Submitted:
26 November 2024
Posted:
27 November 2024
You are already at the latest version
Abstract
Keywords:Â
1. Introduction
2. Materials and Methods
Biosorbent Preparation
Biosorbent Characterization
Biosorption Tests with Synthetic Polluted Water
Statistical Analysis
Kinetics Study
Saturated Biosorbent Regeneration
Biosorption of Fur Industry Effluent
3. Results and Discussion
3.1. Biosorbent Characterization
3.2. Biosorption Tests and Statistical Analysis
3.3. Kinetics Study
3.4. Biosorbent Regeneration
3.5. Bioadsorption Tests with Fur Industry Effluent
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- H. Cheng, T. Zhou, Q. Li, L. Lu, and C. Lin, âAnthropogenic Chromium Emissions in China from 1990 to 2009,â vol. 9, no. 2, 2014. [CrossRef]
- A. Alemu, B. Lemma, N. Gabbiye, M. T. Alula, and M. T. Desta, âRemoval of chromium (VI) from aqueous solution using vesicular basalt: A potential low cost wastewater treatment system,â Heliyon, no. December 2017, p. e00682, 2018. [CrossRef]
- I. Ghorbel-abid, A. Jrad, K. Nahdi, and M. Trabelsi-ayadi, âSorption of chromium (III) from aqueous solution using bentonitic clay,â DES, vol. 246, no. 1â3, pp. 595â604, 2009. [CrossRef]
- A. Maldonado-FarfĂĄn, U. Fernandez-Bernaola, H. Salas-Cernades, O. Guillen-Zevallos, and E. Medrano- Meza, âModeling of Chromium (III) Adsorption of Aqueous Solutions Using Residual Cassava Biomass in Fixed Bed Columns,â LACCEI iInternational Multi-Conference Eng. Educ. Technol. 2021, no. Iii, 2021.
- Ă. C. Porras, âDescripciĂłn de La nocividad del cromo proveniente de la industria curtiembre y de las posibles formas de removerlo,â Rev. Ing. Univ. MedellĂn, vol. 9, no. 17, pp. 41â49, 2010, [Online]. Available: http://www.redalyc.org/resumen.oa?id=75017164003%5Cnhttp://www.redalyc.org/articulo.oa?id=75017164003%5Cnhttp://www.redalyc.org/pdf/750/75017164003.pdf.
- N. E. Alam, A. S. Mia, F. Ahmad, and M. Rahman, âAn overview of chromium removal techniques from tannery effluent,â Appl. Water Sci., 2020. [CrossRef]
- A. Maldonado, C. Luque, and D. Urquizo, âLead biosortion of contaminated waters using Pennisetum clandestinum Hochst (Kikuyu),â Rev. Latinoam. Metal. y Mater., no. SUPPL.4, 2012.
- E. Carvajal-flĂłrez, L. Fernanda, and M. Giraldo, âUso de residuos de cafĂ© como biosorbente para la remociĂłn de metales pesados en aguas residuales,â vol. 11, pp. 44â55, 2020. [CrossRef]
- C. Lavado-meza, M. R. Sun-kou, T. K. Castro-arroyo, and H. D. Bonilla-mancilla, âQuĂmica Aplicada y AnalĂtica BiosorciĂłn de plomo (II) en de los cladodios de la tuna Biosorption of lead (II) in aqueous solution with biomass of prickly pear Resumen Resumo IntroducciĂłn Materiales y mĂ©todos PreparaciĂłn del biosorbente y de las disolu,â vol. 49, no. 3, pp. 36â46, 2020.
- J. De JesĂșs, V. MartĂnez, A. Milena, S. AlarcĂłn, E. Augusto, and A. Y. El, âKikuyu , present grass in ruminant production systems in tropic Colombian highlands El kikuyo , una gramĂnea presente en los sistemas de rumiantes en trĂłpico alto colombiano Kikuyo , uma gramĂnea presente em sistemas de ruminantes no alto trĂłpico colombiano,â 2018.
- I. Simona, D. Bulgariu, I. Ahmad, and L. Bulgariu, âValorisation possibilities of exhausted biosorbents loaded with metal ions â A review,â vol. 224, no. April, pp. 288â297, 2018. [CrossRef]
- H. Qin, T. Hu, Y. Zhai, N. Lu, and J. Aliyeva, The improved methods of heavy metals removal by biosorbents: A review. Elsevier, 2020.
- U. R. FernĂĄndez-Bernaola and A. R. Maldonado-FarfĂĄn, âLead adsorption from polluted water using Opuntia larreyi cactus,â no. July 2019, pp. 24â26, 2019. [CrossRef]
- I. Enniya, L. Rghioui, and A. Jourani, âAdsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels,â Sustain. Chem. Pharm., vol. 7, no. September 2017, pp. 9â16, 2018. [CrossRef]
- G. J. Perez Cuasquer, âTRATAMIENTO DE AGUAS RESIDUALES DE LA INDUSTRIA TEXTIL MEDIANTE PROCESOS ELECTROQUĂMICOS,â Universidad Central de Ecuador. pp. 1â93, 2015, [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2538.html.
- Y. Li, D. Wang, Q. Xu, X. Liu, and Y. Wang, âChemosphere New insight into modi fi cation of extracellular polymeric substances extracted from waste activated sludge by homogeneous Fe (II)/ persulfate process,â Chemosphere, vol. 247, p. 125804, 2020. [CrossRef]
- X. R. Xu, Z. Y. Zhao, X. Y. Li, and J. D. Gu, âChemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fentonâs reagent,â Chemosphere, vol. 55, no. 1, pp. 73â79, 2004. [CrossRef]
- M. Valladares-Cisneros, C. Valerio, P. De la Cruz, and R. M. Melgoza, âAdsorbentes no-convencionales, alternativas sustentables para el tratamiento de aguas residuales,â Rev. Ing. Univ. MedellĂn, vol. 16, no. 31, pp. 55â73, 2017. [CrossRef]
- S. I. Mussatto, M. Fernandes, A. M. F. Milagres, and C. Roberto, âEffect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewerâ s spent grain,â vol. 43, pp. 124â129, 2008. [CrossRef]
- S. I. Mussatto, G. Dragone, G. Jackson, D. M. Rocha, and I. Roberto, âEfecto de los tratamientos de hidrĂłlisis ĂĄcida y hidrĂłlisis alcalina en la estructura del bagazo de malta para liberaciĂłn de fibras de celulosa,â no. January 2015, 2006.
- A. F. Moreno-GarcĂa et al., âSustainable biorefinery associated with wastewater treatment of Cr (III) using a native microalgae consortium,â Fuel, vol. 290, no. January, 2021. [CrossRef]
- M. T. H. A. Kana, âFeasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics,â J. Mol. Liq., no. 2017, p. #pagerange#, 2018. [CrossRef]
- T. A. Rearte, P. B. Bozzano, M. L. Andrade, and A. F. De Iorio, âBiosorption of Cr (III) and Pb (II) by Schoenoplectus californicus and Insights into the Binding Mechanism,â vol. 2013, 2013.
- M. Galbe and G. Zacchi, âPretreatment of Lignocellulosic Materials for Efficient Bioethanol Production,â no. July, pp. 41â65, 2007.
- S. Ho, Y. Chen, W. Qu, F. Liu, and Y. Wang, Chapter 8 - Algal culture and biofuel production using wastewater, Second Edition. Elsevier B.V., 2019.
- Y. Rajesh and L. Rao, âMaterials Today: Proceedings Synthesis and Characterization of Low-Cost Wood based Biosorbent,â Mater. Today Proc., vol. 57, pp. 34â37, 2022. [CrossRef]
- V. Luisa, U. M. F, G. Nancy, F. Marittza, and V. VerĂłnica, âel bagazo de caña como biosorbente,â pp. 43â49, 2016.
- A. Jacques, E. C. Lima, S. L. P. Dias, A. C. Mazzocato, and A. Pavan, âYellow passion-fruit shell as biosorbent to remove Cr (III) and Pb (II) from aqueous solution,â vol. 57, pp. 193â198, 2007. [CrossRef]
- S. N. Jain et al., âNonlinear regression approach for acid dye remediation using activated adsorbent: Kinetic, isotherm, thermodynamic and reusability studies,â Microchem. J., vol. 148, no. February, pp. 605â615, 2019. [CrossRef]
- A. A. Beni and A. Esmaeili, Biosorption and efficient method for removing heavy metals from industrial effluents: A Review. Elsevier B.V., 2019.
- B. Huseyin, R. Turker, L. Mustafa, and T. Adalet, âSeparation and speciation of Cr (III) and Cr (VI) with Saccharomyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS,â Talanta, vol. 51, no. 5, pp. 895â902, 2000. [CrossRef]
- A. Basu et al., âJournal of the Taiwan Institute of Chemical Engineers A study on removal of Cr (III) from aqueous solution using biomass of Cymbopogon flexuosus immobilized in sodium alginate beads and its use as hydrogenation catalyst,â J. Taiwan Inst. Chem. Eng., vol. 102, pp. 118â132, 2019. [CrossRef]
- S. Elabbas, L. Mandi, F. Berrekhis, M. N. Pons, J. P. Leclerc, and N. Ouazzani, âRemoval of Cr (III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble,â J. Environ. Manage., vol. 166, pp. 589â595, 2016. [CrossRef]
- I. A. Bhatti, N. Ahmad, N. Iqbal, M. Zahid, and M. Iqbal, âChromium adsorption using waste tire and conditions optimization by response surface methodology,â J. Environ. Chem. Eng., vol. 5, no. 3, pp. 2740â2751, 2017. [CrossRef]
- J. Wang and X. Guo, âAdsorption kinetic models: Physical meanings, applications, and solving methods,â J. Hazard. Mater., vol. 390, no. January, p. 122156, 2020. [CrossRef]
- S. L. Chan, Y. P. Tan, A. H. Abdullah, and S. T. Ong, âEquilibrium, kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic Blue 3 and Congo Red dyes: Pineapple (Ananas comosus) plant stem,â J. Taiwan Inst. Chem. Eng., vol. 61, pp. 306â315, 2016. [CrossRef]
- A. R. Iftikhar, H. N. Bhatti, M. A. Hanif, and R. Nadeem, âKinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass,â J. Hazard. Mater., vol. 161, no. 2â3, pp. 941â947, 2009. [CrossRef]
- R. M. Dias, J. G. Silva, V. L. Cardoso, and M. M. De Resende, âScienceDirect Removal and desorption of chromium in synthetic effluent by a mixed culture in a bioreactor with a magnetic field,â J. Environ. Sci., vol. 91, no. 430, pp. 151â159, 2020. [CrossRef]
- M. Vakili, S. Deng, G. Cagnetta, W. Wang, and P. Meng, âSeparation and Puri fi cation Technology Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review,â Sep. Purif. Technol., vol. 224, no. May, pp. 373â387, 2019. [CrossRef]





| Independent Variables | Levels | |
|---|---|---|
| Biosorbent size, T (ÎŒm) | 106 | 212 |
| Biosorbent dose, D (mg/L) | 0.5 | 1.0 |
| pH | 4.8 | 5.5 |
| Element | Unit | Zone NÂș1 | Zone NÂș2 | Zone NÂș3 | ||
|---|---|---|---|---|---|---|
| Area 1 | Area 1 | Area 1 | Area 2 | Area 3 | ||
| Carbon, C | % | 54.11 | 55.88 | 67.85 | 68.27 | 63.73 |
| Oxigen, O | % | 42.17 | 41.27 | 30.83 | 30.47 | 33.47 |
| Chromium, Cr | % | 0.48 | 1.02 | 0.65 | 0.65 | 0.86 |
| Aluminum, Al | % | 0.41 | - | - | 0.23 | - |
| Silicon, Si | % | 2.82 | 0.49 | 0.4 | 0.39 | 1.45 |
| Calcium, Ca | % | - | 0.66 | 0.27 | - | 0.49 |
| N Âș | pH | Dose (g/L) | Size (ÎŒm) | Cf (mg/L) | q (mg/g) |
|---|---|---|---|---|---|
| 1 | 5.15 | 0.75 | 150 | 28.3 2.23 | 28.9 3 |
| 2 | 5.5 | 0.5 | 212 | 29.7 1.21 | 40.6 2.4 |
| 3 | 4.8 | 0.5 | 212 | 31.91.89 | 36.1 3.8 |
| 4 | 5.5 | 1 | 106 | 24.8 3.15 | 25.2 3.2 |
| 5 | 4.8 | 1 | 106 | 26.0 0.53 | 24.0 0.5 |
| 6 | 4.8 | 1 | 212 | 28.73.62 | 21.3 3.6 |
| 7 | 5.5 | 1 | 212 | 26.5 3.86 | 23.5 3.9 |
| 8 | 4.8 | 0.5 | 106 | 29.8 2.95 | 40.4 5.9 |
| 9 | 5.15 | 0.75 | 150 | 29.4 3.03 | 27.5 4 |
| 10 | 5.5 | 0.5 | 106 | 26.12.24 | 47.9 4.5 |
| 11 | 5.15 | 0.75 | 150 | 30.7 1.49 | 25.7 2 |
| Efect | Estimated | Confidence Int. |
|---|---|---|
| Average | 31.01 | +/- 1.42921 |
| A: pH | 3.86 | +/- 3.3518 |
| B: Dose | -17.74 | +/- 3.3518 |
| C: Size | -3.99 | +/- 3.3518 |
| AB | -2.11 | +/- 3.3518 |
| AC | -0.49 | +/- 3.3518 |
| BC | 1.77 | +/- 3.3518 |
| Source | Sum of squares | LG | Square medium | F-Ratio | p-Value |
|---|---|---|---|---|---|
| A: pH | 89.3204 | 1 | 89.3204 | 5.64 | 0.0258 |
| B: dose | 1888.6 | 1 | 1888.6 | 119.35 | 0 |
| C: size | 95.6004 | 1 | 95.6004 | 6.04 | 0.0216 |
| AB | 26.6704 | 1 | 26.6704 | 1.69 | 0.2065 |
| AC | 1.45042 | 1 | 1.45042 | 0.09 | 0.7647 |
| BC | 18.9038 | 1 | 18.9038 | 1.19 | 0.2853 |
| Blocks | 91.1297 | 2 | 45.5648 | 2.88 | 0.0757 |
| Total error | 379.787 | 24 | 15.8245 | ||
| Total (corr.) | 2591.46 | 32 |
Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
