Submitted:
18 November 2024
Posted:
19 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1. The Complexity of Current Oncologic Patients
1.1. Assessing ASCVD Risk in Individual Cancer Patients
2. How to Manage Atherosclerosis -Driven Chronic Diseases in Cancer Patient
- 2.2.1.
- Cardiometabolic Therapies and Their Impact on Atherosclerotic Plaque
- (i)
- Lipid-lowering therapies (LLTs), including statins, ezetimibe, polyunsaturated fatty acids (PUFAs), and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have been extensively studied for their beneficial effects on atherosclerotic plaque regression, both as monotherapies and in combination [235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256]. LLTs also influence platelets and interact with various atherosclerosis mediators, including the endothelium, monocytes, and smooth muscle cells [257]. Table 1 summarizes key studies on LLTs and their effects on atherosclerotic plaques.
- (ii)
- Metformin, first introduced in the late 1950s and still widely used today, targets three key molecular pathways: complex 1 of the mitochondrial electron transport chain (ETC), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and mechanistic target of rapamycin complex 1 (mTORC1). Inhibition of hepatic gluconeogenesis is linked to its effect on mitochondrial complex 1, which reduces ATP levels and increases the AMP/ATP ratio, activating AMPK and further inhibiting gluconeogenesis [258,259]. Metformin also stimulates the release of glucagon-like peptide 1 (GLP-1) from the intestine [260]. Additionally, AMPK can be activated via the serine-threonine liver kinase B1 (LKB1) and mitochondrial glycerol-3-phosphate dehydrogenase (mGPD), which increases the cytosolic redox state [261,262]. Activation of AMPK by metformin results in reduced blood sugar, improved inflammatory control, enhanced oxidative status, and activation of endothelial nitric oxide synthase, which may explain metformin's protective effect on endothelial function. Preclinical studies suggest that metformin stabilizes atherosclerotic plaques by inhibiting matrix metalloproteinase 9 (MMP-9), an enzyme responsible for degrading the extracellular matrix (ECM) of blood vessels [263,264]. A retrospective clinical study of 313 patients with type 2 diabetes and CAD found that metformin, particularly when not combined with insulin, reduced the prevalence of vulnerable plaque features based on optical coherence tomography (OCT) analysis of 409 non-culprit plaques [265].
- (iii)
- Preclinical studies in animal models have demonstrated that sodium-glucose co-transporter-2 inhibitors (SGLT-2 inhibitors) have favourable effects on plaque size, composition, and inflammatory pathways [266,267]. However, there are limited data on these effects in humans [268,269,270], they are summarized in Table 2.
- 2.2.2.
- Cardiometabolic Therapies and Their Potential Effect in Cardioncology
- (i)
- Statins. Statins reduce low-density lipoprotein cholesterol (LDL-C) in a dose-dependent manner, lower triglycerides (TG) by 10-20% (with greater reductions from high-intensity statins), and have a minimal effect on lipoprotein(a) [Lp(a)] [271]. Their beneficial impact on CV morbidity and mortality is well-documented [272,273,274,275]. Statins can be safely and effectively used in elderly patients, including those over 75 years of age [276]. The ESC Guidelines on CVD prevention (Class I A) recommend high-intensity statins at the highest tolerated dose to achieve LDL-C targets based on specific risk groups [6]. Statins may have anticancer properties due to their cholesterol-lowering effects [277,278] and ability to enhance efficacy of ICIs [279,280]. Preclinical studies have shown statins' direct antiproliferative and immunomodulatory effects, promoting immunogenic cell death in KRAS (Kirsten rat sarcoma viral oncogene homolog) -mutated cancer cells. This occurs through increased expression of "eat me" signals and damage-associated molecular patterns, while reducing proteins that suppress T cell antitumor responses [281].
- (ii)
- Ezetimibe. In a meta-analysis of eight randomized, double-blind, placebo-controlled trials (12-week duration), Ezetimibe showed a significant reduction in LDL-C compared to placebo [282]. When combined with statins, it provided an additional 21-27% reduction in LDL-C [283]. The IMPROVE-IT trial, involving over 18,000 patients with acute coronary syndrome (ACS), demonstrated a modest but significant CV benefit from adding ezetimibe to simvastatin, with encouraging safety data [284]. These findings support the use of ezetimibe as second-line therapy alongside statins when LDL-C targets are unmet, or statins are not viable options.
- (iii)
- Bempedoic acid inhibits ATP citrate lyase, a cytosolic enzyme upstream of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, and reduces LDL-C levels. It has a low incidence of muscle-related side effects, making it suitable for patients who are statin-intolerant. The CLEAR OUTCOMES trial, a double-blind, placebo-controlled study that included high-risk CVD patients who could not tolerate statins, has documented a significantly lower risk of major adverse CV events (MACE), including CV death, nonfatal MI, stroke, or coronary revascularization in patients treated with bempedoic acid [285]. The 2024 ESC Guidelines on chronic coronary disease (CCD) recommend bempedoic acid in combination therapy for statin-intolerant patients or those not reaching LDL-C goals on maximum tolerated statin and ezetimibe therapy [286].
- (iv)
- PCSK9 inhibitors (PCSK9Is). PCSK9Is target the PCSK9 protein, which regulates LDL receptors (LDLRs). These inhibitors work through monoclonal antibodies (mAbs) that lower plasma PCSK9 levels by reducing its binding to LDLRs, and through a small interfering RNA (siRNA), Inclisiran, that inhibits PCSK9 synthesis. The result is a significant reduction in plasma LDL-C levels. Alirocumab and evolocumab effectively lower LDL-C in high or very high CV risk patients, including those with T2DM, and reduce CVD events [287,288]. Statins increase circulating PCSK9 levels, enhancing the benefits of the mAbs. These drugs are recommended for secondary prevention in patients who do not achieve LDL-C targets with statins and ezetimibe [6,286]. The long-term benefits of PCSK9 inhibitors (PCSK9Is) were evaluated in the FOURIER-Open Label Extension (FOURIER-OLE) study, which followed individuals originally randomized to evolocumab in the FOURIER trial [288]. The study confirmed both the efficacy and safety of extended PCSK9I use [289], which Shapiro described as "the gift that keeps giving" [290]. The efficacy in lowering LDL-C of Inclisiran was demonstrated in the ORION trials in patients with familial hypercholesterolemia, atherosclerosis, and high CV risk [291,292]. Beyond LDL-C lowering, PCSK9Is have pleiotropic effects, such as reducing platelet reactivity, decreasing smooth muscle cell proliferation, limiting macrophage accumulation, and promoting plaque regression and stabilization [293]. Emerging data suggest a link between PCSK9 and cancer: PCSK9 gain-of-function variants are associated with higher LDL-C and an increased risk of BC, while loss-of-function variants show the opposite effect [294]. PCSK9Is may also enhance the anticancer efficacy of immune checkpoint inhibitors (ICIs), as seen in colorectal cancer, where PCSK9 inhibition boosts the effectiveness of PD-1 blockade by reducing LDL-R and transforming growth factor-β (TGF-β) levels [295].
- (v)
- Fibrates (bezafibrate and fenofibrate) are used to lower triglyceride levels, but their limited impact on CV outcomes has led to a Class IIb recommendation in the 2021 ESC Guidelines on CVD prevention. They are suggested for patients on statins who have reached LDL-C targets but still have triglyceride levels >2.3 mmol/L (200 mg/dL) [6]. A recent meta-analysis of 12 trials involving over 50,000 patients found that fibrate therapy was associated with a reduced risk of major adverse CV events (MACE); however, this benefit was attributed to LDL-C reduction rather than changes in triglyceride levels [296].
- (vi)
- Metformin. Untreated patients with type 2 diabetes (T2DM) have an increased risk of cancer, likely due to the growth-promoting effects of chronically elevated glucose and insulin levels. This heightened risk is most pronounced for cancers of the liver, pancreas, endometrium, colon, breast, and bladder [297]. The anticancer potential of metformin has been widely studied, but its preventive role remains debated. A review and meta-analysis of 27 trials involving over 10,000 patients found no significant reduction in cancer incidence with metformin use [298]. However, another meta-analysis of 166 studies indicated a decreased risk of T2DM-associated cancers (gastrointestinal, urologic, and hematologic), suggesting metformin may reduce cancer risk indirectly by improving diabetes control [299]. A recent review by Galal et al. [300] highlights metformin influence on cancer cell biology through its effects on energy metabolism, cellular growth, angiogenesis, and programmed cell death. Metformin exerts both direct (insulin-independent) and indirect (insulin-dependent) effects on cancer cells, which may interact with each other. However, in recent clinical trials, metformin failed to improve the clinical course of prostate cancer [301,302] and BC [303]. Metformin has also been proposed as an immuno-metabolic adjuvant for cancer therapy. Preclinical studies suggest it can alter the tumor immune microenvironment [304,305] and reduce programmed death ligand 1 (PD-L1) expression, enhancing its degradation [306,307]. However, the "boosting" effect of metformin on cancer immunotherapy has been questioned due to confounding factors [308]. A meta-analysis of 22 studies involving over 9,000 patients revealed a significant association between metformin use and poorer overall survival, suggesting an adverse prognosis when combined with immune checkpoint inhibitors (ICIs) [309]. Further research is needed to fully assess metformin’s clinical and immunomodulatory potential in cancer treatment.
- (vii)
- Glucagon-like peptide 1 Receptor Agonists Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are incretin-based therapies that enhance insulin secretion in response to meals [310]. In addition to their role in glucose regulation, they promote weight loss, reduce chylomicron secretion, and lower blood pressure [311,312]. GLP-1 RAs, such as Liraglutide, Semaglutide, Exenatide, Albiglutide, and Dulaglutide, are approved for treating type 2 diabetes mellitus (T2DM) and have shown CV benefits in several trials [313,314,315,316,317,318,319]. A meta-analysis of 40 randomized controlled trials demonstrated that GLP-1 RAs significantly reduce inflammatory markers such as CRP, tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) [320]. Notably, the effects of Liraglutide and Semaglutide on CV outcomes are independent of baseline blood pressure [321], BMI [322], glycated hemoglobin A1c (HbA1c) levels [323], and triglycerides [324]. The 2023 ESC Guidelines for the management of CVD inpatients with diabetes recommend GLP-1 RAs with proven CV benefits (Liraglutide, Semaglutide, Dulaglutide, Efpeglenatide) for patients with T2DM and ASCVD to reduce CV events, irrespective of baseline HbA1c or other glucose-lowering treatments [325]. Liraglutide and Semaglutide have also been approved for obesity treatment. Liraglutide approval for weight loss followed the SCALE program [326], while Semaglutide approval was based on the STEP program, which included four key trials [327,328,329,330]. A recent trial demonstrated a significant reduction in death from CV causes, nonfatal MI, and nonfatal stroke with weekly Semaglutide (2.4 mg) in overweight or obese patients with preexisting CV disease but without diabetes, over a 39.8-month follow-up [331]. The 2024 ESC Guidelines for CCD recommend Semaglutide for patients without diabetes but with overweight or obesity (BMI >27 kg/m²) to reduce CV mortality, MI, or stroke (class IIa, B) [286]. GLP-1 receptor agonists (GLP-1 RAs) may have a potential role in reducing obesity-related cancer risk [332]. A recent study involving over 1.6 million patients with type 2 diabetes (T2DM) compared the incidence of 13 obesity-associated cancers among those treated with GLP-1 RAs, insulin, or metformin. GLP-1 RA treatment was associated with a significant reduction in the risk of 10 cancers, including esophageal, colorectal, endometrial, gallbladder, kidney, liver, ovarian, and pancreatic cancers, as well as meningioma and multiple myeloma, compared to insulin-treated patients. When compared to metformin, GLP-1 RAs showed a beneficial effect in reducing the risk of colorectal and gallbladder cancer [333]. In preclinical studies liraglutide has shown potential to enhance the anti-tumor efficacy of immune checkpoint inhibitors (ICIs) in lung and liver cancers [334]. However, conflicting data exist regarding the effects of GLP-1 RAs on cancer initiation and progression. The expression of the GLP-1 receptor (GLP-1R) varies across different tumor types, as well as between healthy and diseased tissues [335]. GLP-1R is highly expressed in endocrine tumors and has also been detected in embryonic cancers, nervous system tumors, and certain carcinomas. It is also expressed in various healthy tissues, including the pancreas, digestive tract, heart, skeletal muscle, liver, central nervous system, and immune cells, where it can be activated [336]. The effects of GLP-1 RAs appear to be tumor-specific. Notably, Semaglutide carries a boxed warning from the Food and Drug Administration (FDA) regarding the potential risk of thyroid C-cell cancer, specifically medullary thyroid carcinoma; [337]; this increased risk has not been observed with liraglutide A recent French multicenter registry reported an association between GLP-1 RA use for 1-3 years and an increased risk of thyroid cancers (adjusted hazard ratio [HR] 1.58, 95% CI 1.27-1.95) [338], a finding supported by a systematic review of 64 randomized controlled trials [339].
- (viii)
- SGLT2 Inhibitors Numerous trials have evaluated the effects of SGLT2 Inhibitors (Empagliflozin, Canagliflozin, Dapagliflozin, Ertugliflozin) on CV morbidity and mortality, as well as the effects of Canagliflozin and Sotagliflozin on reducing the risk of kidney failure and CV events [340,341,342,343,344,345,346,347,348,349]. According to the 2023 ESC Guidelines for managing CVD in patients with diabetes, empagliflozin, canagliflozin, dapagliflozin, and sotagliflozin are recommended for patients with T2DM and ASCVD to reduce CV events, regardless of baseline or target HbA1c levels and independent of other glucose-lowering treatments [325]. In T2DM patients without ASCVD or severe target organ damage (TOD), but with a 10-year CV risk of ≥10% according to the SCORE2-Diabetes algorithm, SGLT2 inhibitors may also be considered to lower CV risk, a benefit that appears to be independent of their glucose-lowering effects [350,351]. Empagliflozin and dapagliflozin have shown impressive results in improving outcomes for patients with symptomatic heart failure (HF), regardless of ejection fraction [352]. SGLT2 inhibitors have demonstrated antiproliferative effects against certain tumor types. Cancer cells often exhibit high glucose uptake and glycolysis, and the antineoplastic activity of SGLT2 Inhibitors is partially attributed to their ability to block glucose uptake in metabolically reprogrammed cancer cells expressing SGLT2 receptors. However, preclinical studies suggest that the anticancer effects of SGLT2 Inhibitors are multifactorial, involving several metabolic pathways [353]. Beyond their potential direct anticancer effects, SGLT2 Inhibitors may offer protective benefits against cancer therapy-induced CV toxicity. Preclinical studies have shown significant cardioprotective effects against anthracycline exposure [354,355] and ponatinib-induced cardiac toxicity [356]. Clinical studies have also reported favorable outcomes in patients with cancer and T2DM treated with anthracyclines [357], as well as improved outcomes in patients with cancer therapy-related cardiac dysfunction or heart failure [358].
- 2.2.4.
- Anti-Inflammatory Agents in CVD and Cancer
- (i)
- Interleukin inhibitors - The CANTOS trial was the first to test the inflammatory hypothesis of atherosclerosis by selectively inhibiting interleukin-1β with canakinumab in 10,061 patients with a history of MI and hsCRP levels of 2 mg/L or higher. Treatment with canakinumab (150 mg every 3 months) significantly reduced the incidence of the primary endpoint (nonfatal MI, nonfatal stroke, or CV death) and the secondary endpoint (including urgent revascularization), independent of lipid lowering [371]. Interestingly, CANTOS also observed a reduced incidence of lung cancer in the canakinumab group [375]. However, later trials failed to demonstrate a survival benefit in patients with resected or advanced non–small-cell lung cancer (NSCLC) [376,377,378]. These contradictory findings highlight the complex, pleiotropic role of IL-1 signalling [379]. Elevated IL-1 levels are associated with poor prognosis in various cancers [380] and promotes carcinogenesis by driving chronic inflammation and establishing a protumor cytokine network [381]. Furthermore, IL-1 exert paradoxical effects on antitumor immunity. While it enhances the activation of natural killer- and T- cells, promoting antitumor activity [382], it also contributes to immunosuppression by facilitating the expansion and mobilization of immune cells such as myeloid-derived suppressor cells (MDSCs) [383]. As a result, therapeutic strategies targeting IL-1 require further clinical studies to determine the efficacy and optimal use of anti-IL-1 therapies in specific clinical contexts. The phase II RESCUE trial showed that Ziltivekimab, a monoclonal antibody targeting the IL-6 ligand, significantly reduced inflammation and thrombosis biomarkers linked to atherosclerosis [384]. The results of this small study with Ziltivekimab are particularly intriguing from a cardio-oncology perspective. IL-6 plays a key role in tumorigenesis, cancer progression, and treatment resistance [385]. In preclinical studies, IL-6 inhibition combined with immune checkpoint blockade (ICB) enhanced antitumor immunity and slowed tumor progression across various cancer models [386,387,388]. IL-6 is also implicated in the development of immune-related adverse events (irAEs) associated with ICB, as shown by the effectiveness of tocilizumab, an IL-6 receptor inhibitor in managing these events in clinical practice. Thus, combining IL-6 inhibitors with ICB holds promise for improving cancer immunotherapy while reducing the risk of adverse events [389,390], including atherosclerosis [391]. More definitive data are expected from the ongoing ZEUS trial, which is investigating the effects of Ziltivekimab on CV outcomes (CV death, nonfatal MI, and nonfatal stroke) in 6,000 patients with CVD, CKD and systemic inflammation [392].
- (ii)
- Colchicine is a potent anti-inflammatory agent that works by inhibiting microtubule polymerization, neutrophil extracellular trap (NET) release, platelet activation, and the NLRP3 inflammasome [393,394]. Its effects on the NLRP3 inflammasome limit the activation of inflammatory cytokines, such as interleukin-1 and interleukin-18, in response to danger signals. Preclinical studies have shown that low-dose colchicine exerts anti-atherosclerotic and plaque-stabilizing effects, strongly inhibiting foam cell formation and cholesterol crystal-induced inflammation [395]. In 2013, Nidorf et al. reported a significant reduction in the primary outcome (a composite of ACS, out-of-hospital cardiac arrest, or non-cardioembolic ischemic stroke) after a 3-year follow-up in patients with stable coronary disease treated with colchicine in addition to aspirin (and/or clopidogrel) and statins, compared to those who did not receive colchicine [372]. These findings were confirmed in 2019 by a larger study on patients within 30 days of AMI [373]. Low-dose colchicine also showed benefits in chronic coronary disease, as demonstrated in the LoDoCo2 RCT, where colchicine-treated patients had a significantly lower incidence of CV events (CV death, non-procedural MI, ischemic stroke, or ischemia-driven coronary revascularization) after a 28.6-month follow-up compared to placebo [374]. Colchicine reduces hsCRP levels and may decrease coronary artery plaque volume [396]. A low-dose regimen (0.5 mg daily) has been approved by the FDA for secondary prevention in patients with CAD [397]. The drug's role in oncogenicity remains unclear. In the LoDoCo2 trial, non-cardiovascular deaths were more frequent in colchicine-treated patients than in the placebo group (hazard ratio, 1.51), although cancer diagnosis rates were similar [374]. However, a study of 85,374 Israeli patients with Familial Mediterranean Fever (FMF) showed a significantly lower incidence of cancer compared to the general population, potentially due to colchicine treatment [398]. Shared risk factors between gout and cancer (e.g. obesity and alcohol) have suggested a potential cancer susceptibility in gout patients, as demonstrated in a study of 8,408 male gout patients [399]. A further analysis of 24,050 gout patients found that those diagnosed with cancer were older and had a lower rate of colchicine prescriptions than those without cancer [400]. Interestingly, preclinical studies have shown a cardioprotective effect of low-dose colchicine in doxorubicin-induced cardiotoxicity, likely through the restoration of autophagy [401]. A recent study has documented, in mice and humans carrying CHIP (clonal hematopoiesis of indeterminated potential)-mutations, that colchicine can blunt the higher risk of ASCVD associated with somatic TET2 mutation-driven CHIP by suppressing IL-1β overproduction [402].
Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| ACE-Is | Angiotensin converting enzyme-Inhibitors; |
| ACS | acute coronary syndrome |
| ADT | androgen deprivation therapy |
| AHA | American Heart Association |
| AMI | acute myocardial infarction |
| AMP | adenosine monophosphate |
| AMPK | adenosine monophosphate (AMP)-activated protein kinase |
| ARBs | angiotensin receptor blockers |
| ASCVD | atherosclerotic cardiovascular disease |
| ATP | adenosine triphosphate |
| AYA | adolescent young adult |
| BMI | body mass index |
| CAC | coronary artery calcium |
| CAD | coronary artery disease |
| CANTOS | Canakinumab Anti-inflammatory Thrombosis Outcome Study |
| CCB | calcium channel blockers |
| CCD | chronic coronary disease |
| CCTA | coronary computed tomography angiography |
| CHIP | clonal hematopoiesis of indeterminate potential |
| CKD | chronic kidney disease |
| CKM | cardiovascular-kidney-metabolic |
| CKMH | cardiovascular-kidney-metabolic health |
| CORALS | Childhood Obesity Risk Assessment Longitudinal Study |
| CRP | C reactive protein |
| CT | computed tomography |
| CV | cardiovascular; |
| CVD | cardiovascular disease |
| CVH | cardiovascular health; |
| DASH | dietary approaches to Stop Hypertension |
| DEXA | dual-energy X-ray absorptiometry |
| ECM | extracellular matrix |
| ESMO | European society of medical oncology |
| EVOO | extra virgin olive oil |
| ETC | electron transport chain; |
| FAI | Fat Attenuation Index |
| FDA | Food and Drug Administration |
| FI | Food insecurity |
| FMF | Familial Mediterranean Fever |
| GLP-1 | glucagon-like peptide 1 |
| GLP-1 RAs | Glucagon-like peptide-1 receptor agonists; |
| HbA1c | hemoglobin A1c |
| HF | heart failure |
| HMG-CoA | 3-hydroxy-3-methylglutaryl-CoA |
| hs | high-sensitivity |
| ICAM-1 | intercellular cell adhesion molecule-1 |
| ICB | immune checkpoint blockade |
| ICIs | immune checkpoint inhibitors |
| IGFR | |
| IL | interleukin |
| IOM | Institute of Medicine |
| irAEs | immune-related adverse events |
| LDL-C | low-density lipoprotein cholesterol |
| LDLRs | LDL receptors |
| LLT | lipid lowering therapy |
| LKB1 | liver kinase B1 |
| Lp(a) | lipoprotein(a) |
| LPS | lipopolysaccharide |
| MACE | major adverse cardiovascular events |
| MAPK | mitogen-activated protein kinase |
| MCP-1 | monocyte chemoattractant protein-1 |
| MDA | malondialdehyde |
| MDSCs | myeloid-derived suppressor cells |
| MESA | Multi-Ethnic Study of Atherosclerosis |
| MetS | metabolic syndrome |
| mGPD | mitochondrial glycerol-3-phosphate dehydrogenase |
| MI | myocardial infarction |
| MMP-9 | matrix metalloproteinase 9 |
| mTORC1 | mechanistic target of rapamycin complex 1; |
| NCDs | non-communicable diseases |
| NET | neutrophil extracellular trap |
| NF-Kb | nuclear factor-kB |
| NLRP3 | nucleotide oligomerization domain-like receptor protein 3 |
| NLR | neutrophil-lymphocyte ratio |
| NO | nitric oxide |
| Non-HDL-C | non–high-density lipoprotein cholesterol |
| NRT | Nicotine Replacement Therapy |
| NSCLC | non–small-cell lung cancer |
| OCT | optical coherence tomography |
| PA | Physical activity |
| PCa | prostate cancer |
| PCEs | Pooled Cohort Equations |
| PCSK9-Is | proprotein convertase subtilisin/kexin type 9 Inhibitors |
| PD-L1 | programmed death ligand 1 |
| PESA | Progression of Early Subclinical Atherosclerosis |
| PET | Positron emission tomography |
| PUFA | polyunsaturated fatty acids |
| PVAT | perivascular adipose tissue |
| RCT | randomized controlled trial |
| SCFAs | short-chain fatty acids |
| SCORE2 | Systematic Coronary Risk Estimation 2 |
| SCORE2-OP | SCORE2-Older Persons |
| SDOH | social determinants of health |
| SGLT2-Is | sodium-glucose co-transporter-2 inhibitors |
| T2DM | type 2 diabetes mellitus |
| TMAO | trimethylamine N-oxide |
| TNF-α | tumor necrosis factor-alpha |
| TG | triglycerides |
| TGF-β | transforming growth factor-β |
| TyG index | logarithmized semi-product of fasting levels of triglycerides and glucose {ln [triglycerides (mg/dl) x blood glucose (mg/dl)/2]} |
| UPF | ultra-processed foods |
| VCAM-1 | vascular cell adhesion molecule-1 |
References
- Kobo, O.; Raisi-Estabragh, Z.; Gevaert, S.; Rana, J.S.; Van Spall, H.G.C.; Roguin, A.; Petersen, S.E.; Ky, B.; Mamas, M.A. Impact of cancer diagnosis on distribution and trends of cardiovascular hospitalizations in the USA between 2004 and 2017. Eur Heart J Qual Care Clin Outcomes. 2022, 8, 787–797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lloyd-Jones, D.M.; Ning, H.; Labarthe, D.; Brewer, L.; Sharma, G.; Rosamond, W.; Foraker, R.E.; Black, T.; Grandner, M.A.; Allen, N.B. Status of cardiovascular health in US adults and children using the American Heart Association’s new “Life’s essential 8” metrics: prevalence estimates from the National Health and Nutrition Examination Survey (NHANES), 2013 through 2018. Circulation. 2022, 146, 822–835. [Google Scholar] [CrossRef]
- Abramov, D.; Kobo, O.; Mamas, M.A. Association of Cardiovascular Health Metrics and Mortality Among Individuals With and Without Cancer. J Am Heart Assoc. 2024, 13, e032683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaneko, H.; Suzuki, Y.; Ueno, K.; Okada, A.; Fujiu, K.; Matsuoka, S.; Michihata, N.; Jo, T.; Takeda, N.; Morita, H.; et al. Association of Life's Simple 7 with incident cardiovascular disease in 53 974 patients with cancer. Eur J Prev Cardiol. 2022, 29, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen-Torvik, L.J.; Shay, C.M.; Abramson, J.G.; Friedrich, C.A.; Nettleton, J.A.; Prizment, A.E.; Folsom, A.R. Ideal cardiovascular health is inversely associated with incident cancer: the Atherosclerosis Risk In Communities study. Circulation. 2013, 127, 1270–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno,D. ; et al. ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. Peer Review Committee Members. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2023, 148, e9–e119. [Google Scholar] [CrossRef] [PubMed]
- Klimis, H.; Pinthus, J.H.; Aghel, N.; Duceppe, E.; Fradet, V.; Brown, I.; Siemens, D.R.; Shayegan, B.; Klotz, L.; Luke, P.P.; et al. The Burden of Uncontrolled Cardiovascular Risk Factors in Men With Prostate Cancer: A RADICAL-PC Analysis. JACC CardioOncol. 2023, 5, 70–81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, L.; Parikh, R.B.; Hubbard, R.A.; Cashy,J. ; Takvorian, S.U.; Vaughn, D.J.; Robinson, K.W.; Narayan, V.; Ky, B. Assessment and Management of Cardiovascular Risk Factors Among US Veterans With Prostate Cancer. JAMA Netw Open. 2021, 4, e210070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caro-Codón, J.; López-Fernández, T.; Álvarez-Ortega, C.; Zamora Auñón, P.; Rodríguez, I.R.; Gómez Prieto, P.; Buño Soto, A.; Canales Albendea, M.; Albaladejo, A.; Mediavilla, G.; et al. CARDIOTOX registry investigators. Cardiovascular risk factors during cancer treatment. Prevalence and prognostic relevance: insights from the CARDIOTOX registry. Eur J Prev Cardiol. [CrossRef] [PubMed]
- Weaver, K.E.; Dressler, E.V.; Smith, S.; Nightingale, C.L.; Klepin, H.D.; Lee, S.C.; Wells, B.J.; Hundley, W.G.; DeMari, J.A.; Price, S.N.; et al. Cardiovascular health assessment in routine cancer follow-up in community settings: survivor risk awareness and perspectives. BMC Cancer. 2024, 24, 158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sayed, A.; Munir, M.; Addison, D.; Abushouk, A.I.; Dent, S.F.; Neilan, T.G.; Blaes, A.; Fradley, M.G.; Nohria, A.; Moustafa, K.; et al. The underutilization of preventive cardiovascular measures in patients with cancer: an analysis of the Behavioural Risk Factor Surveillance System, 2011-22. Eur J Prev Cardiol. 2023, 30, 1325–1332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCracken, C.; Condurache, D.G.; Szabo, L.; Elghazaly, H.; Walter F.M.; Mead A.J.; Chakraverty R.; Harvey N.C.; Charlotte, H.; Petersen, S.E.; et al. Predictive Performance of Cardiovascular Risk Scores in Cancer Survivors From the UK Biobank. JACC: CardioOncology Volume 6, Issue 4, August 2024, Pages 575-588. [CrossRef]
- Gallucci, G.; Turazza, F.M.; Inno, A.; Canale, M.L.; Silvestris, N.; Farì, R.; Navazio, A.; Pinto, C.; Tarantini,L. Atherosclerosis and the Bidirectional Relationship between Cancer and Cardiovascular Disease: From Bench to Bedside-Part 1. Int J Mol Sci. 2024, 25, 4232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wagner, K.H.; Brath, H. A global view on the development of non communicable diseases. Prev Med. 2012, 54, S38–41. [Google Scholar] [CrossRef] [PubMed]
- Uddin, R.; Lee, E.Y.; Khan, S.R.; Tremblay, M.S.; Khan, A. Clustering of lifestyle risk factors for non-communicable diseases in 304,779 adolescents from 89 countries: A global perspective. Prev Med. 2020, 131, 105955. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 563–591. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, X.; Wei, L.; Yang, K.; Jiao, M. The impact of high-risk lifestyle factors on all-cause mortality in the US non-communicable disease population. BMC Public Health. 2023, 23, 422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Global Cardiovascular Risk Consortium; Magnussen, C.; Ojeda, F.M.; Leong, D.P.; Alegre-Diaz, J.; Amouyel, P.; Aviles-Santa, L.; De Bacquer, D.; Ballantyne, C.M.; Bernabé-Ortiz, A.; Bobak, M; et al. Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. N. Engl. J. Med. 2023, 389, 1273–1285. [CrossRef] [PubMed]
- Freisling, H.; Viallon, V.; Lennon, H.; Bagnardi, V.; Ricci, C.; Butterworth, A.S.; Sweeting, M.; Muller, D.; Romieu, I.; Bazelle, P.; et al. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Med. 2020, 18, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ortiz, C.; López-Cuadrado, T.; Rodríguez-Blázquez, C.; Pastor-Barriuso, R.; Galán, I. Clustering of unhealthy lifestyle behaviors, self-rated health and disability. Prev Med. 2022, 155, 106911. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Huang, H.; Huang, Y.; Zhong, V.W.; Feng, N. Lifestyle Behaviors and Cardiometabolic Diseases by Race and Ethnicity and Social Risk Factors Among US Young Adults, 2011 to 2018. J Am Heart Assoc. 2023, 12, e028926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Ding, J.; Li, H.; Carr, P.R.; Hoffmeister, M.; Brenner, H. The power of a healthy lifestyle for cancer prevention: the example of colorectal cancer. Cancer Biol Med. 2022, 19, 1586–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stein, K.D.; Syrjala, K.L.; Andrykowski, M.A. Physical and psychological long-term and late effects of cancer. Cancer. 2008, 112, 2577–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emery, J.; Butow, P.; Lai-Kwon, J.; Nekhlyudov, L.; Rynderman, M.; Jefford, M. Management of common clinical problems experienced by survivors of cancer. Lancet. 2022, 399, 1537–1550. [Google Scholar] [CrossRef] [PubMed]
- Mollica, M.A.; Smith, A.W.; Tonorezos, E.; Castro, K.; Filipski, K.K.; Guida, J.; Perna, F.; Green, P.; Jacobsen, P.B.; Mariotto, A.; et al. Survivorship for Individuals Living With Advanced and Metastatic Cancers: National Cancer Institute Meeting Report. J Natl Cancer Inst. 2022, 114, 489–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mollica, M.A.; Zaleta, A.K.; Gallicchio, L.; Brick, R.; Jacobsen, P.B.; Tonorezos, E.; Castro, K.M.; Miller, M.F. Financial toxicity among people with metastatic cancer: findings from the Cancer Experience Registry. Support Care Cancer. 2024, 32, 137. [Google Scholar] [CrossRef] [PubMed]
- Ngan, T.T.; Tien, T.H.; Donnelly, M.; O'Neill, C. Financial toxicity among cancer patients, survivors and their families in the United Kingdom: a scoping review. J Public Health (Oxf). 2023, 45, e702–e713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valero-Elizondo, J.; Chouairi, F.; Khera, R.; Grandhi, G.R.; Saxena, A.; Warraich, H. J.; Virani, S.S.; Desai, N.R.; Sasangohar, F.; Krumholz, H.M.; et al. Atherosclerotic cardiovascular disease, cancer, and financial toxicity among adults in the United States. Cardio Oncology 2021; 3: 236-246.
- Osibogun, O.; Ogunmoroti, O.; Turkson-Ocran, R.A.; Okunrintemi, V.; Kershaw, K.N.; Allen, N.B.; & Michos, E.D. Financial strain is associated with poorer cardiovascular health: The multi-ethnic study of atherosclerosis. American Journal of Preventive Cardiology, 2024;17:100640.
- Shah, C. H.; Fonarow, G.C.; Echouffo-Tcheugui, J. B. Trends in direct health care costs among US adults with atherosclerotic cardiovascular disease with and without diabetes. Cardiovascular Diabetology, 2024;23: 238.
- Sukumar, S.; Wasfy, J.H.; Januzzi, J.L.; Peppercorn, J.; Chino, F.; Warraich, H. J. Financial toxicity of medical management of heart failure: JACC review topic of the week. Journal of the American College of Cardiology, 2023;81, 2043-2055.
- Carrera, P.M.; Curigliano, G.; Santini, D.; Sharp, L.; Chan, R.J.; Pisu, M.; Perrone, F.; Karjalainen, S.; Numico, G.; Cherny, N.; et al. ESMO expert consensus statements on the screening and management of financial toxicity in patients with cancer. ESMO Open. 2024, 9, 102992. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orsini, M.; Trétarre, B.; Daurès, J.P.; Bessaoud, F. Individual socioeconomic status and breast cancer diagnostic stages: a French case-control study. Eur J Public Health. 2016, 26, 445–50. [Google Scholar] [CrossRef] [PubMed]
- Lyratzopoulos, G.; Abel, G.A.; Brown, C.H.; Rous, B.A.; Vernon, S.A.; Roland, M.; Greenberg, D.C. Socio-demographic inequalities in stage of cancer diagnosis: evidence from patients with female breast, lung, colon, rectal, prostate, renal, bladder, melanoma, ovarian and endometrial cancer. Ann Oncol. 2013, 24, 843–50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yanez, B.; Perry, L.M.; Peipert, J.D.; Kuharic, M.; Taub, C.; Garcia, S.F.; Diaz, A.; Buitrago, D.; Mai, Q.; Gharzai, L.A.; et al. Exploring the Relationship Among Financial Hardship, Anxiety, and Depression in Patients With Cancer: A Longitudinal Study. JCO Oncol Pract. 2024, OP2400025. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, J.L.; Franzoi, M.A.; di Meglio, A.; Ferreira, A.R.; Viansone, A.; André, F.; Martin, A.L.; Everhard, S.; Jouannaud, C.; Fournier, M.; et al. Magnitude and Temporal Variations of Socioeconomic Inequalities in the Quality of Life After Early Breast Cancer: Results From the Multicentric French CANTO Cohort. J Clin Oncol. 2024, 42, 2908–2917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chao, C.; Bhatia, S.; Xu, L.; Cannavale, K.L.; Wong, F.L.; Huang, P.S.; Cooper, R.; Armenian, S.H. Chronic Comorbidities Among Survivors of Adolescent and Young Adult Cancer. J Clin Oncol. 2020, 38, 3161–3174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dixon, S.B.; Wang, F.; Lu, L.; Wilson, C.L.; Green, D.M.; Merchant, T.E.; Srivastava, D.K.; Delaney, A.; Howell, R.M.; Jefferies, J.L.; et al. Prediabetes and Associated Risk of Cardiovascular Events and Chronic Kidney Disease Among Adult Survivors of Childhood Cancer in the St Jude Lifetime Cohort. J Clin Oncol. 2024, 42, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto,R. I.; Pessin, J.E.; et al. Geroscience: linking aging to chronic disease. Cell. 2014, 159, 709–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rowland, J.H.; Bellizzi, K.M. Cancer survivorship issues: life after treatment and implications for an aging population. J Clin Oncol. 2014, 32, 2662–8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, C.; Deng, L.; Karr, M.A.; Wen, Y.; Wang, Q.; Perimbeti, S.; Shapiro, C.L.; Han, X. Chronic comorbid conditions among adult cancer survivors in the United States: Results from the National Health Interview Survey, 2002-2018. Cancer. 2022, 128, 828–838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whyne, E.Z.; Shults, E.M.; Choi, S-H. ; Dowell, J.E.; Conzen, S.; Jeon-Slaughter, H. Abstract 13066: Ten-Year Atherosclerotic Cardiovascular Risk Trajectory Among Women Veterans Diagnosed With Breast, Colorectal, Lung and Thyroid Cancer. Circulation. 2023, 148, A13066. [Google Scholar] [CrossRef]
- Sarfati, D.; Gurney, J.; Lim, B.T.; Bagheri, N.; Simpson, A.; Koea, J.; Dennett, E. Identifying important comorbidity among cancer populations using administrative data: Prevalence and impact on survival. Asia Pac J Clin Oncol. 2016, 12, e47–56. [Google Scholar] [CrossRef] [PubMed]
- Garg, T.; Young, A.J.; Kost, K.A.; Danella, J.F.; Larson, S.; Nielsen, M.E.; Kirchner, H.L. Burden of Multiple Chronic Conditions among Patients with Urological Cancer. J Urol. 2018, 199, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Strongman, H.; Gadd, S.; Matthews, A.; Mansfield, K.E.; Stanway, S.; Lyon, A.R.; Dos-Santos-Silva, I.; Smeeth, L.; Bhaskaran, K. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet. 2019, 394, 1041–1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fowler, H.; Belot, A.; Ellis, L.; Maringe, C.; Luque-Fernandez, M.A.; Njagi, E.N.; Navani, N. Sarfati, D. ; Rachet, B. Comorbidity prevalence among cancer patients: a population-based cohort study of four cancers. BMC Cancer. 2020, 20, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loeppenthin, K.; Dalton, S.O.; Johansen, C.; Andersen, E.; Christensen, M.B.; Pappot, H.; Petersen, L.N.; Thisted, L.B.; Frølich, A.; Mortensen, C.E.; et al. Total burden of disease in cancer patients at diagnosis-a Danish nationwide study of multimorbidity and redeemed medication. Br J Cancer. 2020, 123, 1033–1040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keats, M.R.; Cui, Y.; DeClercq, V.; Grandy, S.A.; Sweeney, E.; Dummer, T.J.B. Burden of multimorbidity and polypharmacy among cancer survivors: a population-based nested case-control study. Support Care Cancer. 2021, 29, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Plasencia, G.; Gray, S.C.; Hall, I.J.; Smith, J.L. Multimorbidity clusters in adults 50 years or older with and without a history of cancer: National Health Interview Survey, 2018. BMC Geriatr. 2024, 24, 50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blaustein, J.R.; Quisel, M.J.; Hamburg, N.M.; Wittkopp, S. Environmental Impacts on Cardiovascular Health and Biology: An Overview. Circ Res. 2024, 134, 1048–1060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet. 2019, 393, 791–846. [Google Scholar] [CrossRef] [PubMed]
- AHIMA, Rexford, S. Overview of metabolic syndrome. In: Metabolic syndrome: a comprehensive textbook. Cham: Springer International Publishing, 2024. p. 3-14.
- Larsson, S.C.; Spyrou, N.; Mantzoros, C.S. Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism. 2022, 137, 155326. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.E.; Suthahar, N.; Paniagua, S.M.; Wang, D.; Lau, E.S.; Li, S.X.; Jovani, M.; Takvorian, K.S.; Kreger, B.E.; Benjamin, E.J.; et al. Association of Cardiometabolic Disease With Cancer in the Community. JACC CardioOncol. 2022, 4, 69–81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGill, H.C. Jr; McMahan, C.A.; Herderick, E.E.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002, 105, 2712–8. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.J.H.; Ng, C.H.; Muthiah, M.; Yong, J.N.; Chee, D.; Teng, M.; Wong, Z.Y.; Zeng, R.W.; Chin, Y.H.; Wang, J.W.; et al. Rising global burden of cancer attributable to high BMI from 2010 to 2019. Metabolism. 2023, 152, 155744. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.W.; Aarestrup, J.; Blond, K.; Jørgensen, M.E.; Renehan, A.G.; Vistisen, D.; Baker, J.L. ; Childhood body mass index trajectories, adult-onset type 2 diabetes, and obesity-related cancers. J Natl Cancer Inst. 2023, 115, 43–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meyer, J.F.; Larsen, S.B.; Blond, K.; Damsgaard, C.T.; Bjerregaard, L.G.; Baker, J.L. Associations between body mass index and height during childhood and adolescence and the risk of coronary heart disease in adulthood: A systematic review and meta-analysis. Obes Rev. 2021, 22, e13276. [Google Scholar] [CrossRef] [PubMed]
- Falaschetti, E.; Hingorani, A.D.; Jones, A.; Charakida, M.; Finer, N.; Whincup, P.; Lawlor, D.A.; Davey Smith, G.; Sattar, N.; Deanfield, J.E. Adiposity and cardiovascular risk factors in a large contemporary population of pre-pubertal children. Eur Heart J. 2010, 31, 3063–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cardel, M.I.; Atkinson, M.A.; Taveras, E.M.; Holm, J.C.; Kelly, A.S. Obesity Treatment Among Adolescents: A Review of Current Evidence and Future Directions. JAMA Pediatr. 2020, 174, 609–617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacobs, D.R.Jr; Woo, J.G.; Sinaiko, A.R.; Daniels, S.R.; Ikonen, J.; Juonala, M.; Kartiosuo, N.; Lehtimäki, T.; Magnussen, C.G.; Viikari, J.S.A.; et al. Childhood Cardiovascular Risk Factors and Adult Cardiovascular Events. N Engl J Med. 2022, 386, 1877–1888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, F.; Juonala, M.; Jacobs, D.R. Jr; Daniels, S.R.; Kähönen, M.; Woo, J.G.; Sinaiko, A.R.; Viikari, J.S.A.; Bazzano, L.A.; Burns, T.L.; et al. Childhood Non-HDL Cholesterol and LDL Cholesterol and Adult Atherosclerotic Cardiovascular Events. Circulation. 2024, 149, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Friera, L.; Peñalvo, J.L.; Fernández-Ortiz, A.; Ibañez, B.; López-Melgar, B.; Laclaustra, M.; Oliva, B.; Mocoroa, A.; Mendiguren, J.; Martínez de Vega, V.; et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation 2015, 131, 2104–2113. [Google Scholar] [CrossRef] [PubMed]
- López-Melgar, B.; Fernández-Friera, L.; Oliva, B.; García-Ruiz, J.M.; Sánchez-Cabo, F.; Bueno, H.; Mendiguren, J.M.; Lara-Pezzi, E.; Andrés, V.; Ibáñez, B.; et al. Short-Term Progression of Multiterritorial Subclinical Atherosclerosis. J Am Coll Cardiol. 2020, 75, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010, 95, 3347–51. [Google Scholar] [CrossRef] [PubMed]
- Nabipoorashrafi, S.A.; Seyedi, S.A.; Rabizadeh, S.; Ebrahimi, M.; Ranjbar, S.A.; Reyhan, S.K.; Meysamie, A.; Nakhjavani, M.; Esteghamati, A. The accuracy of triglyceride-glucose (TyG) index for the screening of metabolic syndrome in adults: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2022, 32, 2677–2688. [Google Scholar] [CrossRef] [PubMed]
- D'Elia, L.; Masulli, M.; Virdis, A.; Casiglia, E.; Tikhonoff, V.; Angeli, F.; Barbagallo, C.M.; Bombelli, M.; Cappelli, F.; Cianci, R.; et al. Triglyceride-glucose Index and Mortality in a Large Regional-based Italian Database (Urrah Project). J Clin Endocrinol Metab. 2024, 14, dgae170. [Google Scholar] [CrossRef] [PubMed]
- Che, B.; Zhong, C.; Zhang, R.; Pu, L.; Zhao, T.; Zhang, Y.; Han, L. Triglyceride-glucose index and triglyceride to high-density lipoprotein cholesterol ratio as potential cardiovascular disease risk factors: an analysis of UK biobank data. Cardiovasc Diabetol. 2023, 22, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Jaramillo, P.; Gomez-Arbelaez, D.; Martinez-Bello, D.; Abat, M.E.M.; Alhabib, K.F.; Avezum, Á.; Barbarash, O.; Chifamba, J.; Diaz, M.L.; Gulec, S.; et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): a prospective cohort study. Lancet Healthy Longev. 2023, 4, e23–e33. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Bjørge, T.; Nagel, G.; Manjer, J.; Engeland, A.; Häggström, C.; Concin, H.; Teleka, S. , Tretli, S.; Gylling, B, et al. The triglyceride-glucose index as a measure of insulin resistance and risk of obesity-related cancers. Int J Epidemiol. 2020, 49, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, L.; Yang, S.; Zhou, H. The relationship between Triglyceride and glycose (TyG) index and the risk of gynaecologic and breast cancers. Clin Nutr ESPEN. 2022, 51, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wang, C.; Zhang, J.; Liu, Z.; Bai, Y.; Chen, Z.; Huang, H.; He, Y. Triglyceride-glucose index and coronary artery disease: a systematic review and meta-analysis of risk, severity, and prognosis. Cardiovasc Diabetol. 2023, 22, 170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, X.; Wang, X.; Wu, J.; Zhang, M.; Cui, M. Triglyceride-glucose index and the incidence of atherosclerotic cardiovascular diseases: a meta-analysis of cohort studies. Cardiovasc Diabetol. 2021, 20, 76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bertero, E.; Carmisciano, L.; Jonasson, C.; Butler, J.; Maack, C.; Ameri, P. Association of inflammatory markers with incident heart failure or cancer in the HUNT3 and Health ABC population studies. European Journal of Preventive Cardiology 2024, 31, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Van't Klooster, C.C.; Ridker, P.M.; Hjortnaes, J.; van der Graaf, Y. ; Asselbergs,F. W.; Westerink, J.; Aerts, J.G.J.V.; Visseren, F.L.J. The relation between systemic inflammation and incident cancer in patients with stable cardiovascular disease: a cohort study. Eur Heart J. 2019, 40, 3901–3909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oikawa, T.; Sakata, Y.; Nochioka, K.; Miura, M.; Abe, R.; Kasahara, S.; Sato, M.; Aoyanagi, H.; Shiroto, T.; Sugimura, K.; et al.; CHART-2 Investigators Increased risk of cancer death in patients with chronic heart failure with a special reference to inflammation-A report from the CHART-2 Study. Int J Cardiol. 2019, 290, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, F.; Faucon, A.L.; Fu, E.L.; Szummer, K.E.; Mathisen, J.; Gerward, S.; Reuter, S.B.; Marx, N.; Mehran, R.; Carrero, J.J. Systemic inflammation and health outcomes in patients receiving treatment for atherosclerotic cardiovascular disease. Eur Heart J. 2024, ehae557. [Google Scholar] [CrossRef] [PubMed]
- Fest, J.; Ruiter, R.; Mulder, M.; Groot Koerkamp, B.; Ikram, M.A.; Stricker, B.H.; van Eijck, C.H.J. The systemic immune-inflammation index is associated with an increased risk of incident cancer-A population-based cohort study. Int J Cancer. 2020, 146, 692–698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, X.; Liu, D.; Li, M.; He, J.; Fu, Y. Association between systemic immune-inflammation index and insulin resistance and mortality. Sci Rep. 2024, 14, 2013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J Cancer. 2018, 9, 3295–3302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y.L.; Wu, C.H.; Hsu, P.F.; Chen, S.C.; Huang, S.S.; Chan WL, Lin SJ, Chou CY, Chen JW, Pan JP, et al. Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur J Clin Invest. 2020, 50, e13230. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wu, Q.; La, R.; Lu, L.; Abdu, F.A.; Yin, G.; Zhang, W.; Ding, W.; Ling, Y.; He, Z.; et al. Is systemic inflammation a missing link between cardiometabolic index with mortality? Evidence from a large population-based study. Cardiovasc Diabetol. 2024, 23, 212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Björnson, E.; Adiels, M.; Gummesson, A.; Taskinen, M.R.; Burgess, S.; Packard, C.J.; Borén, J. Quantifying Triglyceride-Rich Lipoprotein Atherogenicity, Associations With Inflammation, and Implications for Risk Assessment Using Non-HDL Cholesterol. J Am Coll Cardiol. 2024, 84, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, C.M.; Avilés-Olmos, I.; Dicker, D.; Frühbeck, G. Towards an adiposity-related disease framework for the diagnosis and management of obesities. Rev Endocr Metab Disord. 2023, 24, 795–807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cypess, A.M. Reassessing Human Adipose Tissue. N Engl J Med. 2022, 386, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Cespedes Feliciano, E.M.; Chen, W.Y.; Bradshaw, P.T.; Prado, C.M.; Alexeeff, S.; Albers, K.B.; Castillo, A.L.; Caan, B.J. Adipose Tissue Distribution and Cardiovascular Disease Risk Among Breast Cancer Survivors. J Clin Oncol. 2019, 37, 2528–2536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wibmer, A.G.; Dinh, P.C.; Travis, L.B.; Chen, C.; Bromberg, M.; Zheng, J.; Capanu, M.; Sesso, H.D.; Feldman, D.R.; Vargas, H.A. Associations of Body Fat Distribution and Cardiometabolic Risk of Testicular Cancer Survivors After Cisplatin-Based Chemotherapy. JNCI Cancer Spectr. 2022, 6, pkac030. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbi, J.; Patnaik, S.K.; Pabla, S.; Zollo, R.; Smith, R.J.Jr; Sass, S.N.; Srinivasan, A.; Petrucci, C.; Seager, R.; Conroy, J.; et al. Visceral Obesity Promotes Lung Cancer Progression-Toward Resolution of the Obesity Paradox in Lung Cancer. J Thorac Oncol. 2021, 16, 1333–1348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaplin, A.; Rodriguez, R.M.; Segura-Sampedro, J.J.; Ochogavía-Seguí, A.; Romaguera, D.; Barceló-Coblijn, G. Insights behind the Relationship between Colorectal Cancer and Obesity: Is Visceral Adipose Tissue the Missing Link? Int J Mol Sci. 2022, 23, 13128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, G.R.; Dunne, R.F.; Giri, S.; Shachar, S.S.; Caan, B.J. Sarcopenia in the Older Adult With Cancer. J Clin Oncol. 2021, 39, 2068–2078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atkins, J.L.; Wannamathee, S.G. Sarcopenic obesity in ageing: cardiovascular outcomes and mortality. Br J Nutr. 2020, 124, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Mackenzie, T.A.; Jones, J.D.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity and inflammation: Results from the 1999-2004 National Health and Nutrition Examination Survey. Clin Nutr. 2016, 35, 1472–1483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bilski, J.; Pierzchalski, P.; Szczepanik, M.; Bonior, J.; Zoladz, J.A. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022, 11, 160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ko, B.J.; Chang, Y.; Jung, H.S.; Yun, K.E.; Kim, C.W.; Park, H.S.; Chung, E.C.; Shin, H.; Ryu, S. Relationship Between Low Relative Muscle Mass and Coronary Artery Calcification in Healthy Adults. Arterioscler Thromb Vasc Biol. 2016, 36, 1016–21. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.E.; Choi, M.S.; Park, S.W.; Kim, G.; Jin, S.M.; Kim, K.; Hwang, Y.C.; Ahn, K.J.; Chung, H.Y.; Jeong, I.K.; et al. Low Skeletal Muscle Mass Is Associated With the Presence, Incidence, and Progression of Coronary Artery Calcification. Can J Cardiol. 2021, 37, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas. 2017, 96, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, Z.A.; Kul, S.; Türkbeyler, İ.H.; Sayıner, Z.A.; Abiyev, A. Is increased neutrophil lymphocyte ratio remarking the inflammation in sarcopenia? Exp Gerontol. 2018, 110, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Açar, G.; Fidan, S.; Uslu, Z.A.; Turkday, S.; Avci, A.; Alizade, E.; Kalkan, M.E.; Tabakci, O.N.; Tanboğa, I.H.; Esen, A.M. Relationship of neutrophil-lymphocyte ratio with the presence, severity, and extent of coronary atherosclerosis detected by coronary computed tomography angiography. Angiology. 2015, 66, 174–9. [Google Scholar] [CrossRef] [PubMed]
- Adamstein, N.H.; MacFadyen, J.G.; Rose, L.M.; Glynn, R.J.; Dey, A.K.; Libby, P.; Tabas, I.A.; Mehta, N.N.; Ridker, P.M. The neutrophil-lymphocyte ratio and incident atherosclerotic events: analyses from five contemporary randomized trials. Eur Heart J. 2021, 42, 896–903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takenaka, Y.; Oya, R.; Takemoto, N.; Inohara, H. Predictive impact of sarcopenia in solid cancers treated with immune checkpoint inhibitors: a meta-analysis. J Cachexia Sarcopenia Muscle. 2021, 12, 1122–1135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abolhassani, A.R.; Schuler, G.; Kirchberger, M.C.; Heinzerling, L. C-reactive protein as an early marker of immune-related adverse events. J Cancer Res Clin Oncol. 2019, 145, 2625–2631. [Google Scholar] [CrossRef] [PubMed]
- Husain, B.; Kirchberger, M.C.; Erdmann, M.; Schüpferling, S.; Abolhassani, A.R.; Fröhlich, W.; Berking, C.; Heinzerling, L. Inflammatory markers in autoimmunity induced by checkpoint inhibitors. J Cancer Res Clin Oncol. 2021, 147, 1623–1630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, H.M.; Yang, X.; Centenera, M.M.; Huynh, K.; Giles, C.; Dehairs, J.; Swinnen, J.V.; Hoy, A.J.; Meikle, P.J.; Butler, L.M.; et al. Circulating Lipid Profiles Associated With Resistance to Androgen Deprivation Therapy in Localized Prostate Cancer. JCO Precis Oncol. 2024, 8, e2400260. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.; et al. American Heart Association Strategic Planning Task Force and Statistics Committee. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010, 121, 586–613.
- Miglietta, F.; Bottosso, M.; Griguolo, G.; Dieci, M.V.; Guarneri, V. Major advancements in metastatic breast cancer treatment: when expanding options means prolonging survival. ESMO Open. 2022 Apr;7(2):100409. [CrossRef] [PubMed]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N Engl J Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guida, J.L.; Ahles, T.A.; Belsky, D.; Campisi, J.; Cohen HJ, DeGregori, J. ; Fuldner, R.; Ferrucci, L.; Gallicchio, L.; Gavrilov, L.; et al. Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors. J Natl Cancer Inst. 2019, 111, 1245–1254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guida, J.L.; Agurs-Collins, T.; Ahles, T.A.; Campisi, J.; Dale, W.; Demark-Wahnefried, W.; Dietrich, J.; Fuldner, R.; Gallicchio, L.; Green, P.A.; et al. Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. J Natl Cancer Inst. 2021, 113, 112–122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hasbani, N.R.; Ligthart, S.; Brown, M.R.; Heath, A.S.; Bebo, A.; Ashley, K.E.; Boerwinkle, E.; Morrison, A.C.; Folsom, A.R.; Aguilar, D.; et al. American Heart Association's Life's Simple 7: Lifestyle Recommendations, Polygenic Risk, and Lifetime Risk of Coronary Heart Disease. Circulation. 2022, 145, 808–818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, G.; Li, Y.; Hu, Y.; Zong, G.; Li, S.; Rimm, E.B.; Hu, F.B.; Manson, J.E.; Rexrode, K.M.; Shin, H.J.; et al. Influence of Lifestyle on Incident Cardiovascular Disease and Mortality in Patients With Diabetes Mellitus. J Am Coll Cardiol. 2018, 71, 2867–2876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ricardo, A.C.; Anderson, C.A.; Yang, W.; Zhang, X.; Fischer, M.J.; Dember, L.M.; Fink, J.C. Frydrych, A.; Jensvold, N.G.; Lustigova, E.; et al. CRIC Study Investigators. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2015, 65, 412–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, H.M.; Moudgil, R.; Scarabelli, T.; Okwuosa, T.M.; Yeh, E.T.H. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: Part 1. J Am Coll Cardiol. 2017, 70, 2536–51.
- Cohen, J.B.; Brown, N.J.; Brown, S.A.; Dent, S.; van Dorst, D.C.H.; Herrmann, S.M.; Lang, N.N.; Oudit, G.Y.; Touyz, R.M. American Heart Association Council on Hypertension; Council on Arteriosclerosis, Thrombosis and Vascular Biology; and Council on the Kidney in Cardiovascular Disease. Cancer Therapy-Related Hypertension: A Scientific Statement From the American Heart Association. Hypertension. 2023, 80, e46–e57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butel-Simoes, L.E.; Haw, T.J.; Williams, T.; Sritharan, S.; Gadre, P.; Herrmann, S.M.; Herrmann, J.; Ngo, D.T. M, Sverdlov, A.L. Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. Hypertension 2023, 80, 685–710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okwuosa, T.M.; Morgans, A.; Rhee, J.W.; Reding, K.W.; Maliski, S.; Plana, J.C.; Volgman, A.S.; Moseley, K.F.; Porter, C.B.; Ismail-Khan, R. American Heart Association Cardio-Oncology Subcommittee of the Council on Clinical Cardiology and the Council on Genomic and Precision Medicine; Council on Arteriosclerosis, Thrombosis and Vascular Biology; and Council on Cardiovascular Radiology and Intervention. Impact of Hormonal Therapies for Treatment of Hormone-Dependent Cancers (Breast and Prostate) on the Cardiovascular System: Effects and Modifications: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2021, 14, e000082. [Google Scholar] [CrossRef] [PubMed]
- Rillamas-Sun, E.; Kwan, M.L.; Iribarren, C.; Cheng, R.; Neugebauer, R.; Rana, J.S.; Nguyen-Huynh, M.; Shi, Z.; Laurent, C.A.; Lee, V.S.; et al. Development of cardiometabolic risk factors following endocrine therapy in women with breast cancer. Breast Cancer Res Treat. 2023, 201, 117–126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, J.S.K.; Satti, D.I.; Lee, Y.H.A.; Hui, J.M.H.; Dee, E.C.; Ng, K.; Liu, K.; Tse, G.; Ng, C.F. ; Temporal trends in cardiovascular burden among patients with prostate cancer receiving androgen deprivation therapy: a population-based cohort study. Br J Cancer. 2023, 128, 2253–2260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaneko, H.; Yano, Y.; Lee, H.; Lee, H.H.; Okada, A.; Suzuki, Y.; Itoh, H.; Matsuoka, S.; Fujiu, K.; Michihata, N.; et al. Blood Pressure Classification Using the 2017 ACC/AHA Guideline and Heart Failure in Patients With Cancer. J Clin Oncol. 2023, 41, 980–990. [Google Scholar] [CrossRef] [PubMed]
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Després, J-P. ; et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: a scientific statement from the American Heart Association. Circulation. 2023, 148, 1636–1664. [Google Scholar] [CrossRef]
- Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Neeland, I.J.; Tuttle, K.R.; Khan, S.S.; Coresh, J.; Mathew, R.O.; Baker-Smith, C.M.; Carnethon, M.R.; et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation. 2023, 148, 1606–1635. [Google Scholar] [CrossRef]
- Shah, N.S.; Huang, X.; Petito, L.C. , Bancks, M.P.; Ning, H.; Cameron, N.A.; Kershaw, K.N.; Kandula, N.R.; Carnethon, M.R.; Lloyd-Jones, D.M.; et al. Social and psychosocial determinants of racial and ethnic differences in cardiovascular health in the United States population. Circulation. 2023, 147, 190–200. [Google Scholar] [CrossRef]
- Khan, S.S.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Grams, M.E.; Surapaneni, A.; Blaha, M.J.; Carson, A.P.; Chang, A.R.; Ciemins, E.; et al. Chronic Kidney Disease Prognosis Consortium and the American Heart Association Cardiovascular-Kidney-Metabolic Science Advisory Group. Development and Validation of the American Heart Association's PREVENT Equations. Circulation. 2024, 149, 430–449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014, 63, 2889–934, Epub 2013 Nov 12. Erratum in: J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):3024-3025. Erratum in: J Am Coll Cardiol. 2015 Dec 22;66(24):2812. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022, 43, 4229–4361, Erratum in: Eur Heart J. 2023, 44, 1621. 10.1093/eurheartj/ehad196. [Google Scholar] [CrossRef] [PubMed]
- Razavi, A.C.; Agatston, A.S.; Shaw, L.J.; De Cecco, C.N.; van Assen, M.; Sperling, L.S.; Bittencourt, M.S.; Daubert, M.A.; Nasir, K.; Blumenthal, R.S.; et al. Evolving Role of Calcium Density in Coronary Artery Calcium Scoring and Atherosclerotic Cardiovascular Disease Risk. JACC Cardiovasc. Imaging 2022, 15, 1648–1662. [Google Scholar] [CrossRef]
- Williams, K.J. Eradicating Atherosclerotic Events by Targeting Early Subclinical Disease: It Is Time to Retire the Therapeutic Paradigm of Too Much, Too Late. Arterioscler Thromb Vasc Biol. 2024, 44, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Wahome, E.; Tsiachristas, A.; Antonopoulos, A.S.; Patel, P.; Lyasheva, M.; Kingham, L.; West, H.; Oikonomou, E.K.; Volpe, L.; et al. ORFAN Consortium. Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study. Lancet. 2024, 403, 2606–2618. [Google Scholar] [CrossRef] [PubMed]
- Koenig, W.; Sund, M.; Fröhlich, M.; Fischer, H.G.; Löwel, H.; Döring, A.; Hutchinson, W.L.; Pepys, M.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984, 99, 237-42. [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M. Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009; 54: 2129-8.
- Braunwald, E. Creating controversy where none exists: the important role of C-reactive protein in the CARE, AFCAPS/TexCAPS, PROVE IT, REVERSAL, A to Z, JUPITER, HEART PROTECTION, and ASCOT trials. Eur Heart J. 2012, 33, 430–2. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. , Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005, 352, 20–8. [Google Scholar] [CrossRef] [PubMed]
- Morrow, D.A.; de Lemos, J.A.; Sabatine, M.S.; Wiviott, S.D.; Blazing, M.A.; Shui, A.; Rifai, N.; Califf, R.M.; Braunwald, E. Clinical relevance of C-reactive protein during follow-upof patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. Circulation 2006;114:281–288.
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M.Jr; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; Nordestgaard, B.G.; Shepherd, J.; Willerson, J.T.; Glynn, R.J. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359:2195–2207.
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M.Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; Macfadyen, J.G.; et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 2009;373:1175–1182.
- Xie, S.; Galimberti, F.; Olmastroni, E.; Luscher, T.F.; Carugo, S.; Catapano, A.L.; Casula, M.; META-LIPID Group. Effect of lipid-lowering therapies on C-reactive protein levels: a comprehensive meta-analysis of randomized controlled trials. Cardiovasc Res. 2024, 120, 333–344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ridker, P.M.; Lei, L.; Louie, M.J.; Haddad, T.; Nicholls, S.J.; Lincoff, A.M.; Libby, P.; Nissen, S.E.; CLEAR Outcomes Investigators. Inflammation and Cholesterol as Predictors of Cardiovascular Events Among 13 970 Contemporary High-Risk Patients With Statin Intolerance. Circulation. 2024, 149, 28–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marques-Vidal, P.; Jankowski, P.; Reiner, Ž.; De Bacquer, D. Kotseva, K. EUROASPIRE EUROASPIRE V collaborators. Dietary management of patients at high risk for cardiovascular disease; EUROASPIRE V. Clin Nutr ESPEN 2023, 55, 144–150.
- Sofi, F.; Dinu, M.; Pagliai, G.; Cesari, F.; Gori, A.M.; Sereni, A.; Becatti, M.; Fiorillo, C.; Marcucci, R.; Casini, A. Low-Calorie Vegetarian Versus Mediterranean Diets for Reducing Body Weight and Improving Cardiovascular Risk Profile: CARDIVEG Study (Cardiovascular Prevention With Vegetarian Diet). Circulation. 2018, 137, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Kroeger, C.M.; Cassidy, S.; Mitra, S.; Ribeiro, R.V.; Jose, S.; Masedunskas, A.; Senior, A.M.; Fontana, L. Vegetarian Dietary Patterns and Cardiometabolic Risk in People With or at High Risk of Cardiovascular Disease: A Systematic Review and Meta-analysis. JAMA Netw Open. 2023, 6, e2325658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lari, A.; Sohouli, M.H.; Fatahi, S.; Cerqueira, H.S.; Santos, H.O.; Pourrajab, B.; Rezaei, M.; Saneie, S.; Rahideh, S.T. The effects of the Dietary Approaches to Stop Hypertension (DASH) diet on metabolic risk factors in patients with chronic disease: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2021, 31, 2766–2778. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: an umbrella review of metaanalyses of observational studies and randomized trials. Eur J Clin Nutr 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Yannakoulia, M.; Scarmeas, N. Diets. N Engl J Med. 2024, 390, 2098–2106. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: active ingredients and pharmacological mechanisms. Br J Pharmacol 2020; 177: 1241-57.
- Ahmad, S.; Moorthy, M.V.; Lee, I.M.; Ridker, P.M.; Manson, J.E.; Buring, J.E.; Demler, O.V.; Mora, S. Mediterranean Diet Adherence and Risk of All-Cause Mortality in Women. JAMA Netw Open. 2024, 7, e2414322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delgado-Lista, J.; Alcala-Diaz, J.F.; Torres-Peña, J.D.; Quintana-Navarro, G.M.; Fuentes, F.; Garcia-Rios, A.; Ortiz-Morales, A.M.; Gonzalez-Requero, A.I.; Perez-Caballero, A.I.; Yubero-Serrano, E.M.; et al. CORDIOPREV Investigators. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet. 2022, 399, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Torres, J.; Alcalá-Diaz, J.F.; Torres-Peña, J.D.; Gutierrez-Mariscal, F.M.; Leon-Acuña, A.; Gómez-Luna, P.; Fernández-Gandara, C.; Quintana-Navarro, G.M.; Fernandez-Garcia, J.C.; Perez-Martinez, P.; et al. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. Stroke. 2021, 52, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Podadera-Herreros, A.; Arenas-de Larriva, A.P.; Gutierrez-Mariscal, F.M.; Alcala-Diaz, J.F.; Ojeda-Rodriguez, A.; Rodriguez-Cantalejo, F.; Cardelo, M.P.; Rodriguez-Cano, D.; Torres-Peña, J.D.; Luque, R.M.; et al. Mediterranean diet as a strategy for preserving kidney function in patients with coronary heart disease with type 2 diabetes and obesity: a secondary analysis of CORDIOPREV randomized controlled trial. Nutr Diabetes. 2024, 14, 27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chlebowski, R.T.; Aragaki, A.K.; Anderson, G.L.; Simon, M.S.; Manson, J.E.; Neuhouser, M.L.; Pan, K.; Stefanic, M.L.; Rohan, T.E.; Lane, D.; et al. Association of Low-Fat Dietary Pattern With Breast Cancer Overall Survival: A Secondary Analysis of the Women's Health Initiative Randomized Clinical Trial. JAMA Oncol. 2018, 4, e181212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.B.; Arós, F.; et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Esposito, S.; De Curtis, A.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; et al. Moli-sani Study Investigators. Olive oil consumption is associated with lower cancer, cardiovascular and all-cause mortality among Italian adults: prospective results from the Moli-sani Study and analysis of potential biological mechanisms. Eur J Clin Nutr. 2024, 78, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, N.P.; Parmenter, B.H.; Murray, K.; Bondonno, C.P.; Blekkenhorst, L.C.; Wood, A.C.; Post, W.S.; Allison, M.; Criqui, M.H.; Lewis, J.R.; et al. Associations Between Flavonoid Intake and Subclinical Atherosclerosis: The MESA. Arterioscler Thromb Vasc Biol. 2024, Epub ahead of print. [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: umbrella review of epidemiological meta-analyses. BMJ. 2024, 384, e077310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Samuthpongtorn, C.; Nguyen, L.H.; Okereke, O.I.; Wang, D.D.; Song, M.; Chan, A.T.; Mehta, R.S. Consumption of Ultraprocessed Food and Risk of Depression. JAMA Netw Open. 2023, 6, e2334770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Isaksen, I.M.; Dankel, S.N. Ultra-processed food consumption and cancer risk: A systematic review and meta-analysis. Clin Nutr. 2023, 42, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Khoury, N.; Martínez, M.Á.; Garcidueñas-Fimbres, T.E.; Pastor-Villaescusa, B.; Leis, R.; de Las Heras-Delgado, S.; Miguel-Berges, M.L.; Navas-Carretero, S.; Portoles, O.; Pérez-Vega, K.A.; et al. Ultraprocessed Food Consumption and Cardiometabolic Risk Factors in Children. JAMA Netw Open. 2024, 7, e2411852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Hillman, E.T.; Lu, H.; Yao, T.; Nakatsu, C.H. . Microbial Ecology along the Gastrointestinal Tract. Microbes Environ. 2017, 32, 300–313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martins, D.; Silva, C.; Ferreira, A.C.; Dourado, S.; Albuquerque, A.; Saraiva, F.; Batista, A.B.; Castro, P.; Leite-Moreira, A.; Barros, A.S.; et al. Unravelling the Gut Microbiome Role in Cardiovascular Disease: A Systematic Review and a Meta-Analysis. Biomolecules. 2024, 14, 731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, W.H.W.; Hazen, S.L. Unraveling the Complex Relationship Between Gut Microbiome and Cardiovascular Diseases. Circulation. 2024, 149, 1543–1545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Wit, D.F.; Hanssen, N.M.; Wortelboer, K.; Herrema, H.; Rampanelli, E.; Nieuwdorp, M. (2023). Evidence for the contribution of the gut microbiome to obesity and its reversal. Science Translational Medicine, 2023, 15, eadg2773. [Google Scholar] [CrossRef] [PubMed]
- Byndloss, M.; Devkota, S.; Duca, F.; Niess, J.H.; Nieuwdorp, M.; Orho-Melander, M.; Sanz, Y.; Tremaroli, V.; Zhao, L. The gut microbiota and diabetes: research, translation, and clinical applications 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia. 2024, Epub ahead of print. [CrossRef] [PubMed]
- Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017, 8, 845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, K.A.; Luong, M.K.; Shaw, H.; Nathan, P.; Bataille, V.; Spector, T.D. The gut microbiome: what the oncologist ought to know. Br J Cancer. 2021, 125, 1197–1209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zecheng, L.; Donghai, L.; Runchuan, G.; Yuan, Q.; Qi, J.; Yijia, Z.; Shuaman, R.; Xiaoqi, L.; Yi, W.; Ni, M.; et al. Fecal microbiota transplantation in obesity metabolism: A meta analysis and systematic review. Diabetes Res Clin Pract. 2023, 202, 110803. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Xu, Z.; Mak, J.W.Y.; Yang, K.; Liu, Q.; Zuo, T.; Tang, W.; Lau, L.; Lui, R.N.; Wong, S.H.; et al. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut. 2022, 71, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013, 368, 1575–1584. [Google Scholar]
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. ; Gut Microbiota and Cardiovascular Disease. Circ Res. 2020, 127, 553–570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.; Shah, K. The Potential of the Gut Microbiome to Reshape the Cancer Therapy Paradigm: A Review. JAMA Oncol. 2022, 8, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.L.; Larkinson, M.L.Y.; Clarke, T.B. Immunological design of commensal communities to treat intestinal infection and inflammation. PLoS Pathog. 2021, 17, e1009191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350(6261):663-666. [CrossRef]
- Sun, J.; Chen, F.; & Wu, G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. The ISME Journal, 2023, 17, 1535-1551. [CrossRef] [PubMed]
- Molly (Menglin) Luo.
- Qin, Y.; Tong, X.; Mei, W.J.; Cheng, Y.; Zou, Y.; Han, K. , Yu J; Jie Z; Zhang T, Zhu S. Consistent signatures in the human gut microbiome of old-and young-onset colorectal cancer. Nature Communications, 2024, 15, 3396. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, Z.; Coker, O.O.; Nakatsu, G.; Wu, W. K K.; Zhao, L.; Chen, Z.; Chan FKL, Kristiansen K, Sung JJY, Wong SH, et al.. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018, 6, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujii, T.; Kuzuya, T.; Kondo, N.; Funasaka, K.; Ohno, E.; Hirooka, Y.; Tochio, T. Altered intestinal Streptococcus anginosus and 5α-reductase gene levels in patients with hepatocellular carcinoma and elevated Bacteroides stercoris in atezolizumab/bevacizumab non-responders. J Med Microbiol. 2024, 73. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Cheng, S.; Kou, Y.; Wang, Z.; Jin, R.; Hu, H.; Zhang, X.; Gong, J.F.; Li, J.; Lu, M.; et al. The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunol Res. 2020, 8, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.; Yadav, M.; Liu, B.; Furqan, M.; Dai, Q.; Shahi, S.; Gupta, A.; Mercer, K.N.; Eastman, E.; Hejleh, T.A.; et al. Prospective correlation between the patient microbiome with response to and development of immune-mediated adverse effects to immunotherapy in lung cancer. BMC Cancer. 2021, 21, 808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitman, I.R.; Agarwal, V.; Nah, G.; Dukes, J.W.; Vittinghoff, E.; Dewland, T.A.; Marcus, G.M. Alcohol Abuse and Cardiac Disease. J Am Coll Cardiol. 2017, 69, 13–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biddinger, K.J.; Emdin, C.A.; Haas, M.E.; Wang, M.; Hindy, G.; Ellinor, P.T.; Kathiresan, S.; Khera, A.V.; Aragam, K.G. Association of Habitual Alcohol Intake With Risk of Cardiovascular Disease. JAMA Netw Open. 2022, 5, e223849. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, J.; Stockwell, T.; Naimi, T.; Churchill, S.; Clay, J.; Sherk, A. Association between daily alcohol intake and risk of all-cause mortality: a systematic review and meta-analyses. JAMA Network Open, 2023;6(3), e236185-e236185.
- Thelle, D.S.; Grønbæk, M. Alcohol - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2024 Apr 1;68. [CrossRef] [PubMed]
- Krittanawong, C.; Isath, A.; Rosenson, R.S.; Khawaja, M.; Wang, Z.; Fogg, S.E.; Virani, S.S.; Qi, L.; Cao, Y.; Long, M.T.; et al. Alcohol Consumption and Cardiovascular Health. Am J Med. 2022, 135, 1213–1230e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schutte, R.; Smith, L.; Wannamethee, G. Alcohol–The myth of cardiovascular protection. Clinical Nutrition, 2022, 41, 348–355. [Google Scholar] [CrossRef]
- Koelwyn, G.J.; Quail, D.F.; Zhang, X.; White, R.M.; Jones, L.W. Exercise dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017, 17, 620. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Anderson, C.; Lippman, S.M. Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol. 2017, 18, e457–71. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gomar F, Lavie CJ, Marín J, Perez-Quilis C, Eijsvogels TMH, O'Keefe JH, Perez MV, Blair SN. Exercise effects on cardiovascular disease: from basic aspects to clinical evidence. Cardiovasc Res. 2022, 118, 2253–2266. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.A.; Hargreaves, M.; Joyner, M.J.; and Zierath, J.R. Integrative biology of exercise. Cell 2014;159, 738–749.
- Rodgman, A.; Smith, C.J.; Perfetti, T.A. The composition of cigarette smoke: a retrospective, with emphasis on polycyclic components. Hum Exp Toxicol 2000;19:573-95.
- Hecht, S.S. Lung carcinogenesis by tobacco smoke. Int. J. Cancer 2012, 131, 2724–2732 . [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2014.
- Morris, P.B.; Ference, B.A.; Jahangir, E.; Feldman, D.N.; Ryan, J.J.; Bahrami, H.; El-Chami, M.F.; Bhakta, S.; Winchester, D.E.; Al-Mallah, M.H.; et al. Cardiovascular Effects of Exposure to Cigarette Smoke and Electronic Cigarettes: Clinical Perspectives From the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J Am Coll Cardiol. 2015, 66, 1378–91. [Google Scholar] [CrossRef] [PubMed]
- Campagna, D.; Alamo, A.; Di Pino, A.; Russo, C.; Calogero, A.E.; Purrello, F.; Polosa, R. Smoking and diabetes: dangerous liaisons and confusing relationships. Diabetol Metab Syndr. 2019, 15, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- U.S. Department of Health, Education, and Welfare. Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington: U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control; 1964. PHS Publication No. 1103.
- Gandini, S.; Botteri, E.; Iodice, S.; Boniol, M.; Lowenfels, A.B.; Maisonneuve, P.; Boyle, P. Tobacco smoking and cancer: a meta-analysis. Int J Cancer. 2008;122:155–164. [CrossRef]
- Cumberbatch, M.G.; Rota, M.; Catto, J.W.; La Vecchia, C. The Role of Tobacco Smoke in Bladder and Kidney Carcinogenesis: A Comparison of Exposures and Meta-analysis of Incidence and Mortality Risks. Eur. Urol. 2016, 70, 458–466. [Google Scholar] [CrossRef]
- Alouini, S. Risk Factors Associated with Urothelial Bladder Cancer. Int J Environ Res Public Health. 2024, 21, 954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Islami, F.; Moreira, D.M.; Boffetta, P.; Freedland, S.J. A systematic review and meta-analysis of tobacco use and prostate cancer mortality and incidence in prospective cohort studies. Eur Urol. 2014, 66, 1054–1064. [Google Scholar] [CrossRef]
- Dalstra, J.A.; Kunst, A.E.; Borrell, C.; Breeze, E.; Cambois, E.; Costa, G.; Geurts, J.J. ;, Lahelma E, Van Oyen H, Rasmussen NK, et al. . Socioeconomic differences in the prevalence of common chronic diseases: an overview of eight European countries. Int J Epidemiol. 2005, 34, 316–26. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Batty, G.D.; Pentti, J.; Shipley, M.J.; Sipilä, P.N.; Nyberg, S.T.; Suominen, S.B.; Oksanen, T.; Stenholm, S.; Virtanen, M.; et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public Health. 2020, 5, e140–e149. [Google Scholar] [CrossRef] [PubMed]
- Coleman-Jensen, A. ; Rabbit. M.P.; Gregory, C.A.; Singh, A.; Household Food Insecurity in the United States in 2019, ERR-275.U.S. Department of Agriculture Economic Research Service.
- Palakshappa, D.; Ip, E.H.; Berkowitz, S.A.; Bertoni, A.G.; Foley, K.L.; Miller, D.P. Jr; Vitolins, M.Z.; Rosenthal, G.E. Pathways by Which Food Insecurity Is Associated With Atherosclerotic Cardiovascular Disease Risk. J Am Heart Assoc. 2021, 10, e021901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tawakol, A.; Osborne, M.T.; Wang, Y.; Hammed, B.; Tung, B.; Patrich, T.; Oberfeld, B.; Ishai, A.; Shin, L.M.; Nahrendorf, M.; et al. Stress-Associated Neurobiological Pathway Linking Socioeconomic Disparities to Cardiovascular Disease. J Am Coll Cardiol. 2019, 73, 3243–3255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Civieri G, Abohashem S, Grewal SS, Aldosoky W, Qamar I, Hanlon E, Choi KW, Shin LM, Rosovsky RP, Bollepalli SC, et al. Anxiety and Depression Associated With Increased Cardiovascular Disease Risk Through Accelerated Development of Risk Factors. JACC Adv. 2024, 3, 101208. [CrossRef] [PubMed] [PubMed Central]
- Rico-Uribe, L. A.; Caballero, F. F.; Martín-María, N.; Cabello, M.; Ayuso-Mateos, J.L.; Miret, M. Association of loneliness with all-cause mortality: A meta-analysis. PloS one, 2018, 13, e0190033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, M. H.; Eres, R.; Vasan, S. Understanding loneliness in the twenty-first century: An update on correlates, risk factors, and potential solutions. Soc. Psychiatry. Psychiatr. Epidemiol 2020, 55, 793–810. [Google Scholar] [CrossRef] [PubMed]
- Vasan S, Lim MH, Eikelis N, Lambert E. Investigating the relationship between early cardiovascular disease markers and loneliness in young adults. Sci Rep. 2024, 14, 14221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.H.; Li, J.Q.; Shi, J.F.; Que, J.Y.; Liu, J.J.; Lappin, J.M.; Leung, J.; Ravindran, A.V.; Chen, W.Q.; Qiao, YL.; et al. Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies. Mol Psychiatry. 2020, 25, 1487–1499. [Google Scholar] [CrossRef] [PubMed]
- Carlson, L.E.; Zelinski, E.L.; Toivonen, K.I.; Sundstrom, L.; Jobin, C.T.; Damaskos, P.; Zebrack, B. Prevalence of psychosocial distress in cancer patients across 55 North American cancer centers. J Psychosoc Oncol. 2019, 37, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, A.; Hartung, T.J.; Friedrich, M.; Vehling, S.; Brähler, E.; Härter. M.; Keller, M.; Schulz, H.; Wegscheider, K.; Weis, J.; et al. One in two cancer patients is significantly distressed: Prevalence and indicators of distress. Psychooncology. 2018, 27, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Hurria, A.; Somlo, G.; Ahles, T. Renaming "chemobrain". Cancer Invest. 2007, 25, 373–7. [Google Scholar] [CrossRef] [PubMed]
- Boehm, J.K.; Soo, J.; Chen, Y.; Zevon, E.S.; Hernandez, R.; Lloyd-Jones, D.; Kubzansky, L.D. Psychological well-being’s link with cardiovascular health in older adults. Am J Prev Med. 2017;53:791–798. [CrossRef]
- Ogunmoroti, O.; Osibogun, O.; Spatz, E.S.; Okunrintemi, V.; Mathews, L.; Ndumele, C.E.; Michos, E.D. A systematic review of the bidirectional relationship between depressive symptoms and cardiovascular health. Prev Med.2022;154:106891.
- Khan, S.A.; Shahzad, U.; Zarak, M. S.; Channa, J.; Khan, I.; & Ghani, M.O. A. Association of depression with subclinical coronary atherosclerosis: a systematic review. Journal of cardiovascular translational research, 2021;14: 685-705.
- Balboni, T.A.; VanderWeele, T.J.; Doan-Soares, S.D.; Long, K.N.G.; Ferrell, B.R.; Fitchett, G.; Koenig, H.G.; Bain, P.A.; Puchalski, C.; Steinhauser, K.E.; et al. Spirituality in Serious Illness and Health. JAMA. 2022, 328, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Chinnaiyan, K.M.; Revankar, R.; Shapiro, M.D.; Kalra, A. Heart, mind, and soul: spirituality in cardiovascular medicine. Eur Heart J. 2021, 42, 2965–2968. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T. E.; Dubin, L. F.; Seeman, M. Religiosity/spirituality and health: A critical review of the evidence for biological pathways. American psychologist, 2003;58(1), 53.
- Adler, N.E.; Page AEK (eds) Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. Washington DC: National Academies Press, 2008.
- Mira, R.; Newton, T.; Sabbah, W. Socioeconomic and ethnic inequalities in the progress of multimorbidity and the role of health behaviors. Journal of the American Medical Directors Association, 2023;24(6), 811-815.
- Luo, H.; Zhang, Q.; Yu, K.; Meng, X.; Kan, H.; Chen, R. Long-term exposure to ambient air pollution is a risk factor for trajectory of cardiometabolic multimorbidity: a prospective study in the UK Biobank. EBioMedicine, 2022;84:104282. [CrossRef] [PubMed]
- Münzel, T.; Sørensen, M.; Daiber, A. Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol. 2021, 18, 619–636. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zijlema, W.L.; Sørgjerd, E.P.; Doiron, D.; de Hoogh, K.; Hodgson, S.; Wolffenbuttel, B.; Gulliver, J.; Hansell, A.L.; Nieuwenhuijsen, M.; et al. Impact of road traffic noise on obesity measures: Observational study of three European cohorts. Environ Res. 2020 Dec;191:110013. [CrossRef] [PubMed]
- Letellier, N.; Yang, J.A.; Cavaillès, C.; Casey, J.A.; Carrasco-Escobar, G.; Zamora, S.; Jankowska, M.M.; Benmarhnia, T. Aircraft and road traffic noise, insulin resistance, and diabetes: The role of neighborhood socioeconomic status in San Diego County. Environ Pollut. 2023 Oct 15;335:122277. [CrossRef] [PubMed]
- Abbasi, M.; Yazdanirad, S.; Dehdarirad, H.; Hughes, D. Noise exposure and the risk of cancer: a comprehensive systematic review. Rev Environ Health. 2022, 38, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A. 3rd; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. 3rd; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin. 2020, 25, 103322/caac21632, Epub ahead of print. [Google Scholar] [PubMed] [PubMed Central]
- Kim, D.W.; Ock, J.; Moon, K.W.; Park, C.H. Association between heavy metal exposure and dyslipidemia among Korean Adults: from the Korean National Environmental Health Survey, 2015-2017. Int J Environ Res Public Health. 2022, 19, 3181. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, Crowe T, Howard G, Cooper CJ, Brodie B, et al. REVERSAL Investigators. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004, 291, 1071–80. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Nicholls, S.J.; Sipahi, I.; Libby, P.; Raichlen, J.S.; Ballantyne, C.M.; Davignon, J.; Erbel, R.; Fruchart, J.C.; Tardif, J.C.; et al. ASTEROID Investigators. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006, 295, 1556–65. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Hiro, T.; Yamagishi, M.; Daida, H.; Hirayama, A.; Saito, S.; Yamaguchi, T.; Matsuzaki, M.; COSMOS Investigators. Effect of rosuvastatin on coronary atheroma in stable coronary artery disease: multicenter coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS). Circ J. 2009, 73, 2110–7. [Google Scholar] [CrossRef] [PubMed]
- Hiro, T.; Kimura, T.; Morimoto, T.; Miyauchi, K.; Nakagawa, Y.; Yamagishi, M.; Ozaki, Y.; Kimura, K.; Saito, S.; Yamaguchi, T.; et al. JAPAN-ACS Investigators. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J Am Coll Cardiol. 2009, 54, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.M.; Libby, P.; Raichlen, J.S.; Uno, K.; Borgma, M.; Wolski, K.; et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011, 365, 2078–87. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, R.; Yang, Z.; Li, K.; Wang, Q. Effects of atorvastatin on serum lipids, serum inflammation and plaque morphology in patients with stable atherosclerotic plaques. Exp Ther Med. 2012, 4, 1069–1074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kini, AS, Baber, U. ; Kovacic, J.C.; Limaye,A.; Ali, Z.A.; Sweeny,J.; Maehara. A.; Mehran, R.; Dangas, G.; Mintz, G.S.; et al. Changes in plaque lipid content after short-term int.ensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressi.;e lipid-lowering therapy). J Am Coll Cardiol. 2013, 62, 21–9. [CrossRef] [PubMed]
- Räber, L.; Taniwaki, M.; Zaugg, S.; Kelbæk, H.; Roffi, M.; Holmvang, L.; Noble. S.; Pedrazzini, G.; Moschovitis.A.; Lüscher, T.F.; et al. IBIS 4 (Integrated Biomarkers and Imaging Study-4) Trial Investigators (NCT00962416). Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur Heart J. 2015, 36, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Räber, L.; Koskinas, K.C.; Yamaji, K.; Taniwaki, M.; Roffi, M; Holmvan,g. ; Garcia, Garcia. H.M.; Zanchin, T.; Maldonado, R.; Moschovitis, A, Pedrazzini, G.; et al. Changes in Coronary Plaque Composition in Patients With Acute Myocardial Infarction Treated With High-Intensity Statin Therapy (IBIS-4): A Serial Optical Coherence Tomography Study. JACC Cardiovasc Imaging. 2019, 12, 1518–1528. [Google Scholar] [CrossRef] [PubMed]
- Tsujita, K.; Sugiyama, S.; Sumida, H.; Shimomura, H.; Yamashita, T.; Yamanaga, K, Komura, N. ; Sakamoto, K,. Oka, H.; Nakao, K.; et al. PRECISE–IVUS Investigators. Impact of Dual Lipid-Lowering Strategy With Ezetimibe and Atorvastatin on Coronary Plaque Regression in Patients With Percutaneous Coronary Intervention: The Multicenter Randomized Controlled PRECISE-IVUS Trial. J Am Coll Cardiol. 2015, 66, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kang, S.J.; Ahn, J.M.; Chang, M.; Yun, S.C.; Roh, J.H.; Lee, P.H.; Park, H.W.; Yoon, S.H.; Park, D.W.; et al. Effect of Statin Treatment on Modifying Plaque Composition: A Double-Blind, Randomized Study. J Am Coll Cardiol. 2016, 67, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Park, S.K.; Park, T.S.; Kim, J.H.; Yun, E.; Kim, S.P.; Lee, H.W.; Oh, J.H.; Choi, J.H.; Cha, K.S.; et al. Effect of n-3 Polyunsaturated Fatty Acids on Regression of Coronary Atherosclerosis in Statin Treated Patients Undergoing Percutaneous Coronary Intervention. Korean Circ J. 2016, 46, 481–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA. 2016, 316, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Alfaddagh, A.; Elajami, T.K.; Ashfaque, H.; Saleh, M.; Bistrian, B.R.; Welty, FK. Effect of Eicosapentaenoic and Docosahexaenoic Acids Added to Statin Therapy on Coronary Artery Plaque in Patients With Coronary Artery Disease: A Randomized Clinical Trial. J Am Heart Assoc. 2017, 6, e006981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishiguchi, T.; Kubo, T.; Tanimoto, T.; Ino, Y.; Matsuo, Y.; Yamano, T.; Terada, K.; Emori, H.; Katayama, Y.; Taruya, A.; et al. Effect of Early Pitavastatin Therapy on Coronary Fibrous-Cap Thickness Assessed by Optical Coherence Tomography in Patients With Acute Coronary Syndrome: The ESCORT Study. JACC Cardiovasc Imaging. 2018, 11, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Chang, H.J.; Sung, J.M.; Park, H.B.; Heo, R.; Rizvi, A.; Lin, F.Y.; Kumar, A.; Hadamitzky, M.; Kim, Y.J.; et al. Effects of Statins on Coronary Atherosclerotic Plaques: The PARADIGM Study. JACC Cardiovasc Imaging. 2018, 11, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Ako, J.; Hibi, K.; Tsujita, K.; Hiro, T.; Morino, Y.; Kozuma, K.; Shinke, T.; Otake, H.; Uno, K.; Louie, M.J.; et al. Effect of Alirocumab on Coronary Atheroma Volume in Japanese Patients With Acute Coronary Syndrome - The ODYSSEY J-IVUS Trial. Circ J. 2019, 83, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Bhatt, D.L.; Kinninger, A.; Lakshmanan, S.; Muhlestein, J.B.; Le, V.T.; May, H.T.; Shaikh, K.; Shekar, C.; Roy, S.K.; et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J. 2020, 41, 3925–3932. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nicholls, S.J.; Kataoka, Y.; Nissen, S.E.; Prati, F.; Windecker, S.; Puri, R.; Hucko, T.; Aradi, D.; Herrman, J.R.; Hermanides, R.S.; et al. Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC Cardiovasc Imaging. 2022, 15, 1308–1321. [Google Scholar] [CrossRef] [PubMed]
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.J.; Ondracek, A.S.; et al. PACMAN-AMI collaborators. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA. 2022, 327, 1771–1781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakano, Y.; Yamamoto, M.; Matoba, T.; Katsuki, S.; Nakashiro, S.; Takase, S.; Akiyama, Y.; Nagata, T.; Mukai, Y.; Inoue, S.; et al. Association between Serum Oxysterols and Coronary Plaque Regression during Lipid-Lowering Therapy with Statin and Ezetimibe: Insights from the CuVIC Trial. J Atheroscler Thromb. 2023, 30, 907–918. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rivera, F.B.; Cha, S.W.; Varona, M.C.; Fernandez, Co. E.M.; Magalong, J.V.; Aparece, J.P.; De Oliveira-Gomes, D.; Kaur, G.; Gulati, M. Atherosclerotic coronary plaque regression from lipid-lowering therapies: A meta-analysis and meta-regression. Am J Prev Cardiol. 2024, 18, 100645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Costanzo, A.; Indolfi, C.; Sorrentino, S.; Esposito, G.; Spaccarotella, C.A.M. The Effects of Statins, Ezetimibe, PCSK9-Inhibitors, Inclisiran, and Icosapent Ethyl on Platelet Function. Int. J. Mol. Sci. 2023, 24, 11739. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G.; Hawley, S.A.; Scott, J.W. AMP-activated protein kinase–development of the energy sensor concept. J Physiol 2006;574(1):7–15.
- Triggle, C.R.; Mohammed, I.; Bshesh, K.; Marei, I.; Ye, K.; Ding, H.; MacDonald, R.; Hollenberg, M.D.; Hill, M.A. . Metformin: Is it a drug for all reasons and diseases? Metabolism. 2022, 133, 155223. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic eff8cts through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000, 348, 607–14. [Google Scholar] [CrossRef] [PubMed]
- Madiraju, A.K.; Qiu, Y.; Perry, R.J.; Rahimi, Y.; Zhang, X.M.; Zhang, D.; Camporez, J.G.; Cline, G.W.; Butrico, G.M.; Kemp, B.E.; et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018, 24, 1384–1394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr Rev 2021, 42, 77–96. [Google Scholar] [CrossRef]
- Holm Nielsen, S.; Jonasson, L.; Kalogeropoulos, K.; Karsdal, M.A.; Reese-Petersen, A.L.; Auf dem Keller, U.; Genovese, F.; Nilsson, J.; Goncalves, I. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. J. Intern. Med. 2020, 287, 493–513. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Xu, W.; Zhao, M.; Zhang, Y.; Xiao, H. Metformin Directly Binds to MMP-9 to Improve Plaque Stability. J Cardiovasc Dev Dis. 2023, 10, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kataoka, Y.; Nicholls, S.J.; Andrews, J.; Uno, K.; Kapadia, S.R.; Tuzcu, E.M.; Nissen, S.E.; Puri, R. Plaque microstructures during metformin therapy in type 2 diabetic subjects with coronary artery disease: optical coherence tomography analysis. Cardiovasc Diagn Ther. 2022, 12, 77–87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, J.; Xu, H.; Wu, F.; Tu, Q.; Dong, X.; Xie, H.; Cao, Z. Empagliflozin inhibits macrophage inflammation through AMPK signaling pathway and plays an anti-atherosclerosis role. Int J Cardiol. 2022, 367, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Jandeleit-Dahm, K.; Peter, K. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes-Induced Atherosclerotic Plaque Instability. J Am Heart Assoc. 2022, 11, e022761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sardu, C.; Trotta, M.C.; Sasso, F.C.; Sacra, C.; Carpinella, G.; Mauro, C.; Minicucci, F.; Calabrò, P, D' Amico, M. ; D' Ascenzo, F.; et al. SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc Diabetol. 2023, 22, 80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurozumi, A.; Shishido, K.; Yamashita, T.; Sato, D.; Uchida, S.; Koyama, E.; Tamaki, Y.; Hayashi, T.; Miyashita, H.; Yokoyama, H.; et al. Sodium-Glucose Cotransporter-2 Inhibitors Stabilize Coronary Plaques in Acute Coronary Syndrome With Diabetes Mellitus. Am J Cardiol. 2024, 214, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Mita, T.; Maeda, N.; Sato, Y.; Watada, H.; Shimomura, I. UTOPIA Study Investigators. Evaluation of the effect of tofogliflozin on the tissue characteristics of the carotid wall-a sub-analysis of the UTOPIA trial. Cardiovasc Diabetol. 2022, 21, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reiner, Z. Managing the residual cardiovascular disease risk associated with LDL-cholesterol and triglycerides in statin-treated patients: a clinical update. Nutr Metab Cardiovasc Dis 2013;23:799-807.
- Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–89.
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; et al. Cholesterol Treatment Trialists' (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005, 366, 1267–78, Erratum in: Lancet. 2005 Oct 15-21;366(9494):1358. Erratum in: Lancet. 2008 Jun 21;371(9630):2084. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Treatment Trialists Collaboration, Baigent, C. ; Blackwell, L.; Emberson, J., Holland, L.E., Reith, C., Bhala, N., Peto, R., Barnes, E.H., Keech, A., Simes, J., Eds.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a metaanalysis of data from 170, 000 participants in 26 randomised trials. Lancet 2010. [Google Scholar]
- Ford, I.; Murray, H.; McCowan, C.; Packard, C.J.; Long-term safety and efficacy of lowering low-density lipoprotein cholesterol with statin therapy: 20-year follow-up of West of Scotland Coronary Prevention Study. Circulation 2016;133:1073-1080.
- Cholesterol Treatment Trialists C. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet 2019;393:407-415.
- Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. . Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res. 2021, 40, 241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buccioli, G.; Testa, C.; Jacchetti, E.; Pinoli, P.; Carelli, S.; Ceri, S.; Raimondi, M.T. The molecular basis of the anticancer effect of statins. Sci Rep. 2024, 14, 20298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kansal, V.; Burnham, A.J.; Kinney, B.L.C.; Saba, N.F.; Paulos, C.; Lesinski, G.B.; Buchwald, Z.S.; Schmitt, N.C. . Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models. J Immunother Cancer. 2023, 11, e005940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vos, W.G.; Lutgens, E.; Seijkens, T.T.P. Statins and immune checkpoint inhibitors: a strategy to improve the efficacy of immunotherapy for cancer? Journal for ImmunoTherapy of Cancer 2022, 10, e005611. [Google Scholar] [CrossRef]
- Nam, G.H.; Kwon, M.; Jung, H.; Ko, E.; Kim, S.A.; Choi, Y.; Song, S.J.; Kim, S.; Lee, Y.; Kim, G.B.; et al. Statin-mediated inhibition of RAS prenylation activates ER stress to enhance the immunogenicity of KRAS mutant cancer. J Immunother Cancer. 2021, 9, e002474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pandor, A.; Ara, R.M.; Tumur, I.; Wilkinson, A.J. , Paisley, S.; Duenas, A.; Durrington, P.N.; Chilcott, J. Ezetimibe monotherapy for cholesterol lowering in 2,722 people:systematic review and meta-analysis of randomized controlled trials. J Intern Med 2009, 265, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Morrone, D.; Weintraub, W.S.; Toth, P.P.; Hanson, M.E.; Lowe, R.S.; Lin, J.; Shah, A.K.; Tershakovec, A.M. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: a pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis 2012, 223, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al.; IMPROVE-IT Investigators Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
- Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.P.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. CLEAR Outcomes Investigators. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N Engl J Med. 2023, 388, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al.; ESC Scientific Document Group 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Steering Committee and Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- O'Donoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.; Kuder, J.F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; et al. Long-Term Evolocumab in Patients With Established Atherosclerotic Cardiovascular Disease. Circulation. 2022, 146, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.D. Prolonged and Pronounced Low-Density Lipoprotein Cholesterol Lowering: The Gift That Keeps Giving. Circulation. 2022, 146, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.S.; Ray, K.K.; Raal, F.J.; Kallend, D.G.; Jaros, M.; Koenig, W.; Leiter, L.A.; Landmesser, U.; Schwartz, G.G.; Friedman, A.; et al. ORION Phase III Investigators. Pooled Patient-Level Analysis of Inclisiran Trials in Patients With Familial Hypercholesterolemia or Atherosclerosis. J Am Coll Cardiol. 2021, 77, 1182–1193. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Troquay, R.P.T.; Visseren, F.L.J.; Leiter, L.A.; Scott Wright, R.; Vikarunnessa, S.; Talloczy, Z.; Zang, X.; Maheux, P.; Lesogor, A.; et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes Endocrinol. 2023, 11, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, A.D.; Liu, M.; Toth, P.P.; Zhao, S.; Agrawal, D.K.; Libby, P.; Chatzizisis, Y.S. Pleiotropic Anti-atherosclerotic Effects of PCSK9 InhibitorsFrom Molecular Biology to Clinical Translation. Curr Atheroscler Rep. 2018, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Nowak, C.; Ärnlöv, J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat Commun. 2018, 9, 3957. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, R.; Liu, H.; He, P.; An, D.; Guo, X.; Zhang, X.; Feng, M. Inhibition of PCSK9 enhances the antitumor effect of PD-1 inhibitor in colorectal cancer by promoting the infiltration of CD8+ T cells and the exclusion of Treg cells. Front Immunol. 2022, 13, 947756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, K.A.; Kim, N.J.; Choo, EH. The effect of fibrates on lowering low-density lipoprotein cholesterol and cardiovascular risk reduction: a systemic review and meta-analysis. Eur J Prev Cardiol. 2024, 31, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Brown, K.; Miksza, J.K.; Howells, L.; Morrison, A.; Issa, E.; Yates, T.; Khunti, K.; Davies, M.J.; Zaccardi, F. Association of Type 2 Diabetes with Cancer: A Meta-analysis With Bias Analysis for Unmeasured Confounding in 151 Cohorts Comprising 32 Million People. Diabetes Care 2020, 43, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, L.A.; Spiazzi, B.F.; Piccoli, G.F.; Nogara, D.A.; da Natividade, G.R.; Garbin, H.I.; Wayerbacher, L.F.; Wiercinski, V.M.; Baggio, V.A.; Zingano, C.P.; et al. Does metformin reduce the risk of cancer in obesity and diabetes? A systematic review and meta-analysis. Diabetes Obes Metab. 2024, 26, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- O'Connor, L.; Bailey-Whyte, M.; Bhattacharya, M.; Butera, G.; Hardell, K.N.L. Seidenberg, A.B.; Castle, P.E.; Loomans-Kropp, H.A. Association of metformin use and cancer incidence: a systematic review and meta-analysis. J Natl Cancer Inst. 2024, 116, 518–529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galal, M.A.; Al-Rimawi, M.; Hajeer, A.; Dahman, H.; Alouch, S.; Aljada, A. ; Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci. 2024, 25, 4083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fleshner, N.E.; Bernardino, RM.; Lajkosz, K.; Saad, F.; Izawa, J.; Drachenberg, D.; Saranchuk, J.W.; Tanguay, S.; Rendon, RA.; Leveridge, M.; et al. A randomized, double-blind, placebo-controlled trial of metformin in reducing progression among men on expectant management for low-risk prostate cancer: The MAST (Metformin Active Surveillance Trial) study. JCO 2024 42, LBA5002–LBA5002. [CrossRef]
- Gillessen, S.; Murphy, L.R.; James, N.D.; Sachdeva, A.; Attard, G.; Jones, R.J.; Adler, A.; El-Taji, O.; Varughese, M.; Gale, J.; et al. LBA70 - Adding metformin to androgen deprivation therapy (ADT) for patients (pts) with metastatic hormone sensitive prostate cancer (mHSPC): Overall survival (OS) results from the multi-arm, multi-stage randomized platform trial STAMPEDE. Annals of Oncology 2024, 35, 1–72 101016/annonc/annonc1623. [Google Scholar] [CrossRef]
- Goodwin, P.J.; Chen, B.E.; Gelmon, K.A.; Whelan, T.J.; Ennis, M.; Lemieux, J.; Ligibel, J.A.; Hershman, D.L.; Mayer, I.A.; Hobday, T.J.; et al. Effect of Metformin vs Placebo on Invasive Disease-Free Survival in Patients With Breast Cancer: The MA.32 Randomized Clinical Trial. JAMA. 2022, 327, 1963–1973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crist, M.; Yaniv, B.; Palackdharry, S.; Lehn, M.A.; Medvedovic, M.; Stone, T.; Gulati, S.; Karivedu, V.; Borchers, M.; Fuhrman, B.; et al. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J Immunother Cancer. 2022, 10, e005632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Lin, Y.; Xiong, X.; Wang, L.; Guo Y, Chen Y, Chen S, Wang G, Lin P, Chen H, Yeung SJ, Bremer E, Zhang H. Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial. Clin Cancer Res. 2020, 26, 4921–4932. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Yang, W.H.; Xia, W.; Wei, Y.; Chan, L.C.; Lim, S.O.; Li, C.W.; Kim, T.; Chang, S.S.; Lee, H.H.; et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell. 2018, 71, 606–620e7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wen, M.; Cao, Y.; Wu, B.; Xiao, T.; Cao, R.; Wang, Q.; Liu, X.; Xue, H.; Yu, Y.; Lin, J.; et al. PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain. Nat Commun. 2021, 12, 5106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panaampon, J.; Zhou, Y.; Saengboonmee, C. Metformin as a booster of cancer immunotherapy. Int Immunopharmacol. 2023 Aug;121:110528. [CrossRef] [PubMed]
- Shen, J.; Ye, X.; Hou, H.; Wang, Y. Clinical evidence for the prognostic impact of metformin in cancer patients treated with immune checkpoint inhibitors. Int Immunopharmacol. 2024, 134, 112243. [Google Scholar] [CrossRef] [PubMed]
- Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar]
- Hammoud, R. Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol.2023, 19, 201–216.
- Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016, 24, 15–30. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016, 375, 311–22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.; Birkenfeld, A.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. PIONEER 6 Investigators. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. EXSCEL Study Group. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D'Agostino, R.B. Sr; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018, 392, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. REWIND Investigators. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019, 394, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Piccini, S.; Favacchio, G.; Panico, C.; Morenghi, E.; Folli, F.; Mazziotti, G.; Lania, A.G.; Mirani, M. Time-dependent effect of GLP-1 receptor agonists on cardiovascular benefits: a real-world study. Cardiovasc Diabetol. 2023, 22, 69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bray, J.J.H.; Foster-Davies, H.; Salem, A.; Hoole, A.L.; Obaid, D.R.; Halcox, J.P.J.; Stephens, J.W. Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomised controlled trials. Diabetes Obes Metab. 2021, 23, 1806–1822. [Google Scholar] [CrossRef] [PubMed]
- Leiter, L.A.; Bain, S.C.; Bhatt, D.L.; Buse, J.B.; Mazer, C.D.; Pratley, R.E.; Rasmussen, S.; Ripa, M.S.; Vrazic, H.; Verma, S. The effect of glucagon-like peptide-1 receptor agonists liraglutide and semaglutide on cardiovascular and renal outcomes across baseline blood pressure categories: Analysis of the LEADER and SUSTAIN 6 trials. Diabetes Obes Metab. 2020, 22, 1690–1695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verma, S.; McGuire, D.K.; Bain, S.C.; Bhatt, D.L.; Leiter, L.A.; Mazer, C.D.; Monk Fries, T.; Pratley, R.E.; Rasmussen, S.; Vrazic, H; et al. Effects of glucagon-like peptide-1 receptor agonists liraglutide and semaglutide on cardiovascular and renal outcomes across body mass index categories in type 2 diabetes: Results of the LEADER and SUSTAIN 6 trials. Diabetes Obes Metab. 2020, 22, 2487–2492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mellbin LG, Bhatt DL, David JP, Ekström K, Petrie MC, Rasmussen S, Vilsbøll T. Semaglutide and cardiovascular outcomes by baseline HbA1c in diabetes: the SUSTAIN 6 and PIONEER 6 trials. Eur Heart J. 2024, 45, 1371–1374. [CrossRef] [PubMed] [PubMed Central]
- Verma, S.; David, J.P.; Leiter, L.A.; Michelsen, M.M.; Rasmussen, S.; Bhatt, D.L. Semaglutide reduces the risk of major adverse cardiovascular events consistently across baseline triglyceride levels in patients with type 2 diabetes: Post hoc analyses of the SUSTAIN 6 and PIONEER 6 trials. Diabetes Obes Metab. 2023, 25, 2388–2392. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. SCALE Obesity and Prediabetes NN8022-1839 Study Group. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med. 2015, 373, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. STEP 1 Study Group. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. STEP 2 Study Group. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021, 397, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Wadden, T.A.; Bailey, T.S.; Billings, L.K.; Davies, M.; Frias, J.P.; Koroleva, A.; Lingvay, I.; O'Neil, P.M.; Rubino, D.M.; Skovgaard, D.; et al. STEP 3 Investigators. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA. 2021, 325, 1403–1413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rubino, D.; Abrahamsson, N.; Davies, M.; Hesse, D.; Greenway, F.L.; Jensen, C.; Lingvay, I.; Mosenzon, O.; Rosenstock, J.; Rubio, M.A.; et al. STEP 4 Investigators. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA. 2021, 325, 1414–1425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. SELECT Trial Investigators. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N Engl J Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, C.; Mathew Stephen, M.; Ruan, Y.; Warkentin, M.T.; Brenner, D.R. Next Generation Weight Loss Drugs for the Prevention of Cancer? Cancer Control. 2024, 31, 10732748241241158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Xu, R.; Kaelber, D.C.; Berger, N.A. Glucagon-Like Peptide 1 Receptor Agonists and 13 Obesity-Associated Cancers in Patients With Type 2 Diabetes. JAMA Netw Open. 2024, 7, e2421305. [CrossRef] [PubMed] [PubMed Central]
- Chen, D.; Liang, H.; Huangm, L.; Zhou, H.; Wang, Z. Liraglutide enhances the effect of checkpoint blockade through the inhibition of neutrophil extracellular traps in murine lung and liver cancers. FEBS Open Bio. 2024, 14, 1365–1377. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korner, M.; Stockli, M.; Waser, B.; Reubi, J.C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2007, 48, 736–743. [Google Scholar] [CrossRef]
- Hammoud, R.; Drucker, D.J. ; Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat Rev Endocrinol. 2023, 19, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Nordisk, N.; Ozempic (Semaglutide) Injection, for Subcutaneous Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209637s009lbl.pdf (accessed on 19 April 2024).
- Bezin, J.; Gouverneur, A.; Pénichon, M.; Mathieu, C.; Garrel, R.; Hillaire-Buys, D.; Pariente, A.; Faillie, J.L. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care. 2023, 46, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Silverii, G.A.; Monami, M.; Gallo, M. , Ragni, A.; Prattichizzo, F.; Renzelli, V.; Ceriello, A.; Mannucci, E. Glucagon-like peptide-1 receptor agonists and risk of thyroid cancer: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2024, 26, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B. , Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015, 373, 2117–28. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.; Stefano Del Prato, S.; Chilton, R.; DeFronzo, R.A. SGLT2 Inhibitors and Cardiovascular Risk: Lessons Learned From the EMPA-REG OUTCOME Study. Diabetes Care 2016, 39, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai. M.; Matthews, D.R. CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, K.W.; Neal, B.; Perkovic, V.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Fabbrini, E.; Sun, T.; Li, Q.; et al. Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events Results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 2018, 137, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Rådholm, K.; Figtree, G.; Perkovic, V.; Solomon, S.D.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Barrett, T.D.; Shaw,W. ; Desai,M.; et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus Results from the CANVAS Program. Circulation 2018, 138, 458–468. [Google Scholar] [CrossRef]
- Shah, S.R.; Najim, N.I.; Abbasi, Z.; Fatima, M.; Jangda, A.A.; Shahnawaz, W.; Shahid, M.; Shah, S.A. Canagliflozin and Cardiovascular disease—results of the CANVAS trial. J. Community Hosp. Intern. Med. Perspect. 2018, 8, 267–268. [Google Scholar]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Furtado, R.H.M.; Bonaca, M.P.; Raz, I.; Zelniker, T.A. , Mosenzon, O.; Cahn, A.; Kuder, J.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A. et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation. 2019, 139, 2516–2527. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. VERTIS CV Investigators. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Das, S.R.; Everett, B.M.; Birtcher, K.K.; Brown, J.M.; Cefalu, W.T.; Januzzi JL, Kalyani, R.R.; Kosiborod, M.; Magwire, M.L.; Morris, P.B.; et al. 2018 ACC Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol. 2018, 72, 3200-3223. [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022;45(Suppl 1):S144–S174. [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. ESC Scientific Document Group. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Dutka, M.; Bobiński, R.; Francuz, T.; Garczorz, W.; Zimmer, K.; Ilczak T, Ćwiertnia M, Hajduga MB. SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel). 2022, 14, 5811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale,M. L.; et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150. [Google Scholar] [CrossRef]
- Quagliariello, V.; Canale, M.L.; Bisceglia, I.; Iovine, M.; Paccone, A.; Maurea, C.; Scherillo, M.; Merola, A.; Giordano, V.; Palma, G.; et al. (2024) Sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents ejection fraction reduction, reduces myocardial and renal NF-κB expression and systemic pro-inflammatory biomarkers in models of short-term doxorubicin cardiotoxicity. Front. Cardiovasc. Med. 2024;11:1289663. [CrossRef]
- Biondi, F.; Ghelardoni, S.; Moscato, S.; Mattii, L.; Barachini, S.; Novo, G.; Zucchi, R.; De Caterina, R.; Madonna, R. Empagliflozin restores autophagy and attenuates ponatinib-induced cardiomyocyte senescence and death. Vascular Pharmacology Volume 155, June 2024, 107300. [CrossRef]
- Gongora, C.A.; Drobni, Z.D.; Quinaglia Araujo Costa Silva, T.; Zafar, A.; Gong, J.; Zlotoff, D.A.; Gilman, H.K.; Hartmann, S.E.; Sama, S.; Nikolaidou, S.; et al. Sodium-Glucose Co-Transporter-2 Inhibitors and Cardiac Outcomes Among Patients Treated With Anthracyclines. JACC Heart Fail. 2022, 10, 559–567. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avula, V.; Sharma, G.; Kosiborod, M.N.; Vaduganathan, M.; Neilan, T.G.; Lopez, T.; Dent, S.; Baldassarre, L.; Scherrer-Crosbie, M.; Barac, A.; et al. SGLT2 Inhibitor Use and Risk of Clinical Events in Patients With Cancer Therapy-Related Cardiac Dysfunction. JACC Heart Fail. 2024, 12, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011, 117, 3720–32 [PubMed: 21304099. [Google Scholar] [CrossRef]
- Libby, P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J Am Coll Cardiol. 2017, 70, 2278–2289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koenig, W.; Sund, M.; Fröhlich, M.; Fischer, H.G.; Löwel, H.; Döring, A.; Hutchinson, W.L.; Pepys, M.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999, 99, 237–42. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009; 54: 2129-8.
- Braunwald, E. Creating controversy where none exists: the important role of C-reactive protein in the CARE, AFCAPS/TexCAPS, PROVE IT, REVERSAL, A to Z, JUPITER, HEART PROTECTION, and ASCOT trials. Eur Heart J. 2012, 33, 430–2. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005, 352, 20–8. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Crowe, T.; Sasiela, W.J.; Tsai, J.; Orazem, J.; Magorien, R.D.; O’Shaughnessy, C.; Ganz, P. Statin therapy, LDL cholesterol, C reactive protein, and coronary artery disease. N Engl J Med 2005, 352, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Morrow, D.A.; de Lemos, J.A.; Sabatine, M.S.; Wiviott, S.D.; Blazing, M.A.; Shui, A.; Rifai, N.; Califf, R.M.; Braunwald, E. Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. Circulation 2006, 114, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G; et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008, 359, 2195–2207. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M.Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; Macfadyen, J.G.; et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 2009, 373, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Galimberti, F.; Olmastroni, E.; Luscher, T.F.; Carugo, S.; Catapano, A.L.; Casula, M.; META-LIPID Group. Effect of lipid-lowering therapies on C-reactive protein levels: a comprehensive meta-analysis of randomized controlled trials. Cardiovasc Res. 2024, 120, 333–344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ridker, P.M.; Lei, L.; Louie, M.J.; Haddad, T.; Nicholls, S.J.; Lincoff, A.M.; Libby, P.; Nissen, S.E.; CLEAR Outcomes Investigators. Inflammation and Cholesterol as Predictors of Cardiovascular Events Among 13 970 Contemporary High-Risk Patients With Statin Intolerance. Circulation. 2024, 149, 28–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G. ; Chang,W. H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig,W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [PubMed]
- Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013, 61, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.F.; Ireland, M.A.; Lenderink, T.; et al. LoDoCo2 Trial Investigators. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; MacFadyen, J.G.; Thuren,T. ; Everett, B.M.; Libby, P.; Glynn, R.J. CANTOS Trial Group. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 1833–1 842. [Google Scholar] [CrossRef]
- Garon, E.B.; Lu, S.; Goto, Y.; De Marchi, P.; Paz-Ares, L.; Spigel, D.R.; Thomas, M.; Yang, J.C.; Ardizzoni, A.; Barlesi, F. Canakinumab as Adjuvant Therapy in Patients With Completely Resected Non-Small-Cell Lung Cancer: Results From the CANOPY-A Double-Blind, Randomized Clinical Trial. J Clin Oncol. 2024, 42, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Goto, Y.; Wan-Teck Lim, D.; Halmos, B.; Chul Cho, B.; Cobo, M.; Luis González Larriba, J.; Zhou, C.; Demedts, I.; Atmaca, A.; et al. Canakinumab in combination with docetaxel compared with docetaxel alone for the treatment of advanced non-small cell lung cancer following platinum-based doublet chemotherapy and immunotherapy (CANOPY-2): A multicenter, randomized, double-blind, phase 3 trial. Lung Cancer. 2024, 189, 107451, Epub ahead of print. [Google Scholar] [PubMed]
- Tan, D.S.W.; Felip, E.; de Castro, G.; Solomon, B.J.; Greystoke, A.; Cho, B.C.; Cobo, M.; Kim, T.M.; Ganguly, S.; Carcereny, E.; et al. Canakinumab Versus Placebo in Combination With First-Line Pembrolizumab Plus Chemotherapy for Advanced Non-Small-Cell Lung Cancer: Results From the CANOPY-1 Trial. J Clin Oncol. 2024;42(2):192-204. [CrossRef] [PubMed]
- Bent, R. , Moll, L., Grabbe, S.; Bros, M. Interleukin-1 beta-A friend or foe in malignancies? Int. J. Mol. Sci. 2018, 19, 2155. [Google Scholar] [CrossRef] [PubMed]
- Elaraj, D. M. , Weinreich, D. M., Varghese, S., Puhlmann, M., Hewitt, S. M., Carroll, N. M.,... & Alexander, H. R. (2006). The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clinical cancer research: an official journal of the American Association for Cancer Research 2006, 12, 1088–1096. [Google Scholar]
- Lau, L.; Porciuncula, A.; Yu, A.; Iwakura, Y.; David, G. Uncoupling the Senescence-Associated Secretory Phenotype from Cell Cycle Exit via Interleukin-1 Inactivation Unveils Its Protumorigenic Role. Mol Cell Biol. 2019, 39, e00586–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, D.; Lei, L.; Liu,Y. ; Zhang, Y.; Hu, B.; Bao, G.; Song, Y.; Jin, Z.; Liu, C.; Mei, Y.; et al. Membrane IL1α Inhibits the Development of Hepatocellular Carcinoma via Promoting T- and NK-cell Activation. Cancer Res. 2016, 76, 3179–88. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Gebhardt, C.; Umansky, L.; Beckhove, P.; Schulze, T.J.; Utikal, J.; Umansky, V. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer. 2015, 136, 2352–60. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al.; RESCUE Investigators IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2021, 397, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Rašková, M.; Lacina, L.; Kejík, Z.; Venhauerová, A.; Skaličková, M.; Kolář, M.; Jakubek, M.; Rosel, D.; Smetana, K. Jr.; Brábek, J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells. 2022, 11, 3698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, W.; Wu, Z.; Meng, W.; Zhang, C.; Cheng, M.; Chen, Y.; Zou, Y.; Li, K.; Lin, S.; Xiong, W.; et al. Blockade of IL-6 inhibits tumor immune evasion and improves anti-PD-1 immunotherapy. Cytokine. 2022, 158, 155976. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, Y.; Kitamura, H.; Xiang, H.; Ohno, Y.; Homma, S.; Kawamura, H.; Takahashi, N.; Kamiyama, T.; Tanino, M.; Taketomi, A. IL6 Modulates the Immune Status of the Tumor Microenvironment to Facilitate Metastatic Colonization of Colorectal Cancer Cells. Cancer Immunol Res. 2019, 7, 1944–1957. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yu, B.; Kang, J.; Li, A.; Sun, J. Obesity Promotes Tumor Immune Evasion in Ovarian Cancer Through Increased Production of Myeloid-Derived Suppressor Cells via IL-6. Cancer Manag Res. 2021, 13, 7355–7363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soler, M.F.; Abaurrea, A.; Azcoaga, P.; Araujo, A.M.; Caffarel, M.M. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J Immunother Cancer. 2023, 11, e007530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hailemichael, Y.; Johnson, D.H.; Abdel-Wahab, N.; Foo, W.C.; Bentebibel, S.E.; Daher, M.; Haymaker, C.; Wani, K.; Saberian, C.; Ogata, D.; et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 2022, 40, 509–523e6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okazaki, S.; Sakaguchi, M.; Miwa, K.; Furukado, S.; Yamagami, H.; Yagita, Y.; Mochizuki, H.; Kitagawa, K. Association of interleukin-6 with the progression of carotid atherosclerosis: a 9-year follow-up study. Stroke, 2014, 45, 2924–2929. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc Res. 2021, 117, e138–e140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez, G.J.; Celermajer, D.S.; Patel, S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018, 269, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.Y.; Hui, L.L.Y.; Kraus, V.B. Colchicine — update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 2015, 45, 341–50. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, N.; Fernando, S.; Chen, Y.C.; Salagaras, T.; Rao, S.R.; Liyanage, S.; Williamson, A.E.; Toledo-Flores, D.; Dimasi, C.; Sargeant, T.J.; et al. Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation. FASEB J. 2023, 37, e22846. [Google Scholar] [CrossRef] [PubMed]
- Nidorf, S.M.; Ben-Chetrit, E.; Ridker, P.M. Low-dose colchicine for atherosclerosis: long-term safety. Eur Heart J. 2024, 45, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Fuster, V.; Ridker, P.M. Low-Dose Colchicine for Secondary Prevention of Coronary Artery Disease: JACC Review Topic of the Week. J Am Coll Cardiol. 2023, 82, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Brenner, R.; Ben-Zvi, I.; Shinar, Y.; Liphshitz, I.; Silverman, B.; Peled, N.; Levy, C.; Ben-Chetrit, E.; Livneh, A.; Kivity, S. Familial Mediterranean Fever and Incidence of Cancer: An Analysis of 8,534 Israeli Patients With 258,803 Person-Years. Arthritis Rheumatol. 2018, 70, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Yen, J.H.; Chang, S.J. Gout patients have an increased risk of developing most cancers, especially urological cancers. Scand J Rheumatol. 2014, 43, 385–90. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.C.; Chang, S.J.; Hsieh, M.C. Colchicine Significantly Reduces Incident Cancer in Gout Male Patients: A 12-Year Cohort Study. Medicine (Baltimore). 2015, 94, e1570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, Y.; Li, Z.; Zhang, J.; Dong, Y.; Zhang, C.; Dong, Y.; Zhai, Y.; Zheng, H.; Liu, M.; Zhao, J.; et al. Low-Dose Colchicine Ameliorates Doxorubicin Cardiotoxicity Via Promoting Autolysosome Degradation. J Am Heart Assoc. 2024, 3, e033700. [Google Scholar] [CrossRef] [PubMed]
- Zuriaga, M.A.; Yu, Z.; Matesanz, N.; Truong, B.; Ramos-Neble, B.L.; Asensio-López, M.C.; Uddin, M.M.; Nakao T, Niroula A, Zorita V, Amorós-Pérez M, et al. Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis. Eur Heart J. 2024, ehae546. Epub ahead of print. [CrossRef] [PubMed]
- Maffia, P.; Mauro, C.; Case, A.; Kemper, C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol. 2024, 21, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Monaco, C.; Dib, L. Atheroimmunology: keeping the immune system in atherosclerosis in check. Nat Rev Cardiol. 2024, 21, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Singer, M. A dose of drugs, a touch of violence, a case of AIDS: conceptualizing the SAVA syndemic. Free Inquiry in Creative Sociology, 1996, 24, 99–110. [Google Scholar]
- Reason J: Human error: models and management. BMJ 2000, 320, 768–70. [CrossRef] [PubMed]
- Krychtiuk, K.A.; Ahrens, I.; Drexel, H.; Halvorsen, S.; Hassager, C.; Huber, K.; Kurpas, D.; Niessner, A.; Schiele, F.; Semb, A.G.; et al. Acute LDL-C reduction post ACS: strike early and strike strong: from evidence to clinical practice. A clinical consensus statement of the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Association of Preventive Cardiology (EAPC) and the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur Heart J Acute Cardiovasc Care. 2022, 11, 939-949. [CrossRef] [PubMed]
- Zinzuwadia, A.N.; Mineeva, O.; Li, C.; Farukhi, Z.; Giulianini, F.; Cade, B.; Chen, L.; Karlson, E.; Paynter, N.; Mora, S.; et al. Tailoring Risk Prediction Models to Local Populations. JAMA Cardiol. 2024, 18, e242912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, M.M.; Shanley, T.P. The Missing -Omes: Proposing Social and Environmental Nomenclature in Precision Medicine. Clin Transl Sci. 2017, 10, 64–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moslehi, J.J. Cardio-Oncology: A New Clinical Frontier and Novel Platform for Cardiovascular Investigation. Circulation. 2024, 150, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Cohen, B.E.; Commodore-Mensah, Y.; Fleury, J.; Huffman, J.C.; Khalid, U.; Labarthe, D.R.; Lavretsky, H.; Michos, E.D.; Spatz, E.S.; et al. Psychological Health, Well-Being, and the Mind-Heart-Body Connection: A Scientific Statement From the American Heart Association. Circulation. 2021, 143, e763–e783. [Google Scholar] [CrossRef] [PubMed]

| Study/year/Reference | Type of study | Lipid –lowering therapy | Population | Imaging modality | Endpoints | Results |
|---|---|---|---|---|---|---|
| REVERSAL Nissen SE et al./2004/Ref. [235] | double-blind, randomized active control multicenter | Pravastatin 40 mg versus Atorvastatin 80 mg (for 18 months) | 600 US patients | IVUS | Δ PAV | The progression of the atheroma volume was significantly slowed by Atorvastatin 80 mg |
| ASTEROID Nissen SE et al. /2006/Ref. [236] | Prospective, open-label blinded end-points | Rosuvastatin 40 mg/day | 349/507 pts had evaluable serial IVUS examinations. |
IVUS | Δ PAV, Δ atheroma volume, Δ TAV |
significant reduction of mean change in PAV for the entire vessel, mean change in atheroma volume in the most diseased 10-mm subsegment and change in TAV |
| COSMOS Takayama T et al./2009/Ref. [237] | open-label | Rosuvastatin (2.5-20 mg/day) | 126 pts 92 (72.2%) received the maximum dosage (20 mg/day) |
IVUS | Δ TAV | Rosuvastatin induced significant regression of TAV |
| JAPAN-ACS Hiro T et al. /2009 Ref. [238] | prospective, randomized, open-label, parallel group study with blind end point evaluation | Pitavastin 4 mg/day vs Atorvastatin 20 mg/day |
Among 307 patients with ACS undergoing IVUS-guided PCI, 252 patients had evaluable IVUS examinations at baseline and 8 to 12 months’ follow-up | IVUS | Δ PV in NTL | Pitavastatin and atorvastatin induced an equivalent significant regression of coronary PV |
| SATURN Nicholls SJ/2011/ Ref. [239] | prospective, randomized, multicenter, double-blind clinical |
Atorvastatin 80 mg vs Rosuvastatin 40 mg (for 104 weeks) |
1039 CAD pts | IVUS | Δ PAV Δ TAV |
The regression of PAV was similar in the two groups. A greater reduction in TAV occurred with rosuvastatin |
| Guo et al./2012 Ref. [240] | randomized, controlled |
Placebo (54 pts) vs atorvastatin 10 mg (47 pts) vs atorvastatin 20 mg (45 pts) vs atorvastatin 50 mg (43 pts) vs atorvastatin 80 mg (39 pts) |
228 stable CAD pts with CAG and IVUS | IVUS | Δ PAV Δ Plaque necrosis |
The percentages of plaque necrosis increased in the placebo and atorvastatin 10 mg groups; remained stable in the atorvastatin 20, 40 and 80 mg groups. Plaque volumes did not change in the placebo, atorvastatin 10 and 20 mg groups; decreased in atorvastatin 40 and 80 mg groups, |
| YELLOW Kini AS et al./2013/Ref. [241] | prospective, randomized, single center, single-blinded |
Rosuvastatin 40 mg daily vs standard-of-care lipid-lowering therapy | 87 patients with at least 2-vessel obstructive CAD (angiographic diameter stenosis >70%). TLs were treated with PCI, NTLs with>70% diameter stenosis and FFR ≤0.8 were evaluated for plaque composition |
IVUS NIRS |
change in lipid-core burden index at the 4-mm maximal segment (LCBI4mm max), |
median reduction in LCBI4mm max was significantly greater in the intensive vs standard group |
|
IBIS-4 Raber L et al/2015/ Ref. [242] IBIS-4 Raber L et al./2019/Ref. [243] |
prospective cohort study nested in the COMFORTABLE-AMI trial |
Rosuvastatin 40 mg daily |
82 patients with 146 non-infarct-related arteries (non-IRA) |
IVUS RF-IVUS OCT |
Δ PAV in the proximal segment of non-IRA after 13 months of therapy (IVUS) and reduction of necrotic core (RF-IVUS); changes in coronary plaque composition |
Rosuvastatin induced an atherosclerosis regression (measured by a change in PAV) in the non-IRA, but did not change RF-IVUS defined proportion of necrotic core; significant increase in minimum fibrous cap thickness and reduction in macrophage accumulation |
| PRECISE IVUS Tsujita K et al./2015 Ref. [244] | prospective, randomized, controlled, multicenter | Atorvastatin+ezetimibe vs Atorvastatin |
246 CAD patients scheduled for PCI were enrolled; 202 patients available for IVUS after 9-12 months of treatment (100 in the atorvastatin-ezetimibe group and 102 in the atorvastatin group | IVUS | Δ PAV Δ TAV |
The atorvastatin/ezetimibe group was noninferior to the atorvastatin group for the absolute change in percent atheroma volume (Δ PAV) |
| STABLE Park S et al./2016/Ref. [245] | prospective, single-center, double-blind, randomized | Rosuvastatin 40 mg vs Rosuvastatin 10 mg | 225 patients with an IVUS-defined fibroatheroma-containing index lesion. | IVUS | Δ PAV | Rosuvastatin reduced necrotic core and plaque volume and decreased thin-cap fibroatheroma rate with no significant differences between the two dosages |
| Ahn J et al./2016/ Ref. [246] | prospective randomized placebo-controlled | ώ-3 PUFA vs placebo, All patients were taking statins |
74 patients scheduled for PCI | IVUS | Δ PAV in a target lesion located more than 10 mm away from the stent | No differences |
| GLAGOV Nicholls SJ et al./2016/Ref. [247] | Multicenter, double-blind, placebo-controlled | Patients with angiographic CAD treated with statins | Subcutaneous Evolocumab 420 mg monthly for 76 weeks (484 patients) vs placebo (484 patients) in addition to statins | IVUS | Δ PAV(from baseline to week 76) Δ TAV Plaque regression |
Evolocumab added to statin induced a significant reduction of PAV and TAV and plaque regression in a greater percentage of patients compared to placebo |
| Alfaddagh et al. /2017/Ref. [248] | Randomized controlled | ώ-3 PUFA (1.86 g of EPA and 1.5 g of DHA daily) vs placebo for 30 months | 285 subjects with stable CAD and on statin therapy | CCTA at baseline and after 30 months | Δ indexed volume of non-calcified coronary plaque | High-dose EPA and DHA+statin provided more benefit in preventing progression of fibrous coronary plaque compared to statins only. Omega-3 ethyl-ester supplementation prevented progression of fibrous plaque in those on LIS therapy, but not in those on HIS therapy |
| ESCORT/2018/Ref. [249] | prospective, randomized, active-controlled, single-center | Pitavastatin 4 mg/day from baseline (early statin group) vs pitavastatin 4 mg/day from 3 weeks after the baseline (late statin group) |
53 patients with 1) successful PCI for ACS; 2) de novo, intermediate, NCL suitable for OCT examination; 3) scheduled coronary catheterization at 3 and 36 weeks after the index procedure and 4) untreated dyslipidemia (LDL-C level >100 mg/dl). |
OCT in 53 patients (performed at baseline, 3-week and 36-week follow up) |
Δ FCT | Early therapy with pitavastatin 4 mg/day for patients with ACS provided an increase in FCT in coronary plaques during the first 3 weeks of follow-up and a further increase during 36 weeks of follow-up. T |
| PARADIGM/2018 Ref. [250] | prospective, multinational | Statin naïve patients vs patients on statins (94% of patients on statins were taking moderate to high-intensity statins: atorvastatin or rosuvastatin) |
consecutive patients without history of CAD who underwent serial coronary CTA at an interscan interval of ≥2 years. 1,079 coronary artery lesions were evaluated in statin naïve patients (n 474), and 2,496 coronary artery lesions were evaluated in statin-taking patients (n 781). | CCTA | Δ %DS, Δ PAV, plaque composition, and presence of high-risk plaque (presence of ≥2 features of low-attenuation plaque, positive arterial remodeling, or spotty calcifications). |
Lesions in patients on statin therapy showed a slower rate of overall PAV progression but more rapid progression of calcified PAV Progression of noncalcified PAV and annual incidence of new HRP features were lower in lesions of patients on statin treatment. |
| ODYSSEY J-IVUS/2019 Ref. [251] | Randomized controlled | Alirocumab 75 -150 mg every 2 weeks vs Atorvastatin ≥10 mg/day OR Rosuvastatin ≥5 mg/day) for 36 weeks | 206 patients with ACS and hypercholesterolemia (LDL-C not at target) | IVUS | Δ TAV :Normalized TAV (Week 36)− Normalized TAV (baseline)/Normalized TAV (baseline)×100 Δ PAV from baseline to week 36 |
36 weeks of alirocumab treatment resulted in a numerically greater but not statistically significant percentage reduction in normalized TAV |
| Budoff MJ et al. (EVAPORATE )/2020 Ref. [252] | Randomized, double-blind, placebo-controlled | Statin+icosapent ethyl vs Statin+mineral oil placebo (18 month treatment) |
80 patients with documented CAD and with persistent hypertriglyceridemia | MDCT | Δ low-attenuation plaque (LAP) volume | Significant reduction of LAP volume at 18 months |
| Nicholls SJ et al. (HUYGENS) /2022/Ref. [253] | Randomized, multicenter, double-blind, placebo controlled clinical |
Evolocumab 420 mg /month for 52 weeks + statin vs placebo+statin |
161 patients with a non–ST-segment MI and at least 1 NTL with coronary stenosis>20% 135 had evaluable imaging |
OCT IVUS |
Δ FCT Δ LA Δ TAV Δ PAV |
Evolocumab added to the maximally tolerated statin induced greater increase in minimum FCT, larger decrease in maximum LA, greater regression of TAV and PAV |
| Raber L et al. (PACMAN-AMI)/2022 Ref. [254] | Double-blind,randomized placebo controlled | Biweekly subcutaneous Alirocumab 150 mg +Rosuvastatin 20 mg vs Placebo+Rosuvastatin 20 mg for 52 weeks |
300 patients with AMI treated with PCI: 148 pts Alirocumab+rosuvastatin vs 152 pts Placebo+Rosuvastatin | IVUS, NIRS and OCT of NTLs |
Δ PAV of NTLs (from baseline to week 52) Δ maximum lipid core burden index (MLCBI) Δ minimal FCT |
Significant greater change in PAV with alirocumab (-2.13 vs -0.92%) Greater change in MLCBI Increase in minimal FCT |
| Nakano Y et al. (substudy of the CuVic trial)/2023/ Ref. [255] | Randomized controlled | Statin+ezetimibe (S+E) vs Statin monotherapy (S) (6-8 month- treatment) |
79 CAD patients treated with PCI: S+E 39 pts; S 40 pts | IVUS of NTLs | Δ plaque burden Δ percent change in plaque burden |
Greater plaque regression in the S+E group Lower values of Campesterol (a marker of cholesterol absorption), and oxysterols in the S+E group with a positive correlation with plaque regression |
| Study/year/Reference | Type of study | Lipid –lowering therapy | Population | Imaging | Endpoints | Results |
|---|---|---|---|---|---|---|
| SGLT2-Is and FCT. Ref. [268] | observational, randomized, multicenter study | SGLT2-Is vs Non-SGLT2-Is |
369 T2DM Patients with MV NO-CS: 111 SGLT2-I users vs 258 non-SLGT2-I users | OCT | Δ FCT (from baseline to a 12 month follow up control) | SGLT2-Is increased FCT and reduced the values of lipid arc degree |
| SGLT2-Is Stabilize Coronary Plaques in Acute Coronary Syndrome With Diabetes Mellitus. Ref. [269] | Retrospective study | SGLT2-Is vs Non-SGLT2-Is |
109 patients in the total cohort: 69 non-SGLT2-I users and 40 SGLT2-I users; 29 patients in the OCT cohort: 15 non-SGLT2-I users and 14 SGLT2-I users | OCT images of unstable plaques in nonstented lesions during ACS catheterization and at the 6-month follow-up. | Δ FCT | SGLT2-Is improved plaque stability through a significantly thicker fibrous cap and a reduced lipid arc |
| Evaluation of the effect of tofogliflozin on the tissue characteristics of the carotid wall—a sub-analysis of the UTOPIA trial. Ref. [270] |
Sub-analysis of the UTOPIA trial | Tofogliflozin |
168 and 169 patients in the tofogliflozin and conventional treatment groups were included in the full analysis set, respectively |
B-mode US carotid arteries | longitudinal change in the ultrasonic tissue characteristics of the carotid wall using gray-scale median (GSM), |
Reduction of IMT, but no change in plaque composition |
| Life style | Risk factors | Committed subjects |
Non-pharmacological management |
Pharmacological Management |
Involved Pathways |
Targets |
| Obesity | Patient, GP, caregiver | Healthy diet, exercise | GLP1-Ras | CRP, TNF-α, MDA (Ref. [320]) | Optimal BMI (Ref. [2]) | |
| Hypertension | Patient, GP, caregiver | Diet (Restriction of sodium to ~ 2 g per day, MD, DASH, moderate or no alcohol), exercise | ACE-Is, ARBs, CCBs, | Impaired NO production, Oxidative stress. Endothelial dysfunction |
Tailored to CV risk, comorbidities and risk modifiers (Ref. [6]) |
|
| Diabetes | Patient, GP, caregiver | Diet, exercise | Metformin, GLP1-RAs, SGLT2-I | AMPK, IGFR, Mtor, ETC, β-Catenin Action, EGFR (Ref. [353]) |
Tailored to CV risk, comorbidities and risk modifiers (Ref. [6]) |
|
| Smoking | Patient, GP, caregiver | QUIT smoking | Drug support for smoking cessation (e.g. NRT) | ED, thrombosis, insulin resistance and dyslipidemia (Ref. [201]) |
No smoking | |
| Dyslipidemia | Patient, GP, caregiver | Diet, exercise | LLT: statins, bempedoic acid, ezetimibe, PCSK9-Is, fibrates | Cholesterol pathway, PCSK9 iperexpression in cancer |
LLT tailored to CV risk (Ref. [6]) and cancer prevention (Ref. [164]) |
|
| sedentary behaviour | Patient, GP, policymakers (for population-based interventions and the promotion of healthy environments) | exercise | n/a | Regulation of cardiometabolic and immune function. Oxidative stress, genomic instability and myokines (Ref. [6]); reduction of obesity-related cancer (Ref. [163]) |
Recommended for adults of all ages at least 150-300 min/week of moderate intensity or 75-150min/w of vigorous intensity aerobic PA. Adults who cannot perform 150 min of moderate-intensity PA/week should stay as active as their abilities and health condition allow (Ref. [6]) |
|
| unhealthy diet alcohol abuse | Patient, GP, caregiver, institutions (e.g. schools, workplaces etc), policymakers | Healthy diet (e.g.mediterranean diet, DASH). Moderate (<100 g/week) or No alcohol (Ref. [6], Ref. [163]) |
n/a. | Oxidative stress | Optimal BMI (Ref. [2]) No alcohol (Refs. [6,163]) |
|
| Psycho | Risk enhancers | Committed subjects |
Non-pharmacological management |
pharmacological management |
Pathways | Targets |
| Anxiety | Patient, Psychological support, caregiver | Healthy lifestyle; Psychotherapy; Care management approach , group-based cognitive behavioral therapy (Ref. [2,411] |
Antidepressants (SSRI) |
Accelerated development of CV risk factors (Ref. [212]) |
Improvement of symptoms, some beneficial effects on CVH | |
| Anger & hostility | Patient, Psychological support, caregiver | Healthy lifestyle | Accelerated development of CV Risk factors (Ref. [212]) |
Improvement of symptoms, some beneficial effects on CVH | ||
| Pessimism | Patient, Psychological support, caregiver | Healthy lifestyle | Psychopharmaco-therapy |
Accelerated development of CV Risk factors (Ref. [212]) | Optimistic behaviour, beneficial effects on CVH | |
| Exposome | Social determinants of health | Committed subjects |
Non-pharmacological management |
Pharmacological management |
Involved pathways | Targets |
| Environmental conditions: Air, Noise and Light pollution | Policymaker, health-care practice | Interventions to improve air quality | n/a | Syndemic effect with CV risk factors | Mitigation strategies for air pollution (e.g. transition from fossil fuels to renewable energy sources and transportation reforms); for noise pollution (e.g. implementation of noise reduction protocols, promotion of green spaces as natural sound buffers) and for light pollution (energy conservation and light pollution regulations (Ref. [229]) |
|
| Socio-economic status | Policymakers, Health professionals |
Improvement of social conditions | n/a | Stress-associated neural activity), bone marrow activity, and arterial inflammation (Ref. [211]) |
Reduction of stressors-induced inflammation, increase of resilience |
|
| Social isolation | Policymakers, health professionals | Tailored interventions | n/a | Increased arterial stiffness (Ref. [216]) | Reduction of loneliness feeling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
