Zafar, Z.; Yi, S.; Li, J.; Li, C.; Zhu, Y.; Zada, A.; Yao, W.; Liu, Z.; Yue, X. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy Environ. Mater. 2022, 5, 68–114. [Google Scholar] [CrossRef]
- Zhao, D.; Dong, C.L.; Wang, B.; Chen, C.; Huang, Y.C.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Pető, J.; Dobrik, G.; Kukucska, G.; Vancsó, P.; Koós, A.A.; Koltai, J.; Nemes-Incze, P.; Hwang, C.; Tapasztó, L. Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. npj 2D Mater. Appl. 2019, 3, 39. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef]
- Lloyd, D.; Liu, X.; Christopher, J.W.; Cantley, L.; Wadehra, A.; Kim, B.L.; Goldberg, B.B.; Swan, A.K.; Bunch, J.S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836–5841. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, G.; Ou, Q.; Zhang, L.; Xia, F.; Garcia-Vidal, F.J.; Qiu, C.-W.; Bao, Q. Artificial metaphotonics born naturally in two dimensions. Chem. Rev. 2020, 120, 6197–6246. [Google Scholar] [CrossRef]
- Kim, H.; Uddin, S.Z.; Lien, D.-H.; Yeh, M.; Azar, N.S.; Balendhran, S.; Kim, T.; Gupta, N.; Rho, Y.; Grigoropoulos, C.P. Actively variable-spectrum optoelectronics with black phosphorus. Nature 2021, 596, 232–237. [Google Scholar] [CrossRef]
- Johari, P.; Shenoy, V.B. Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. Acs Nano 2012, 6, 5449–5456. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H.S.; Steele, G.A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Sumant, A.V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35. [Google Scholar] [CrossRef]
- He, K.; Poole, C.; Mak, K.F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, Q.; Ding, Y.; Zhang, X.; Wang, W.; Guo, X.; Ni, Z.; Lin, L.; Cai, Z.; Gu, X. High-responsivity and broadband MoS2 photodetector using interfacial engineering. ACS Appl. Mater. Interfaces 2023, 15, 46236–46246. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Lim, Y.R.; Katiyar, A.K.; Song, W.; Lim, J.; Bae, S.; Kim, T.W.; Lee, S.K.; Ahn, J.H. Direct synthesis of a self-assembled WSe2/MoS2 heterostructure array and its optoelectrical properties. Adv. Mater. 2019, 31, 1904194. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Li, X.; Wang, H.; Wang, Y.; Hu, X.; Zhang, J.; Zhang, X.; Shi, Y.; Xu, M.; Zhang, Q. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors. Adv. Opt. Mater. 2020, 8, 2000430. [Google Scholar] [CrossRef]
- Bernardi, M.; Palummo, M.; Grossman, J.C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lou, Z.; Wang, Y.; Yao, Z.; Xu, T.; Shi, Z.; Xu, J.; Tian, Y.; Li, X.; Tsang, Y.H. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Sol. Energy Mater. Sol. Cells 2018, 182, 272–280. [Google Scholar] [CrossRef]
- Chen, R.; Pei, Y.; Kang, Y.; Liu, J.; Xia, Y.; Wang, J.; Xu, H.; Jiang, C.; Li, W.; Xiao, X. A high-speed photodetector fabricated with tungsten-doped MoS2 by ion implantation. Adv. Electron. Mater. 2022, 8, 2200281. [Google Scholar] [CrossRef]
- Zhang, Q.; Ying, H.; Li, X.; Xiang, R.; Zheng, Y.; Wang, H.; Su, J.; Xu, M.; Zheng, X.; Maruyama, S. Controlled doping engineering in 2D MoS2 crystals toward performance augmentation of optoelectronic devices. ACS Appl. Mater. Interfaces 2021, 13, 31861–31869. [Google Scholar] [CrossRef]
- Xie, Y.; Liang, F.; Chi, S.; Wang, D.; Zhong, K.; Yu, H.; Zhang, H.; Chen, Y.; Wang, J. Defect engineering of MoS2 for room-temperature terahertz photodetection. ACS Appl. Mater. Interfaces 2020, 12, 7351–7357. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Li, H.; Lu, G.; Yin, Z.; He, Q.; Li, H.; Zhang, Q.; Zhang, H. Optical Identification of Single- and Few-Layer MoS2 Sheets. Small 2012, 8, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S.T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.K.; Chen, C.H.; Chang, Y.H.; Cheng, Y.J.; Li, L.J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.; Chang, C.S.; Li, L.J.; Lin, T.W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef]
- Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74. [Google Scholar] [CrossRef]
- Gant, P.; Huang, P.; de Lara, D.P.; Guo, D.; Frisenda, R.; Castellanos-Gomez, A. A strain tunable single-layer MoS2 photodetector. Mater. Today 2019, 27, 8–13. [Google Scholar] [CrossRef]
- Jian, P.; Chen, M.; Li, D.; Zhao, Y.; Liu, W.; Luo, Y.; Tian, X.; Peng, M.; Zhou, X.; Dai, J.; Wu, F.; Chen, C. Conformal Growth of Nano-Patterned Monolayer MoS2 with Periodic Strain via Patterned Substrate Engineering for High-performance Photodetectors. Laser Photonics Rev. 2024, 2401012. [Google Scholar] [CrossRef]
- Tang, W.; Liu, C.; Wang, L.; Chen, X.; Luo, M.; Guo, W.; Wang, S.-W.; Lu, W. MoS2 nanosheet photodetectors with ultrafast response. Appl. Phys. Lett. 2017, 111. [Google Scholar] [CrossRef]
- Gao, Y.; Du, Z.; Jiang, X.; Zheng, J.; Jiang, J.; Ye, S.; Zou, B.; Yang, T.; Zhao, J. Broadband MoS2 Square Nanotube-Based Photodetectors. ACS Appl. Nano Mater. 2023, 6, 7044–7054. [Google Scholar] [CrossRef]
- Deng, W.; Chen, X.; Li, Y.; You, C.; Chu, F.; Li, S.; An, B.; Ma, Y.; Liao, L.; Zhang, Y. Strain Effect Enhanced Ultrasensitive MoS2 Nanoscroll Avalanche Photodetector. The Journal of Physical Chemistry Letters 2020, 11, 4490–4497. [Google Scholar] [CrossRef] [PubMed]
- Majee, B.P.; Mishra, S.; Pandey, R.K.; Prakash, R.; Mishra, A.K. Multifunctional Few-Layer MoS2 for Photodetection and Surface-Enhanced Raman Spectroscopy Application with Ultrasensitive and Repeatable Detectability. The Journal of Physical Chemistry C 2019, 123, 18071–18078. [Google Scholar] [CrossRef]
- Ge, R.; Lin, X.; Dai, H.; Wei, J.; Jiao, T.; Chen, Q.; Oyama, M.; Chen, Q.; Chen, X. Photoelectrochemical Sensors with Near-Infrared-Responsive Reduced Graphene Oxide and MoS2 for Quantification of Escherichia Coli O157:H7. ACS Appl. Mater. Interfaces 2022, 14, 41649–41658. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, H.; Wu, Q.; Xue, F.; Zhao, Z.; Liu, J.; Duan, H.; Chen, H. Triggering “signal-on” photoelectrochemical responses by heterojunction transition for selective detection of copper(II) based on Pd/MoS2@g-C3N4 nanocomposites. Anal. Chim. Acta 2023, 1283, 341940. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, G.; Li, J.; Zhang, Y.; Yu, Y.; Wei, Q. Photoelectrochemical determination of Hg(II) via dual signal amplification involving SPR enhancement and a folding-based DNA probe. Microchim. Acta 2017, 184, 1379–1387. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Zhong, C.; Yang, Y.; Liang, X.; Chen, P.; Zhou, L. A simple photoelectrochemical aptasensor based on MoS2/rGO for aflatoxin B1 detection in grain crops. Anal. Methods 2024, 16, 1330–1340. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Liang, G.; Yan, W.; Guo, Y.; Bi, Y.; Dong, C. Highly sensitive photoelectrochemical aptasensor based on MoS2 quantum dots/TiO2 nanotubes for detection of atrazine. "Sens. Actuators, B" 2021, 334, 129652. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Yang, D.; Qin, J.; Wang, S.; Chen, D.; Wang, Z.; Liu, B. Signal-on sensor using MOF-MoS2 with high-performance photoelectrochemical activity for specific detection of Hg2+. "Colloids Surf., A" 2024, 703, 135034. [Google Scholar] [CrossRef]
- Zhang, Y.; Shan, J.; Zhang, L.; Zhou, S.; Yang, X.; Liao, J. Insights to the enhanced photoelectrochemical sensing of Cr(VI) by piezoelectric effect based on ZnO/MoS2 heterojunction nanoarrays: Piezoelectric field-induced II-type to Z-scheme system. "Sens. Actuators, B" 2023, 396, 134563. [Google Scholar] [CrossRef]
- Qian, J.; Liu, Y.; Cui, H.; You, F.; Yang, H.; Wang, K.; Wei, J.; Long, L.; Wang, C. Incorporation of ZnIn2S4 semiconductors with S-vacancy engineered MoS2 nanosheets to develop sensitive photoelectrochemical aptasensor for aflatoxin B1 detection. "Sens. Actuators, B" 2024, 403, 135195. [Google Scholar] [CrossRef]
- Wang, P.; Krasavin, A.V.; Liu, L.; Jiang, Y.; Li, Z.; Guo, X.; Tong, L.; Zayats, A.V. Molecular plasmonics with metamaterials. Chem. Rev. 2022, 122, 15031–15081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Y.; Guo, J.; Zhang, X.; Liu, X.; Fu, Y.; Zhang, F.; Ma, C.; Shi, Z.; Cao, R. Designing of 0D/2D mixed-dimensional van der waals heterojunction over ultrathin g-C3N4 for high-performance flexible self-powered photodetector. Chem. Eng. J. 2021, 420, 129556. [Google Scholar] [CrossRef]
- Padgaonkar, S.; Olding, J.N.; Lauhon, L.J.; Hersam, M.C.; Weiss, E.A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Kang, Z.; Zhang, Z.; Zhang, Z.; Si, H.; Liao, Q.; Zhang, S.; Wu, J.; Zhang, X.; Zhang, Y. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der waals heterostructures. Adv. Funct. Mater. 2018, 28, 1802015. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X.; Zhang, Y. An Electrochemical Sensor based on p-aminothiophenol/Au Nanoparticle-Decorated HxTiS2 Nanosheets for Specific Detection of Picomolar Cu (II). Electrochim. Acta 2016, 190, 480–489. [Google Scholar] [CrossRef]
- Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small 2015, 11, 2392–2398. [Google Scholar] [CrossRef]
- Fischer, H.; Martin, O.J. Engineering the optical response of plasmonic nanoantennas. Opt. Express 2008, 16, 9144–9154. [Google Scholar] [CrossRef]
- Li, J.; Nie, C.; Sun, F.; Tang, L.; Zhang, Z.; Zhang, J.; Zhao, Y.; Shen, J.; Feng, S.; Shi, H. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces 2020, 12, 8429–8436. [Google Scholar] [CrossRef]
- Li, G.; Song, Y.; Feng, S.; Feng, L.; Liu, Z.; Leng, B.; Fu, Z.; Li, J.; Jiang, X.; Liu, B. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure. ACS Appl. Electron. Mater. 2022, 4, 1626–1632. [Google Scholar] [CrossRef]
- You, H.; Li, S.; Fan, Y.; Guo, X.; Lin, Z.; Ding, R.; Cheng, X.; Zhang, H.; Lo, T.W.B.; Hao, J. Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles. Nat. Commun. 2022, 13, 6144. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, W.; Huang, M.; Yang, X.; Zhu, C.; He, C.; Li, L.; Wang, Y.; Xie, Y.; Luo, Z.; Liang, D.; Huang, J.; Zhu, X.; Zhuang, X.; Li, D.; Pan, A. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. OEA 2021, 4, 210017. [Google Scholar] [CrossRef]
- Kolli, C.S.R.; Selamneni, V. ; A. Muñiz Martínez, B.; Fest Carreno, A.; Emanuel Sanchez, D.; Terrones, M.; Strupiechonski, E.; De Luna Bugallo, A.; Sahatiya, P. Broadband, ultra-high-responsive monolayer MoS2/SnS2 quantum-dot-based mixed-dimensional photodetector. ACS Appl. Mater. Interfaces 2022, 14, 15415–15425. [Google Scholar] [CrossRef] [PubMed]
- Kundu, B.; Özdemir, O.; Dalmases, M.; Kumar, G.; Konstantatos, G. Hybrid 2D-QD MoS2-PbSe quantum dot broadband photodetectors with high-sensitivity and room-temperature operation at 2.5 µm. Adv. Opt. Mater. 2021, 9, 2101378. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Wang, W.; Li, C.; Wei, S.; Liu, H.; Luo, L.; Du, W.; Shen, K.; Ren, A. Plasmonic MXene nanoparticle-enabled high-performance two-dimensional MoS2 photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 8243–8250. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhou, W.; Ning, Z. Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors. Small 2020, 16, 2003397. [Google Scholar] [CrossRef]
- Deka Boruah, B. Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 2019, 1, 2059–2085. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, G.; Wu, G.; Zeng, J.; Sun, Y.; Li, C.; Liu, L.; Wang, J.; Lu, H.-L.; Chai, Y.; Wang, J. Van der Waals integrated plasmonic Au array for self-powered MoS2 photodetector. Appl. Phys. Lett. 2023, 122, 253503. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Meng, Y.; Quan, Q.; Lai, Z.; Li, D.; Xie, P.; Yip, S.; Kang, X.; Bu, X. Mixed-dimensional anti-ambipolar phototransistors based on 1D GaAsSb/2D MoS2 heterojunctions. ACS Nano 2022, 16, 11036–11048. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Li, B.; Wang, X.; Zhou, Z.; Li, J.; Wei, Z. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. ACS Nano 2016, 10, 8938–8946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Zhang, X.; Ma, Z.; Li, J.; Zhang, C.; Shaikenova, A.; Renat, B.; Liu, B. High-performance ultraviolet-visible light-sensitive 2D-MoS2/1D-ZnO heterostructure photodetectors. ChemistrySelect 2020, 5, 3438–3444. [Google Scholar] [CrossRef]
- Raveesh, S.; Yadav, V.K.S.; Paily, R. CuO single-nanowire-based white-light photodetector. IEEE Electron Device Lett. 2021, 42, 1021–1024. [Google Scholar] [CrossRef]
- Um, D.-S.; Lee, Y.; Lim, S.; Park, S.; Lee, H.; Ko, H. High-performance MoS2/CuO nanosheet-on-one-dimensional heterojunction photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 33955–33962. [Google Scholar] [CrossRef]
- Sahatiya, P.; Badhulika, S. Discretely distributed 1D V2O5 nanowires over 2D MoS2 nanoflakes for an enhanced broadband flexible photodetector covering the ultraviolet to near infrared. J. Mater. Chem. C 2017, 5, 12728–12736. [Google Scholar] [CrossRef]
- Singh, D.K.; Pant, R.K.; Nanda, K.K.; Krupanidhi, S.B. Pulsed laser deposition for conformal growth of MoS2 on GaN nanorods for highly efficient self-powered photodetection. Mater. Adv. 2022, 3, 6343–6351. [Google Scholar] [CrossRef]
- Yang, G.; Gu, Y.; Yan, P.; Wang, J.; Xue, J.; Zhang, X.; Lu, N.; Chen, G. Chemical vapor deposition growth of vertical MoS2 nanosheets on p-GaN nanorods for photodetector application. ACS Appl. Mater. Interfaces 2019, 11, 8453–8460. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Yim, W.; Park, S.J.; Son, B.H.; Kim, Y.C.; Cao, T.T.; Sim, Y.; Moon, Y.J.; Nguyen, V.C.; Seong, M.J. Phototransistors with Negative or Ambipolar Photoresponse Based on As-Grown Heterostructures of Single-Walled Carbon Nanotube and MoS2. Adv. Funct. Mater. 2018, 28, 1802572. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H. A Review: Nanomaterials Applied in Graphene-Based Electrochemical Biosensors. Sens. Mater. 2015, 27, 191–215. [Google Scholar]
- Xiao, Z.; Gan, X.; Zhu, T.; Lei, D.; Zhao, H.; Wang, P. Activating the Basal Planes in 2H-MoTe2 Monolayers by Incorporating Single-Atom Dispersed N or P for Enhanced Electrocatalytic Overall Water Splitting. Adv. Sustainable Syst. 2022, 6, 2100515. [Google Scholar] [CrossRef]
- Song, X.; Liu, X.; Yu, D.; Huo, C.; Ji, J.; Li, X.; Zhang, S.; Zou, Y.; Zhu, G.; Wang, Y. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Wang, X.; Chen, Z.; Weller, D.; Wang, Y.; Shi, L.; Ma, X.; Ding, C.; Li, W.; Guo, S. Polarization-sensitive self-powered type-II GeSe/MoS2 van der Waals heterojunction photodetector. ACS Appl. Mater. Interfaces 2020, 12, 15406–15413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Qian, M.; Xie, H.; Mu, H. Chemical vapor deposited WS2/MoS2 heterostructure photodetector with enhanced photoresponsivity. J. Phys. D: Appl. Phys. 2022, 55, 175101. [Google Scholar] [CrossRef]
- Vabbina, P.; Choudhary, N.; Chowdhury, A.-A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction. ACS Appl. Mater. Interfaces 2015, 7, 15206–15213. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.V.; Bodepudi, S.C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514–6613. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, P.; Liao, Q.; Kang, Z.; Si, H.; Zhang, Y. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411. [Google Scholar] [CrossRef]
- Susarla, S.; Kutana, A.; Hachtel, J.A.; Kochat, V.; Apte, A.; Vajtai, R.; Idrobo, J.C.; Yakobson, B.I.; Tiwary, C.S.; Ajayan, P.M. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 2017, 29, 1702457. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Park, J.-H.; Tao, L.; Kim, K.K.; Lee, Y.H.; Xu, J.-B. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy 2019, 57, 214–221. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Q.; Zhou, X.; Li, L.; Su, J.; Wang, F.; Zhai, T. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 2018, 51, 45–53. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.-m.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Dai, M.; Chen, H.; Wang, F.; Long, M.; Shang, H.; Hu, Y.; Li, W.; Ge, C.; Zhang, J.; Zhai, T.; Fu, Y.; Hu, P. Ultrafast and Sensitive Self-Powered Photodetector Featuring Self-Limited Depletion Region and Fully Depleted Channel with van der Waals Contacts. Acs Nano 2020, 14, 9098–9106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Wee, A.T.S. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers. ACS Nano 2014, 8, 8653–8661. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, R.; Li, X.; Ma, Z.; Li, L.; Su, J.; Yan, Y.; Song, X.; Xia, C. Photovoltaic Field-Effect Photodiodes Based on Double van der Waals Heterojunctions. Acs Nano 2021, 15, 14295–14304. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J.C.; Jiang, C.; Liu, Q. Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p-n vdW heterostructure. ACS Appl. Mater. Interfaces 2016, 8, 2533–2539. [Google Scholar] [CrossRef]
- Yang, S.; Wu, M.; Wang, B.; Zhao, L.-D.; Huang, L.; Jiang, C.; Wei, S.-H. Enhanced electrical and optoelectronic characteristics of few-layer type-II SnSe/MoS2 van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2017, 9, 42149–42155. [Google Scholar] [CrossRef]
- Huo, N.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572. [Google Scholar] [CrossRef] [PubMed]
- Yufei, Y.; Sun, W. Two-Dimensional MoS2 on p-Type GaN for UV-Vis Photodetectors. ACS Appl. Nano Mater. 2024, 7, 84–91. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, N.; Raliya, R.; Biswas, P.; Kumar, M. High-performance photodetector based on hybrid of MoS2 and reduced graphene oxide. Nanotechnology 2018, 29, 404001. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Liu, L.; Huang, J.; Nie, A.; Zhai, K.; Wang, B.; Wen, F.; Mu, C.; Zhao, Z.; Gong, Y.; Xiang, J.; Tian, Y.; Liu, Z. High-Performance Broadband Photodetectors of Heterogeneous 2D Inorganic Molecular Sb2O3/Monolayer MoS2 Crystals Grown via Chemical Vapor Deposition. Adv. Opt. Mater. 2020, 8, 2000168. [Google Scholar] [CrossRef]
- Peng, M.; Tao, Y.; Hong, X.; Liu, Y.; Wen, Z.; Sun, X. One-step synthesized PbSe nanocrystal inks decorated 2D MoS2 heterostructure for high stability photodetectors with photoresponse extending to near-infrared region. J. Mater. Chem. C 2022, 10, 2236–2244. [Google Scholar] [CrossRef]
- Chu, K.-L.; Chen, C.-H.; Shen, S.-W.; Huang, C.-Y.; Chou, Y.-X.; Liao, M.-Y.; Tsai, M.-L.; Wu, C.-I.; Chueh, C.-C. A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chem. Eng. J. 2021, 422, 130112. [Google Scholar] [CrossRef]
- Agrawal, A.V.; Kaur, K.; Kumar, M. Interfacial study of vertically aligned n-type MoS2 flakes heterojunction with p-type Cu-Zn-Sn-S for self-powered, fast and high performance broadband photodetector. Appl. Surf. Sci. 2020, 514, 145901. [Google Scholar] [CrossRef]
- Goel, N.; Kumar, R.; Roul, B.; Kumar, M.; Krupanidhi, S. Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector. J. Phys. D: Appl. Phys. 2018, 51, 374003. [Google Scholar] [CrossRef]
- Algadi, H.; Das, T.; Ren, J.; Li, H. High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr3) perovskite nanocrystals triple junction. Adv. Compos. Hybrid Mater. 2023, 6, 56. [Google Scholar] [CrossRef]
- Li, Z.; Luo, J.; Hu, S.; Liu, Q.; Yu, W.; Lu, Y.; Liu, X. Strain enhancement for a MoS2-on-GaN photodetector with an Al2O3 stress liner grown by atomic layer deposition. Photonics Res. 2020, 8, 799–805. [Google Scholar] [CrossRef]
- Kallatt, S.; Nair, S.; Majumdar, K. Asymmetrically Encapsulated Vertical ITO/MoS2/Cu2O Photodetector with Ultrahigh Sensitivity. Small 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Sarkar, K.; Kumar, P. Layered heterostructures based on MoS2/MoSe2 nanosheets deposited on GaN substrates for photodetector applications. ACS Appl. Nano Mater. 2023, 6, 4224–4235. [Google Scholar] [CrossRef]
- Mao, C.-H.; Dubey, A.; Lee, F.-J.; Chen, C.-Y.; Tang, S.-Y.; Ranjan, A.; Lu, M.-Y.; Chueh, Y.-L.; Gwo, S.; Yen, T.-J. An ultrasensitive gateless photodetector based on the 2D bilayer MoS2-1D Si nanowire-0D Ag nanoparticle hybrid structure. ACS Appl. Mater. Interfaces 2021, 13, 4126–4132. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Low, M.X.; Taylor, P.D.; Tawfik, S.A.; Spencer, M.J.; Kuriakose, S.; Arash, A.; Xu, C.; Sriram, S.; Gupta, G. 2D/3D hybrid of MoS2/GaN for a high-performance broadband photodetector. ACS Appl. Electron. Mater. 2021, 3, 2407–2414. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef] [PubMed]
















| Sensing Material | Main synthesis method | Target | R (A·W-1) | Linear range | Detection limit | Wavelength | Ref. |
| Few-layer MoS2/Si | CVD | Rhodamine 6G | 0.1413 | 10-3 -10-9 M | 10-9 M | White light | [154] |
| rGO/MoS2 | Hydrothermal | Escherichia Coli O157:H7 | - | 5.0-5.0 × 106 CFU·mL-1 | 2.0 CFU·mL–1 | NIR | [155] |
| Pd/MoS2@g-C3N4 | Solvothermal exfoliation | Cu2+ | 9.3 | 1 μM-1 mM | 0.21 μM | - | [156] |
| Au@Ag-MoS2/ct-DNA/CdSe | ME | Hg2+ | - | 10 pmol·L−1 -100 nmol·L−1 | 5 pmol·L−1 | 430 nm | [157] |
| rGO/MoS2 | Hydrothermal | Aflatoxin B1 | - | 0.001-100 ng·mL-1 | 2.18 pg·mL-1 | 465 nm | [158] |
| MoS2 QDs/TiO2 NTs | Hydrothermal | Atrazine | - | 0.5-107.8 ng·L-1 | 0.2 ng·L-1 | Vis-UV | [159] |
| MOF-MoS2 | Hydrothermal | Hg2+ | - | 0.01-1000 nM | 0.25 pM | - | [160] |
| ZnO/MoS2 | Hydrothermal | Cr (VI) | - | 0.008-640 µM | 7 nM | - | [161] |
| ZnIn2S4/V-MoS2 | Hydrothermal | Aflatoxin B1 | - | 0.05-50 ng·mL-1 | 17 pg·mL-1 | Vis-UV | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).




