Preprint
Review

Dealing with Multiple Optimization Objectives for UAV Path Planning in Hostile Environments: A Literature Review

Altmetrics

Downloads

12

Views

2

Comments

0

Submitted:

21 November 2024

Posted:

22 November 2024

You are already at the latest version

Alerts
Abstract
As Unmanned Aerial Vehicles (UAVs) are becoming crucial in modern warfare, research on autonomous path planning is becoming increasingly important. The conflicting nature of the optimization objectives characterizes path planning as a multi-objective optimization problem. Current research has predominantly focused on developing new optimization algorithms. Although being able to find the mathematical optimum is important, one also needs to ensure this optimum aligns with the decision-maker's (DM's) most preferred solution (MPS). In particular, to align these, one needs to handle the DM's preferences on the relative importance of each optimization objective. This paper provides a comprehensive overview of all preference handling techniques employed in the military UAV path planning literature over the last two decades. It shows that most of the literature handles preferences by the overly simplistic method of scalarization via weighted sum. Additionally, the current literature neglects to evaluate the performance (e.g. cognitive validity and modeling accuracy) of the chosen preference handling technique. To aid future researchers handle preferences, we discuss each employed preference handling technique, their implications, advantages, and disadvantages in detail. Finally, we identify several directions for future research, mainly related to aligning the mathematical optimum to the MPS.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated