Submitted:
28 November 2024
Posted:
29 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Research Design
2.1. Sample
2.2. Key Variables
2.2.1. Labor Investment Efficiency
2.2.2. Regulatory Intensity
2.3. Empirical Model
2.4. Sample Descriptive Statistics
3. Results
3.1. Baseline Regression Analysis
3.2. Robustness Checks
3.2.1. Entropy Balancing Approach
3.2.2. Instrumental Variable Approach
3.2.3. Controlling for Financial Constraints
3.3. Additional Analyses
4. Conclusions
Appendix A. Variable Definitions
| Definition | |
| Laborinefft | Labor investment inefficiency, constructed as the absolute values of the residuals from Eq. (1) in financial year t. |
| RegIn_Reg t-1 | Logarithm of the number of active paperwork regulations in calendar year t-1. The data is obtained from https://sites.google.com/view/jkalmenovitz. |
| RegIn_Resp t-1 | Logarithm of the total number of responses received (“how much paperwork”) in calendar year t-1. |
| RegIn_Time t-1 | Logarithm of total hours invested by the public to comply with paperwork regulation in calendar year t-1, including the time it takes to collect the information, read the instructions, and file the paperwork. |
| RegIn_Dollart-1 | Logarithm of total dollars invested by the public for compliance in calendar year t-1. |
| RegIn_Comp3t-1 | The component generated from the first three regulatory intensity proxies with an eigenvalue above 1 using the PCA analysis in calendar year t-1. |
| RegIn_Comp4t-1 | The component generated from all four regulatory intensity proxies with an eigenvalue above 1 using the PCA analysis in calendar year t-1. |
| NetHiret-1 | Percentage change in the number of employees (EMP) from financial year t-1 to financial year t |
| SGRt-1 | Percentage change in sales in financial year t-1. |
| SGRt | Percentage change in sales in financial year t for firm i. |
| ∆ROAt | Change in return on assets (NI/lag (AT)) in financial year t. |
| ∆ROAt-1 | Change in return on assets in financial year t-1. |
| ROAt | Return on assets in financial year t. |
| Returnt | Total stock return during financial year t. |
| FirmSize_R t-1 | Percentile rank of firm market capitalization (CSHO*PRCC_F) at the end of year t-1. |
| Quick t-1 | Quick ratio ((CHE+RECT)/LCT) at the end of financial year t-1. |
| ∆Quick t-1 | Percentage change in the quick ratio in financial year t-1. |
| ∆Quick t | Percentage change in the quick ratio in financial year t. |
| Lev t-1 | The sum of debt in current liabilities and total long-term debt (DLC+DLTT) scaled by total assets (AT) at the end of financial year t-1. |
| AUR t-1 | Ratio of annual sales to total assets in financial year t-1. |
| LossBin1 t-1LossBin2 t-1LossBin3 t-1LossBin4 t-1LossBin5 t-1 | There are five separate loss bins for each 0.005 interval of ROA from 0 to −0.025 in period t-1. LossBin1 equals 1 if ROA ranges from −0.005 to 0. LossBin2 equals 1 if ROA ranges from −0.005 to −0.010. LossBin3 equals 1 if ROA ranges from −0.010 to −0.015. LossBin4 equals 1 if ROA ranges from −0.015 to −0.020. LossBin5 equals 1 if ROA ranges from −0.020 and−0.025. |
| AQ t-1 | Accounting quality, constructed as in Dechow and Dichev (2002) model modified by McNichols (2002) and Francis et al. (2005). We regress working capital accruals on one-year-lagged, current, and one-year-ahead cash flows from operations, the change in revenue, and property, plant, and equipment cross-sectionally by industry-year and estimate the residuals. We multiply the standard deviation of firm i’s residuals over the past 5 years (t-5 to t-1) by −1 (so that it increases with accounting quality). Finally, we rank the resulting measure into deciles by year. |
| MTB t-1 | Market-to-book ratio (CSHO*PRCC_F/SEQ) in year t−1. |
| DivDum t-1 | Indicator variable that equals 1 if firm i paid dividends (DVPSP_F) in financial year t-1 and zero otherwise. |
| STD_CFO t-1 | Standard deviation of cash flows from operations (OANCF) from financial year t-5 to t-1. |
| STD_Sales t-1 | Standard deviation of sales from year t-5 to t-1. |
| Tangibles t-1 | Property, plant, and equipment (PPENT) scaled by total assets, both measured at the end of financial year t-1. |
| Loss t-1 | Indicator variable that equals 1 if firm i had negative ROA for financial year t-1 and zero otherwise. |
| Inst t-1 | Percentage of institutional shareholdings at the end of financial year t-1. |
| STD_Net_Hire t-1 | Standard deviation of the change in the number of employees (EMP) from financial year t-5 to t-1 for firm i. |
| Labor_Intensity t-1 | Labor intensity, constructed as the number of employees divided by total assets at the end of financial year t-1. |
| Union t-1 | Industry-level labor unionization rate for financial year t-1, obtained from www.unionstats.com. |
| |AB_ Abnormal_InvestOthert | Abnormal non-labor investments, constructed the absolute values of the residual from the following equation: Invest_Otherit=β0+β1SGRit-1+εit, where Invest_Other is the sum of capital expenditure (CAPEX), research and development expenditures (XRD), less cash receipts from the sale of property, plant, and equipment (SPPE), all scaled by lagged total assets. |
| MA t-1 | The industry-year decile rank of managerial ability scores constructed by Demerjian et al. (2012). |
References
- Ben-Nasr, H., & Alshwer, A. A. (2016). Does stock price informativeness affect labor investment efficiency? Journal of Corporate Finance, 38, 249–271. [CrossRef]
- Ben-Nasr, H., & Ghouma, H. (2018). Employee welfare and stock price crash risk. Journal of Corporate Finance, 48, 700–725. [CrossRef]
- Bharadwaj, A. S. (2000). A resource-based perspective on information technology capability and firm performance: An empirical investigation. MIS quarterly, 24 (1), 169-196. [CrossRef]
- Bharath, S., & Shumay, T. (2008). Forecasting default with the Merton Distance to Default model. Review of Financial Studies, 21, 1339–1369.
- Bisetti, E. (2024). The value of regulators as monitors: Evidence from banking. Management Science. [CrossRef]
- Boubaker, S., Dang, V. A., & Sassi, S. (2022). Competitive pressure and firm investment efficiency: Evidence from corporate employment decisions. European Financial Management, 28(1), 113–161. [CrossRef]
- Bradford, C. S. (2004). Does size matter? An economic analysis of small business exemptions from regulation. Journal of Small and Emerging Business Law, 8, 1–37.
- Cao, Z., & Rees, W. (2020). Do employee-friendly firms invest more efficiently? Evidence from labor investment efficiency. Journal of Corporate Finance, 65, 101744. [CrossRef]
- Canil, J., Karpavičius, S., & Yu, C. F. (2019). Are shareholders gender neutral? Evidence from say on pay. Journal of Corporate Finance, 58, 169-186. [CrossRef]
- Chen, W. E. I., Hribar, P., & Melessa, S. (2018). Incorrect inferences when using residuals as dependent variables. Journal of Accounting Research, 56(3), 751-796. [CrossRef]
- Chen, W., & So L. (2014). Validation of the Merton distance to the default model under ambiguity. Journal of Risk and Financial Management, 7, 13-2. [CrossRef]
- Coffey, B., McLaughlin, P. A., & Peretto, P. (2020). The cumulative cost of regulations. Review of Economic Dynamics, 38, 1–21. [CrossRef]
- Crain, W. M., & Crain, N. V. (2014). The cost of federal regulation to the U.S. economy, manufacturing, and small business. A Report for the National Association of Manufacturers. Semptember 10, 2014.
- Crain N.V., & Crain, W. M. (2023). The cost of federal regulation to the U.S. economy, manufacturing and small business-A study conducted for the National Association of Manufacturers. October 2023.
- Davidson, T., Ngo, T., & Wang, H. (2024). Credit union member benefits: Does local religiosity matter? Working paper, Ohio University.
- Dechow, P. M., & Dichev, I. D. (2002). The quality of accruals and earnings: The role of accrual estimation errors. The accounting review, 77(s-1), 35-59. [CrossRef]
- Demerjian, P., Lev, B., & McVay, S. (2012). Quantifying managerial ability: a new measure and validity tests. Management Science, 58, 1229–1248. [CrossRef]
- Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate failure prediction with stochastic covariates. Journal of Financial Economics, 83, 635–65.
- Ee, M.S., Hasan, I., & Huang, H. (2022). Stock liquidity and corporate labor investment. Journal of Corporate Finance, 72, 1-26. [CrossRef]
- Eisfeldt, A. L., & Papanikolaou, D. (2013). Organization capital and the cross-section of expectedreturns. The Journal of Finance, 68(4), 1365-1406. [CrossRef]
- Ertugrul, M. (2013). Employee-friendly acquirers and acquisition performance. Journal of Financial Research, 36, 347–370. [CrossRef]
- Ferris, S. P., & Sainani, S. (2021). Do CFOs matter? Evidence from the M&A process. Journal of Corporate Finance, 67, 101856. [CrossRef]
- Flammer, C. (2015). Does corporate social responsibility lead to superior financial performance? A regression discontinuity approach. Management Science, 61(11), 2549-2568. [CrossRef]
- Fogel, K., El-Khatib, R., Feng, N. C., & Torres-Spelliscy, C. (2015). Compliance costs and disclosure requirement mandates: Some evidence. Research in Accounting Regulation, 27(1), 83–87. [CrossRef]
- Francis, J., LaFond, R., Olsson, P., & Schipper, K. (2005). The market pricing of accruals quality. Journal of accounting and economics, 39(2), 295-327. [CrossRef]
- Gao, M., Leung, H., & Qiu, B. (2021). Organization capital and executive performance incentives. Journal of Banking & Finance, 123, 106017. [CrossRef]
- Ghaly, M., Dang, V.A., & Stathopoulos, K. (2015). Cash holdings and employee welfare. Journal of Corporate Finance, 33, 53–70. [CrossRef]
- Ghaly, M., Dang, V.A., & Stathopoulos, K. (2020). Institutional investors’ horizons and corporate employment decisions. Journal of Corporate Finance, 101634. [CrossRef]
- Habib, A., & Hasan, M. M. (2021). Business strategy and labor investment efficiency. International Review of Finance, 21(1), 58-09. [CrossRef]
- Hale, A., Borys, D., & Adams, M. (2011). Regulatory overload: A behavioral analysis of regulatory compliance, working paper, George Mason University.
- Helm, D. (2006). Regulatory Reform, Capture, and the Regulatory Burden. Oxford Review of Economic Policy, 22(2), 169–185.
- Ince, B. (2024). How Do Regulatory costs affect M&A decisions and outcomes? Journal of Banking and Finance, forthcoming.
- Ince, B., & Ozsoylev, H. (2024). Price of regulations: Regulatory costs and the cross-section of stock returns. The Review of Asset Pricing Studies, raae001. [CrossRef]
- James, H., Pornsit, J., & Wang., H. (2024). CEO tenure and labor investment efficiency, working paper, University of Texas at Tyler.
- Hirsch, B., & Macpherson, D. (2003). Union membership and coverage database from the current population survey: note. Industrial and Labor Relations Review, 44(1), 5-33. [CrossRef]
- Jiang, Y., Guo, C., & Wu, Y. (2022). Environmental information disclosure and labour investment efficiency. Applied Economics Letters, 29(3), 238-244. [CrossRef]
- Jung, B., Kang, T., Lee, W.-J., & Zhou, G. (2022). Pro-labor institutions and corporate employment efficiency. Journal of Accounting, Auditing & Finance, 37(3), 547–561. [CrossRef]
- Jung, B., Lee, W. J., & Weber, D. P. (2014). Financial reporting quality and labor investment efficiency. Contemporary Accounting Research, 31, 1047–1076. [CrossRef]
- Kalmenovitz, J. (2023). Regulatory intensity and firm-specific exposure. Review of Financial Studies, 36(8), 3311–3347. [CrossRef]
- Klepper, S. (1997). Industry life cycles. Industrial and Corporate Change, 6(1), 145-182.
- Khedmati, M., Sualihu, M. A., & Yawson, A. (2020). CEO-director ties and labor investment efficiency. Journal of Corporate Finance, 65, N.PAG-N.PAG. [CrossRef]
- Kong, D., Liu, S., & Xiang, J. (2018). Political promotion and labor investment efficiency. China Economic Review, 50, 273–293. [CrossRef]
- McNichols, M. F. (2002). Discussion of the quality of accruals and earnings: The role of accrual estimation errors. The accounting review, 77(s-1), 61-69. [CrossRef]
- Lai, S., Li, X., & Chan, K. C. (2021). CEO overconfidence and labor investment efficiency. North American Journal of Economics & Finance, 55, N.PAG-N.PAG. [CrossRef]
- Le, A., & Tran, T. P. (2021). Corporate governance and labor investment efficiency: International evidence from board reforms. Corporate Governance: An International Review, 30, 555-583. [CrossRef]
- Lee, K. Y. (Kailey), & Mo, K. (2020). Do analysts improve labor investment efficiency? Journal of Contemporary Accounting & Economics, 16(3), 100213. [CrossRef]
- Luo, J., Li, X., & Chan, K. C. (2020). Political uncertainty and labour investment efficiency. Applied Economics, 52, 4677–4697. [CrossRef]
- Mauri, A. J., & Michaels, M. P. (1998). Firm and industry effects within strategic management: An empirical examination. Strategic Management Journal, 19(3), 211-219. [CrossRef]
- Merton, R. C. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. Journal of Finance, 29, 449–470. [CrossRef]
- Merz, M., & Yashiv, E. (2007). Labor and the market value of the firm. American Economic Review, 97, 1419–1431. [CrossRef]
- Nagel, S., & Purnanandam, A. (2020). Bank’s risk dynamics and distance to default. Review of Financial Studies, 33, 2412-2467.
- Peltzman, S. (1976). Toward a more general theory of regulation. The Journal of Law and Economics, 19(2), 211-240. [CrossRef]
- Pfeffer, J. (1996). Competitive Advantage through People: Unleashing the Power of the Work Force. Cambridge, MA: Harvard Business School Press.
- Porter, M. E., & Kramer, M. R. (2006). Strategy and society: The link between competitive advantage and corporate social responsibility. Harvard Business Review, 84(12), 78-92.
- Short, J. L., Ketchen Jr, D. J., Palmer, T. B., & Hult, G. T. M. (2007). Firm, strategic group, and industry influences on performance. Strategic Management Journal, 28(2), 147-167. [CrossRef]
- Stigler, G. J. (1971). The theory of economic regulation. The Bell Journal of Economics and Management Science, 2(1), 3-21.
- Sualihu, M. A., Rankin, M., & Haman, J. (2021a). The role of equity compensation in reducing inefficient investment in labor. Journal of Corporate Finance, 66, 101788. [CrossRef]
- Sualihu, M.A., Yawson, A., & Yusoff. I. (2021b). Do analysts’ forecast properties deter suboptimal labor investment decisions? Evidence from regulation fair disclosure. Journal of Corporate Finance, 69, 1-24. [CrossRef]
- Sun, X., & Zhang, T. (2021). Board gender diversity and corporate labor investment efficiency. Review of Financial Economics, 39(3), 290–313. [CrossRef]
- Traini, S., Goldman, N. C., & Lewellen, C. M. (2024). Aggressive tax planning and labor investments. Journal of Accounting, Auditing & Finance, 39(3), 697-725. [CrossRef]
- Trebbi, F., & Zhang, M. B. (2022). The cost of regulatory compliance in the United States (Working Paper 30691). National Bureau of Economic Research.
- Whited, T. M., & Wu, G. (2006). Financial constraints risk. Review of Financial Studies, 19 (2), 531–559.
- Williamson, O. (1963). Managerial discretion and business behavior. American Economic Review, 53, 1032–57.
- Williams, R., & Adams, M. (2012). Mercatus on policy-regulatory overload, Mercatus Center, George Mason University, No. 103. February 2012.
- Wintoki, M. B., & Xi, Y. (2019). Friendly directors and the cost of regulatory compliance. Journal of Corporate Finance, 58, 112–141. [CrossRef]
- Wooldridge, J.M. (2002). Econometric analysis of cross section and panel data. The MIT Press, Cambridge.
| 1 | Crain and Crain (2023) find that the estimated costs of U.S. federal government regulations are $3.079 trillion in 2022 (in 2023 dollars), accounting for 12% of U.S. GDP, and that the estimated aggregate costs of federal regulations to the manufacturing sector in the U.S. are $349 billion in 2022. According to Kalmenovitz (2023), in the United States, the public spent 292.1 billion hours in preparing and filing 2.24 trillion forms to comply with 36,702 regulations, and compliance consumes 3.2% of total working hours in an average year. |
| 2 | Jiang et al. (2022) examine the association between environmental information disclosure and labor investment efficiency in Chinese firms by focusing on the compliance of one regulation (the Guidelines for Environmental Information Disclosure of Listed Companies issued by The Ministry of Ecology and Environment in 2015). We seek to uncover the impact of regulatory compliance at an aggregate level in U.S. firms, i.e., regulatory compliance with all regulations relevant to a firm. |
| 3 | Studies show that labor investment efficiency increases with stock liquidity (Ee et al., 2022), analysts’ coverage (Lee & Mo, 2020), employee-friendly treatment (Cao & Rees, 2020), accounting quality (Jung et al., 2014), stock price informativeness (Ben-Nasr & Alshwer, 2016), the number of long-term institutional investors (Ghaly et al., 2020), board gender diversity (i.e., the proportion of female directors) (Sun & Zhang, 2021), and CEO tenure (James et al., 2024). Board reforms designated to mitigate managerial moral hazard can positively affect a firm’s labor investment efficiency (Le & Tran, 2021). Labor investment efficiency decreases with analysts’ forecast errors (Sualihu et al., 2021b), stronger CEO-director ties (Khedmati et al., 2020), and operational uncertainty/risk (Habib & Hasan, 2021; Boubaker et al., 2022; Traini et al., 2024). Over-confident CEOs (Lai et al., 2021) and those with stronger risk-taking incentives (Sualihu et al., 2021a) are associated with lower labor investment efficiency. |
| 4 | Bisetti (2024) studies the monitoring role of the Federal Reserve and find that banks subject to decreased off-site surveillance intensity witness drops in Tobin’s Q and equity market-to-book, and that such banks tend to engage in more earnings management. |
| 5 | Ronald Reagan,“Remarks Announcing the Establishment of the Presidential Task Force on Regulatory Relief” (January 22,1981). (http://www.presidency.ucsb.edu/ws/index.php?pid=43635). |
| 6 | Discovery costs are related to review of new regulations and see whether the new regulations apply to them, and costs of outdated production methods are due to the lagged feature of regulations (Hale et al., 2011). |
| 7 | Please refer to Kalmenovitz (2023) for details of the construction of the measures of firm-level regulatory intensity. |
| 8 | |
| 9 | The number of firm-year observations of RegIn_Dollar is less than the other three proxies. To avoid any missing information, we create two PCA measures from the first three proxies and all proxies separately. |
| 10 | Regulatory intensity data is available till 2020. Our sample ends in 2019 for two reasons: 1). Managerial ability scores, one of the control variables used in this study, are available till 2019. 2). 2020 is a unique year for all businesses given the outbreak of Covid-19 and its disruptive features. Firms had to adjust various policies during the pandemic and including 2020 in our sample may bias our results. |
| 11 | Other vehicles can also be used to mitigate regulatory burden. For example, to mititage the burden from SOX and exchange listing requirements of increasing the number of outside directors, firms substitute their insider directors with outside ones being socially/professionally connected to their CEOs (Wintoki & Xi, 2019). |
| 12 | Hirsch and Macpherson (2003) detail the construction of the database. |
| 13 | Please note that our sample size is reduced when RegIn_Dollar and RegIn_Comp4 are used to proxy for the level of regulatory intensity as the coverage of RegIn_Dollar is smaller than other proxies. |
| 14 | Organization capital facilitates the match between human resources and production facilities, and hence affects the efficiency of a firm (Bharadwaj, 2000; Eisfeldt & Papanikolaou, 2013). |
| 15 | Refer to Gao et al. (2021) for details. |
| Panel A. Sample distribution by year | Panel B. Sample distribution by industry | |||||
| Year | N | Percent | Industry | N | Percent | |
| 1995 | 2,248 | 4.12 | Aero | 448 | 0.82 | |
| 1996 | 2,287 | 4.19 | Agric | 242 | 0.44 | |
| 1997 | 2,339 | 4.28 | Autos | 1,105 | 2.02 | |
| 1998 | 2,411 | 4.41 | Beer | 195 | 0.36 | |
| 1999 | 2,418 | 4.43 | Bldmt | 1,520 | 2.78 | |
| 2000 | 2,390 | 4.38 | Books | 401 | 0.73 | |
| 2001 | 2,448 | 4.48 | Boxes | 207 | 0.38 | |
| 2002 | 2,573 | 4.71 | Bussv | 7,054 | 12.91 | |
| 2003 | 2,582 | 4.73 | Chem | 1,473 | 2.7 | |
| 2004 | 2,570 | 4.7 | Chips | 4,665 | 8.54 | |
| 2005 | 2,571 | 4.71 | Clths | 894 | 1.64 | |
| 2006 | 2,532 | 4.64 | Cnstr | 476 | 0.87 | |
| 2007 | 2,375 | 4.35 | Coal | 90 | 0.16 | |
| 2008 | 2,260 | 4.14 | Comps | 2,350 | 4.3 | |
| 2009 | 2,174 | 3.98 | Drugs | 2,993 | 5.48 | |
| 2010 | 2,116 | 3.87 | Elceq | 1,209 | 2.21 | |
| 2011 | 2,040 | 3.73 | Fabpr | 243 | 0.44 | |
| 2012 | 1,991 | 3.64 | Food | 1,231 | 2.25 | |
| 2013 | 1,968 | 3.6 | Fun | 768 | 1.41 | |
| 2014 | 1,903 | 3.48 | Gold | 129 | 0.24 | |
| 2015 | 1,771 | 3.24 | Guns | 156 | 0.29 | |
| 2016 | 1,723 | 3.15 | Hlth | 1,251 | 2.29 | |
| 2017 | 1,685 | 3.08 | Hshld | 973 | 1.78 | |
| 2018 | 1,650 | 3.02 | Labeq | 1,666 | 3.05 | |
| 2019 | 1,599 | 2.93 | Mach | 2,585 | 4.73 | |
| Total | 54,624 | 100 | Meals | 1,249 | 2.29 | |
| Medeq | 2,539 | 4.65 | ||||
| Mines | 198 | 0.36 | ||||
| Oil | 2,659 | 4.87 | ||||
| Other | 784 | 1.44 | ||||
| Paper | 797 | 1.46 | ||||
| Persv | 677 | 1.24 | ||||
| Rtail | 3,528 | 6.46 | ||||
| Rubber | 613 | 1.12 | ||||
| Ships | 107 | 0.2 | ||||
| Smoke | 50 | 0.09 | ||||
| Soda | 161 | 0.29 | ||||
| Steel | 891 | 1.63 | ||||
| Telcm | 1,517 | 2.78 | ||||
| Toys | 513 | 0.94 | ||||
| Trans | 1,219 | 2.23 | ||||
| Txtls | 327 | 0.6 | ||||
| Whlsl | 2,471 | 4.52 | ||||
| Variables | N | Mean | P50 | P25 | P75 | S.D. |
| Laborinefft | 54,624 | 0.148 | 0.080 | 0.036 | 0.167 | 0.221 |
| RegIn_Reg t-1 | 54,624 | 4.609 | 4.616 | 4.554 | 4.663 | 0.108 |
| RegIn_Resp t-1 | 54,624 | 4.577 | 4.564 | 4.455 | 4.739 | 0.216 |
| RegIn_Time t-1 | 54,624 | 4.591 | 4.590 | 4.503 | 4.706 | 0.182 |
| RegIn_Dollart-1 | 47,744 | 4.540 | 4.546 | 4.397 | 4.696 | 0.237 |
| RegIn_Comp3rt-1 | 54,624 | 0.109 | 0.153 | -0.240 | 0.445 | 0.682 |
| RegIn_Comp4rt-1 | 47,744 | 0.036 | 0.060 | -0.495 | 0.620 | 0.883 |
| SGRt-1 | 54,624 | 0.124 | 0.067 | -0.034 | 0.191 | 0.415 |
| SGRt | 54,624 | 0.122 | 0.061 | -0.040 | 0.178 | 0.478 |
| ∆ROAt | 54,624 | -0.007 | 0.000 | -0.039 | 0.031 | 0.268 |
| ∆ROAt-1 | 54,624 | -0.002 | 0.001 | -0.037 | 0.032 | 0.258 |
| ROAt | 54,624 | -0.050 | 0.033 | -0.037 | 0.076 | 0.366 |
| Returnt | 54,624 | 0.263 | 0.068 | -0.224 | 0.424 | 0.973 |
| FirmSize_R t-1 | 54,624 | 53.281 | 54.000 | 30.000 | 77.000 | 27.668 |
| Quick t-1 | 54,624 | 1.832 | 1.224 | 0.760 | 2.093 | 2.049 |
| ∆Quick t-1 | 54,624 | -0.047 | -0.005 | -0.254 | 0.227 | 1.258 |
| ∆Quick t | 54,624 | -0.032 | -0.005 | -0.250 | 0.223 | 1.168 |
| Lev t-1 | 54,624 | 0.235 | 0.184 | 0.024 | 0.341 | 0.264 |
| AUR t-1 | 54,624 | 1.223 | 1.049 | 0.654 | 1.576 | 0.823 |
| LossBin1 t-1 | 54,624 | 0.052 | 0.000 | 0.000 | 0.000 | 0.222 |
| LossBin2 t-1 | 54,624 | 0.044 | 0.000 | 0.000 | 0.000 | 0.206 |
| LossBin3 t-1 | 54,624 | 0.037 | 0.000 | 0.000 | 0.000 | 0.189 |
| LossBin4 t-1 | 54,624 | 0.032 | 0.000 | 0.000 | 0.000 | 0.176 |
| LossBin5 t-1 | 54,624 | 0.026 | 0.000 | 0.000 | 0.000 | 0.159 |
| AQ t-1 | 54,624 | 5.389 | 5.000 | 3.000 | 8.000 | 2.819 |
| MTB t-1 | 54,624 | 2.776 | 1.913 | 1.086 | 3.359 | 4.965 |
| DivDum t-1 | 54,624 | 0.327 | 0.000 | 0.000 | 1.000 | 0.469 |
| STD_CFO t-1 | 54,624 | 0.135 | 0.046 | 0.022 | 0.109 | 0.449 |
| STD_Sales t-1 | 54,624 | 0.209 | 0.140 | 0.078 | 0.252 | 0.224 |
| Tangibles t-1 | 54,624 | 0.255 | 0.188 | 0.084 | 0.361 | 0.221 |
| Loss t-1 | 54,624 | 0.326 | 0.000 | 0.000 | 1.000 | 0.469 |
| Inst t-1 | 54,624 | 0.396 | 0.337 | 0.000 | 0.746 | 0.375 |
| STD_Net_Hire t-1 | 54,624 | 0.298 | 0.146 | 0.080 | 0.269 | 0.680 |
| Labor_Intensity t-1 | 54,624 | 0.008 | 0.005 | 0.002 | 0.009 | 0.010 |
| Union t-1 | 54,624 | 2.176 | 0.000 | 0.000 | 0.131 | 8.736 |
| |Ab_Invest_Other| t | 54,624 | 0.093 | 0.055 | 0.025 | 0.107 | 0.136 |
| MA t-1 | 54,624 | 0.561 | 0.600 | 0.300 | 0.800 | 0.272 |
| Variables | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | |
| [1] | Laborinefft | 1 | ||||||||||
| [2] | RegIn_Reg t-1 | -0.103*** | 1 | |||||||||
| [3] | RegIn_Resp t-1 | -0.087*** | 0.801*** | 1 | ||||||||
| [4] | RegIn_Time t-1 | -0.085*** | 0.816*** | 0.912*** | 1 | |||||||
| [5] | RegIn_Dollart-1 | -0.061*** | 0.489*** | 0.534*** | 0.538*** | 1 | ||||||
| [6] | RegIn_Comp3t-1 | -0.103*** | 1.000*** | 0.801*** | 0.816*** | 0.489*** | 1 | |||||
| [7] | RegIn_Comp4t-1 | -0.061*** | 0.489*** | 0.534*** | 0.538*** | 1.000*** | 0.489*** | 1 | ||||
| [8] | AQ t-1 | -0.139*** | -0.010** | -0.001 | 0.000 | 0.031*** | -0.010** | 0.031*** | 1 | |||
| [9] | MTB t-1 | 0.073*** | 0.010** | 0.014*** | 0.019*** | -0.008* | 0.010** | -0.008* | -0.036*** | 1 | ||
| [10] | FirmSize_R t-1 | 0.050*** | -0.013*** | -0.010** | -0.017*** | -0.009** | -0.013*** | -0.009** | -0.076*** | -0.292*** | 1 | |
| [11] | Quick t-1 | 0.128*** | 0.051*** | 0.052*** | 0.042*** | -0.008* | 0.051*** | -0.008* | -0.246*** | 0.106*** | 0.007* | 1 |
| [12] | Lev t-1 | 0.018*** | 0.012*** | 0.018*** | 0.019*** | 0.019*** | 0.012*** | 0.019*** | 0.177*** | 0.040*** | -0.121*** | 0.072*** |
| [13] | DivDum t-1 | -0.131*** | 0.031*** | 0.041*** | 0.049*** | 0.074*** | 0.031*** | 0.074*** | 0.419*** | -0.104*** | -0.049*** | -0.225*** |
| [14] | STD_CFO t-1 | 0.146*** | -0.017*** | -0.009** | -0.022*** | -0.035*** | -0.017*** | -0.035*** | -0.212*** | -0.008* | 0.195*** | 0.211*** |
| [15] | STD_Sales t-1 | 0.156*** | -0.061*** | -0.058*** | -0.065*** | -0.061*** | -0.061*** | -0.061*** | -0.320*** | -0.063*** | 0.124*** | 0.243*** |
| [16] | Tangibles t-1 | -0.035*** | -0.096*** | -0.083*** | -0.067*** | -0.028*** | -0.096*** | -0.028*** | 0.108*** | -0.247*** | 0.214*** | -0.221*** |
| [17] | Loss t-1 | 0.144*** | 0.000 | 0.010** | 0.007* | -0.021*** | 0.000 | -0.021*** | -0.399*** | 0.011** | 0.164*** | 0.229*** |
| [18] | Inst t-1 | -0.142*** | 0.213*** | 0.202*** | 0.182*** | 0.122*** | 0.213*** | 0.122*** | 0.503*** | 0.012*** | -0.089*** | -0.166*** |
| [19] | STD_Net_Hire t-1 | 0.153*** | -0.068*** | -0.065*** | -0.062*** | -0.052*** | -0.068*** | -0.052*** | -0.135*** | -0.001 | 0.081*** | 0.120*** |
| [20] | Labor_Intensity t-1 | -0.009** | -0.143*** | -0.124*** | -0.125*** | -0.074*** | -0.143*** | -0.074*** | -0.181*** | -0.165*** | 0.046*** | -0.070*** |
| [21] | Union t-1 | 0.025*** | -0.200*** | -0.192*** | -0.160*** | -0.007 | -0.200*** | -0.007 | 0.009** | -0.037*** | 0.019*** | 0.026*** |
| [22] | |Ab_Invest_Other| t | 0.108*** | -0.008* | 0.013*** | 0.022*** | 0.015*** | -0.008* | 0.015*** | -0.119*** | 0.034*** | 0.078*** | 0.221*** |
| [23] | MA . t-1 | -0.027*** | -0.007* | -0.006 | -0.005 | -0.009* | -0.007* | -0.009* | 0.033*** | 0.058*** | -0.108*** | 0.024*** |
| [12] | [13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | ||
| [12] | Lev t-1 | 1 | ||||||||||
| [13] | DivDum t-1 | 0.025*** | 1 | |||||||||
| [14] | STD_CFO t-1 | 0.004 | -0.151*** | 1 | ||||||||
| [15] | STD_Sales t-1 | -0.009** | -0.198*** | 0.367*** | 1 | |||||||
| [16] | Tangibles t-1 | -0.069*** | 0.151*** | -0.071*** | -0.173*** | 1 | ||||||
| [17] | Loss t-1 | -0.030*** | -0.324*** | 0.197*** | 0.173*** | -0.050*** | 1 | |||||
| [18] | Inst t-1 | 0.064*** | 0.207*** | -0.157*** | -0.238*** | -0.022*** | -0.269*** | 1 | ||||
| [19] | STD_Net_Hire t-1 | 0.007 | -0.148*** | 0.186*** | 0.232*** | -0.012*** | 0.132*** | -0.146*** | 1 | |||
| [20] | Labor_Intensity t-1 | -0.039*** | -0.042*** | 0.052*** | 0.192*** | 0.111*** | -0.013*** | -0.134*** | 0.041*** | 1 | ||
| [21] | Union t-1 | -0.008* | 0.016*** | -0.028*** | 0.046*** | -0.044*** | -0.031*** | -0.101*** | 0.019*** | 0.038*** | 1 | |
| [22] | |Ab_Invest_Other| t | 0.037*** | -0.110*** | 0.176*** | 0.109*** | -0.015*** | 0.128*** | -0.087*** | 0.048*** | 0.012*** | -0.044*** | 1 |
| [23] | MA t-1 | 0.087*** | 0.033*** | 0.014*** | 0.089*** | -0.118*** | -0.155*** | -0.011*** | -0.038*** | 0.013*** | 0.023*** | 0.014*** |
| (1) | (2) | (3) | (4) | (5) | (6) | |
| Variables | Laborineff | |||||
| RegIn_Reg t-1 | -0.059*** | |||||
| (-2.890) | ||||||
| RegIn_Resp t-1 | -0.045*** | |||||
| (-2.723) | ||||||
| RegIn_Time t-1 | -0.047*** | |||||
| (-2.922) | ||||||
| RegIn_Dollart-1 | -0.060*** | |||||
| (-3.798) | ||||||
| RegIn_Comp3 t-1 | -0.059*** | |||||
| (-2.890) | ||||||
| RegIn_Comp4 t-1 | -0.060*** | |||||
| (-3.798) | ||||||
| AQ t-1 | 0.016 | 0.017* | 0.016* | 0.008 | 0.016 | 0.008 |
| (1.640) | (1.716) | (1.651) | (0.725) | (1.640) | (0.725) | |
| MTB t-1 | 0.013** | 0.013** | 0.012** | 0.017*** | 0.013** | 0.017*** |
| (2.226) | (2.180) | (2.169) | (2.705) | (2.226) | (2.705) | |
| FirmSize_R t-1 | -0.051*** | -0.050** | -0.050** | -0.050** | -0.051*** | -0.050** |
| (-2.595) | (-2.549) | (-2.556) | (-2.351) | (-2.595) | (-2.351) | |
| Quick t-1 | 0.028** | 0.028** | 0.029** | 0.029** | 0.028** | 0.029** |
| (2.337) | (2.337) | (2.347) | (2.324) | (2.337) | (2.324) | |
| Lev t-1 | -0.027*** | -0.027*** | -0.027*** | -0.030*** | -0.027*** | -0.030*** |
| (-2.597) | (-2.649) | (-2.650) | (-2.641) | (-2.597) | (-2.641) | |
| DivDum t-1 | 0.033*** | 0.034*** | 0.034*** | 0.034*** | 0.033*** | 0.034*** |
| (4.072) | (4.132) | (4.156) | (3.933) | (4.072) | (3.933) | |
| STD_CFO t-1 | 0.031** | 0.032*** | 0.032*** | 0.037*** | 0.031** | 0.037*** |
| (2.547) | (2.651) | (2.640) | (2.766) | (2.547) | (2.766) | |
| STD_Sales t-1 | 0.032*** | 0.033*** | 0.033*** | 0.027** | 0.032*** | 0.027** |
| (3.148) | (3.205) | (3.195) | (2.402) | (3.148) | (2.402) | |
| Tangibles t-1 | 0.010 | 0.009 | 0.009 | 0.006 | 0.010 | 0.006 |
| (0.531) | (0.486) | (0.505) | (0.303) | (0.531) | (0.303) | |
| Loss t-1 | 0.006 | 0.006 | 0.006 | 0.004 | 0.006 | 0.004 |
| (0.946) | (0.938) | (0.969) | (0.610) | (0.946) | (0.610) | |
| Inst t-1 | 0.010 | 0.010 | 0.010 | 0.011 | 0.010 | 0.011 |
| (1.128) | (1.130) | (1.114) | (1.191) | (1.128) | (1.191) | |
| STD_Net_Hire t-1 | -0.069*** | -0.070*** | -0.070*** | -0.076*** | -0.069*** | -0.076*** |
| (-6.348) | (-6.411) | (-6.389) | (-5.796) | (-6.348) | (-5.796) | |
| Labor_Intensity t-1 | -0.157*** | -0.157*** | -0.157*** | -0.151*** | -0.157*** | -0.151*** |
| (-6.568) | (-6.567) | (-6.575) | (-5.769) | (-6.568) | (-5.769) | |
| Union t-1 | -0.009 | -0.011 | -0.011 | -0.015 | -0.009 | -0.015 |
| (-0.387) | (-0.461) | (-0.446) | (-0.677) | (-0.387) | (-0.677) | |
| |Ab_Invest_Other| t | 0.034*** | 0.035*** | 0.035*** | 0.025*** | 0.034*** | 0.025*** |
| (4.080) | (4.153) | (4.174) | (2.972) | (4.080) | (2.972) | |
| MA t-1 | 0.015** | 0.015** | 0.015** | 0.012* | 0.015** | 0.012* |
| (2.456) | (2.486) | (2.465) | (1.777) | (2.456) | (1.777) | |
| First-stage regressors | Yes | Yes | Yes | Yes | Yes | Yes |
| Constant | 0.688*** | 0.343*** | 0.388*** | 0.445*** | 0.096*** | 0.106*** |
| (3.464) | (3.622) | (3.776) | (4.256) | (6.671) | (6.706) | |
| Observations | 54,624 | 54,624 | 54,624 | 47,744 | 54,624 | 47,744 |
| R-squared | 0.130 | 0.129 | 0.129 | 0.130 | 0.130 | 0.130 |
| Clustered std err by firm | Yes | Yes | Yes | Yes | Yes | Yes |
| Industry * Year F.E. | Yes | Yes | Yes | Yes | Yes | Yes |
| Firm F.E. | Yes | Yes | Yes | Yes | Yes | Yes |
| Panel A. Comparison of firm characteristics | ||||||||||||
| High vs. Low RegIn_COMP3 t-1 | High vs. Low RegIn_COMP4 t-1 | |||||||||||
| Treated (N= 14,241) | Control (N = 42,726) | Treated (N= 11988) | Control (N = 44979) | |||||||||
| Variables | Mean | Variance | Mean | Variance | Stdz. Diff. | Var.Ratio | Mean | Variance | Mean | Variance | Stdz. Diff. | Var.Ratio |
| SGRt-1 | 0.096 | 0.127 | 0.096 | 0.127 | 0.00 | 1.00 | 0.102 | 0.131 | 0.102 | 0.131 | 0.00 | 1.00 |
| SGRt | 0.092 | 0.159 | 0.092 | 0.159 | 0.00 | 1.00 | 0.109 | 0.197 | 0.109 | 0.197 | 0.00 | 1.00 |
| ∆ROAt | -0.005 | 0.066 | -0.005 | 0.066 | 0.00 | 1.00 | -0.008 | 0.065 | -0.008 | 0.065 | 0.00 | 1.00 |
| ∆ROAt-1 | -0.001 | 0.063 | -0.001 | 0.063 | 0.00 | 1.00 | -0.004 | 0.057 | -0.004 | 0.057 | 0.00 | 1.00 |
| ROAt | -0.051 | 0.140 | -0.051 | 0.140 | 0.00 | 1.00 | -0.043 | 0.128 | -0.043 | 0.128 | 0.00 | 1.00 |
| Returnt | 0.230 | 0.707 | 0.230 | 0.707 | 0.00 | 1.00 | 0.247 | 0.827 | 0.247 | 0.827 | 0.00 | 1.00 |
| FirmSize_R t-1 | 52.410 | 772.700 | 52.410 | 772.700 | 0.00 | 1.00 | 54.190 | 764.200 | 54.190 | 764.200 | 0.00 | 1.00 |
| Quick t-1 | 1.857 | 3.919 | 1.857 | 3.919 | 0.00 | 1.00 | 1.706 | 3.830 | 1.706 | 3.830 | 0.00 | 1.00 |
| ∆Quick t-1 | -0.040 | 1.351 | -0.040 | 1.352 | 0.00 | 1.00 | -0.052 | 1.437 | -0.052 | 1.437 | 0.00 | 1.00 |
| ∆Quick t | -0.046 | 1.232 | -0.046 | 1.232 | 0.00 | 1.00 | -0.046 | 1.209 | -0.046 | 1.209 | 0.00 | 1.00 |
| Lev t-1 | 0.233 | 0.076 | 0.233 | 0.076 | 0.00 | 1.00 | 0.252 | 0.072 | 0.252 | 0.072 | 0.00 | 1.00 |
| AUR t-1 | 1.148 | 0.663 | 1.148 | 0.663 | 0.00 | 1.00 | 1.195 | 0.688 | 1.195 | 0.688 | 0.00 | 1.00 |
| LossBin1 t-1 | 0.055 | 0.052 | 0.055 | 0.052 | 0.00 | 1.00 | 0.056 | 0.053 | 0.056 | 0.053 | 0.00 | 1.00 |
| LossBin2 t-1 | 0.049 | 0.047 | 0.049 | 0.047 | 0.00 | 1.00 | 0.051 | 0.048 | 0.051 | 0.048 | 0.00 | 1.00 |
| LossBin3 t-1 | 0.041 | 0.039 | 0.041 | 0.039 | 0.00 | 1.00 | 0.042 | 0.041 | 0.042 | 0.041 | 0.00 | 1.00 |
| LossBin4 t-1 | 0.033 | 0.032 | 0.033 | 0.032 | 0.00 | 1.00 | 0.037 | 0.036 | 0.037 | 0.036 | 0.00 | 1.00 |
| LossBin5 t-1 | 0.028 | 0.027 | 0.028 | 0.027 | 0.00 | 1.00 | 0.029 | 0.029 | 0.029 | 0.029 | 0.00 | 1.00 |
| AQ t-1 | 5.573 | 7.662 | 5.573 | 7.662 | 0.00 | 1.00 | 5.234 | 8.101 | 5.234 | 8.101 | 0.00 | 1.00 |
| MTB t-1 | 2.894 | 28.870 | 2.894 | 28.870 | 0.00 | 1.00 | 2.894 | 28.620 | 2.894 | 28.620 | 0.00 | 1.00 |
| DivDum t-1 | 0.344 | 0.226 | 0.344 | 0.226 | 0.00 | 1.00 | 0.380 | 0.236 | 0.380 | 0.236 | 0.00 | 1.00 |
| STD_CFO t-1 | 0.139 | 0.233 | 0.139 | 0.233 | 0.00 | 1.00 | 0.124 | 0.196 | 0.124 | 0.196 | 0.00 | 1.00 |
| STD_Sales t-1 | 0.189 | 0.045 | 0.189 | 0.045 | 0.00 | 1.00 | 0.192 | 0.044 | 0.192 | 0.044 | 0.00 | 1.00 |
| Tangibles t-1 | 0.217 | 0.048 | 0.217 | 0.048 | 0.00 | 1.00 | 0.263 | 0.055 | 0.263 | 0.055 | 0.00 | 1.00 |
| Loss t-1 | 0.332 | 0.222 | 0.332 | 0.222 | 0.00 | 1.00 | 0.317 | 0.217 | 0.317 | 0.217 | 0.00 | 1.00 |
| Inst t-1 | 0.509 | 0.148 | 0.509 | 0.148 | 0.00 | 1.00 | 0.482 | 0.144 | 0.482 | 0.144 | 0.00 | 1.00 |
| STD_Net_Hire t-1 | 0.238 | 0.298 | 0.238 | 0.298 | 0.00 | 1.00 | 0.249 | 0.357 | 0.249 | 0.357 | 0.00 | 1.00 |
| Labor_Intensity t-1 | 0.006 | 0.000 | 0.006 | 0.000 | 0.00 | 1.00 | 0.007 | 0.000 | 0.007 | 0.000 | 0.00 | 1.00 |
| Union t-1 | 0.287 | 12.110 | 0.288 | 12.190 | 0.00 | 0.99 | 1.166 | 54.250 | 1.166 | 54.250 | 0.00 | 1.00 |
| |Ab_Invest_Other| t | 0.093 | 0.022 | 0.093 | 0.022 | 0.00 | 1.00 | 0.089 | 0.022 | 0.089 | 0.022 | 0.00 | 1.00 |
| MA t-1 | 0.552 | 0.075 | 0.552 | 0.075 | 0.00 | 1.00 | 0.555 | 0.076 | 0.555 | 0.076 | 0.00 | 1.00 |
| Panel B: Weighted regression using the entropy-balanced sample | ||||||||||||
| (1) | (2) | |||||||||||
| Variables | Laborineff | |||||||||||
| RegIn_Comp3 t-1 | -0.055** | |||||||||||
| (-2.137) | ||||||||||||
| RegIn_Comp4 t-1 | -0.056*** | |||||||||||
| (-3.125) | ||||||||||||
| AQ t-1 | -0.001 | 0.004 | ||||||||||
| (-0.061) | (0.275) | |||||||||||
| MTB t-1 | 0.013* | 0.012 | ||||||||||
| (1.720) | (1.523) | |||||||||||
| FirmSize_R t-1 | -0.023 | -0.058** | ||||||||||
| (-0.812) | (-2.073) | |||||||||||
| Quick t-1 | 0.032* | 0.020 | ||||||||||
| (1.952) | (1.404) | |||||||||||
| Lev t-1 | -0.044*** | -0.040*** | ||||||||||
| (-2.892) | (-2.706) | |||||||||||
| DivDum t-1 | 0.038*** | 0.041*** | ||||||||||
| (3.482) | (3.486) | |||||||||||
| STD_CFO t-1 | 0.041** | 0.032** | ||||||||||
| (2.373) | (2.110) | |||||||||||
| STD_Sales t-1 | 0.030** | 0.026* | ||||||||||
| (2.283) | (1.753) | |||||||||||
| Tangibles t-1 | 0.010 | -0.020 | ||||||||||
| (0.340) | (-0.727) | |||||||||||
| Loss t-1 | 0.001 | 0.002 | ||||||||||
| (0.066) | (0.302) | |||||||||||
| Inst t-1 | 0.006 | 0.008 | ||||||||||
| (0.374) | (0.561) | |||||||||||
| STD_Net_Hire t-1 | -0.094*** | -0.061*** | ||||||||||
| (-5.779) | (-3.331) | |||||||||||
| Labor_Intensity t-1 | -0.166*** | -0.172*** | ||||||||||
| (-5.248) | (-5.723) | |||||||||||
| Union t-1 | -0.043 | 0.010 | ||||||||||
| (-1.586) | (0.241) | |||||||||||
| |Ab_Invest_Other| t | 0.017* | 0.014 | ||||||||||
| (1.758) | (1.404) | |||||||||||
| MA t-1 | 0.016** | 0.011 | ||||||||||
| (2.025) | (1.266) | |||||||||||
| First-stage regressors | Yes | Yes | ||||||||||
| Constant | 0.098*** | 0.112*** | ||||||||||
| (5.333) | (6.269) | |||||||||||
| Observations | 54,624 | 47,744 | ||||||||||
| R-squared | 0.352 | 0.372 | ||||||||||
| Clustered std err by firm | Yes | Yes | ||||||||||
| Industry * Year F.E. | Yes | Yes | ||||||||||
| Firm F.E. | Yes | Yes | ||||||||||
| (1) | (2) | (3) | (4) | |
| RegIn_Comp3 t-1 | Laborineff | RegIn_Comp4 t-1 | Laborineff | |
| Variables | First stage | Second stage | First stage | Second stage |
| RegIn_Comp3_ST t-1 | 0.109*** | |||
| (4.87) | ||||
| RegIn_ Comp3_SIC2 t-1 | -6.176*** | |||
| (-5.89) | ||||
| RegIn_ Comp4_ST t-1 | 0.037** | |||
| (2.01) | ||||
| RegIn_ Comp4_SIC2 t-1 | -5.498*** | |||
| (-7.13) | ||||
| RegIn_ Comp3 (Instrumented) t-1 | -0.021*** | |||
| (-3.31) | ||||
| RegIn_ Comp4 (Instrumented) t-1 | -0.014* | |||
| (-1.96) | ||||
| AQ t-1 | -0.000 | 0.004*** | 0.006*** | 0.004*** |
| (-0.35) | (7.25) | (3.53) | (5.58) | |
| MTB t-1 | -0.000 | 0.000* | 0.000 | 0.000* |
| (-0.41) | (1.74) | (0.76) | (1.88) | |
| FirmSize_R t-1 | -0.000 | -0.000*** | 0.000 | -0.000*** |
| (-0.82) | (-4.19) | (0.85) | (-3.67) | |
| Quick t-1 | -0.005** | 0.004*** | -0.001 | 0.003*** |
| (-2.16) | (4.74) | (-0.24) | (4.53) | |
| Lev t-1 | 0.009 | 0.001 | 0.017 | 0.001 |
| (0.80) | (0.26) | (1.26) | (0.17) | |
| DivDum t-1 | -0.000 | -0.007*** | 0.004 | -0.006** |
| (-0.02) | (-3.22) | (0.60) | (-2.54) | |
| STD_CFO t-1 | -0.050*** | 0.009** | -0.023* | 0.012*** |
| (-3.10) | (2.20) | (-1.95) | (2.70) | |
| STD_Sales t-1 | -0.017 | 0.064*** | -0.027 | 0.059*** |
| (-0.94) | (8.16) | (-1.48) | (7.10) | |
| Tangibles t-1 | 0.036* | -0.039*** | -0.038 | -0.040*** |
| (1.88) | (-5.13) | (-1.62) | (-4.99) | |
| Loss t-1 | -0.007 | 0.014*** | 0.000 | 0.015*** |
| (-1.56) | (5.53) | (0.07) | (5.43) | |
| Inst t-1 | -0.003 | -0.023*** | -0.008 | -0.023*** |
| (-0.42) | (-5.92) | (-0.92) | (-5.50) | |
| STD_Net_Hire t-1 | 0.000 | 0.018*** | -0.003 | 0.020*** |
| (0.00) | (7.63) | (-0.59) | (7.44) | |
| Labor_Intensity t-1 | 0.230 | -0.903*** | -0.045 | -0.797*** |
| (0.63) | (-5.06) | (-0.12) | (-4.15) | |
| Union t-1 | -0.000 | -0.000* | 0.000 | -0.000 |
| (-0.81) | (-1.74) | (0.41) | (-1.09) | |
| |Ab_Invest_Other| t | -0.094*** | 0.051*** | 0.028 | 0.033*** |
| (-2.99) | (4.13) | (1.00) | (2.74) | |
| MA t-1 | -0.011 | -0.011*** | -0.024** | -0.012*** |
| (-1.31) | (-3.05) | (-2.42) | (-3.11) | |
| First-stage regressors | Yes | Yes | Yes | Yes |
| Constant | 0.130** | -2.947*** | 10.140*** | 0.031 |
| (2.28) | (-6.50) | (8.28) | (1.131) | |
| Observations | 56,726 | 56,726 | 47,737 | 47,737 |
| R-squared | 0.210 | 0.153 | 0.158 | 0.151 |
| Hansen stats | 0.0297 | 0.0983 | ||
| Hansen pvalue | 0.863 | 0.754 | ||
| Kleibergen-Paap rk Wald F | 31.09 | 27.40 | ||
| Kleibergen-Paap rk LM statistic | 70.02 | 120.2 | ||
| Kleibergen-Paap rk LM pvalue | 0 | 0 | ||
| Clustered std err by firm | Yes | Yes | Yes | Yes |
| Industry * Year F.E. | Yes | Yes | Yes | Yes |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
| Laborineff | ||||||||
| Distance to default | WW index | |||||||
| Variables | Constrained | Unconstrained | Constrained | Unconstrained | Constrained | Unconstrained | Constrained | Unconstrained |
| RegIn_Comp3 t-1 | -0.090** | 0.013 | -0.069** | 0.018 | ||||
| (-2.032) | (0.541) | (-2.511) | (0.976) | |||||
| RegIn_Comp4 t-1 | -0.069* | -0.002 | -0.063*** | -0.009 | ||||
| (-1.926) | (-0.103) | (-2.751) | (-0.397) | |||||
| AQ t-1 | 0.033 | 0.021 | 0.043* | 0.012 | -0.012 | 0.028 | -0.020 | 0.016 |
| (1.504) | (1.112) | (1.738) | (0.498) | (-0.760) | (1.612) | (-1.112) | (0.773) | |
| MTB t-1 | 0.017 | 0.027** | 0.016 | 0.037** | 0.020** | 0.008 | 0.026** | 0.014 |
| (1.455) | (2.103) | (1.249) | (2.457) | (2.023) | (0.812) | (2.499) | (1.424) | |
| FirmSize_R t-1 | -0.000 | -0.004 | -0.032 | -0.004 | 0.007 | 0.035 | 0.004 | 0.025 |
| (-0.011) | (-0.060) | (-0.810) | (-0.053) | (0.338) | (1.145) | (0.187) | (0.764) | |
| Quick t-1 | 0.068** | 0.048** | 0.065* | 0.048* | 0.026 | 0.046 | 0.026 | 0.048 |
| (2.054) | (2.103) | (1.754) | (1.925) | (1.393) | (1.477) | (1.432) | (1.428) | |
| Lev t-1 | -0.072*** | -0.012 | -0.074*** | -0.033 | 0.001 | -0.034 | -0.004 | -0.042 |
| (-3.367) | (-0.640) | (-3.057) | (-1.568) | (0.064) | (-1.330) | (-0.198) | (-1.498) | |
| DivDum t-1 | 0.044*** | -0.026 | 0.040** | -0.021 | 0.026** | 0.031* | 0.033*** | 0.026 |
| (2.691) | (-1.131) | (2.258) | (-0.900) | (2.081) | (1.707) | (2.648) | (1.347) | |
| STD_CFO t-1 | -0.006 | 0.010 | -0.009 | 0.014 | 0.047** | 0.038** | 0.060*** | 0.043** |
| (-0.365) | (0.491) | (-0.494) | (0.618) | (2.279) | (2.367) | (2.588) | (2.410) | |
| STD_Sales t-1 | 0.006 | 0.034* | -0.002 | 0.029 | 0.044*** | 0.023 | 0.031* | 0.022 |
| (0.295) | (1.829) | (-0.100) | (1.410) | (2.650) | (1.523) | (1.671) | (1.334) | |
| Tangibles t-1 | 0.018 | -0.041 | 0.011 | -0.069 | 0.017 | -0.013 | 0.008 | -0.003 |
| (0.445) | (-1.030) | (0.242) | (-1.425) | (0.700) | (-0.230) | (0.296) | (-0.050) | |
| Loss t-1 | -0.022* | 0.008 | -0.022* | 0.001 | 0.019** | -0.006 | 0.015 | -0.011 |
| (-1.910) | (0.499) | (-1.694) | (0.070) | (2.051) | (-0.570) | (1.463) | (-1.011) | |
| Inst t-1 | 0.006 | -0.012 | 0.010 | -0.010 | -0.006 | 0.006 | -0.007 | 0.012 |
| (0.568) | (-0.581) | (0.884) | (-0.423) | (-0.331) | (0.316) | (-0.385) | (0.661) | |
| STD_Net_Hire t-1 | -0.105*** | -0.084** | -0.104*** | -0.094** | -0.079*** | -0.138*** | -0.086*** | -0.154*** |
| (-4.224) | (-2.081) | (-3.405) | (-2.076) | (-4.191) | (-3.085) | (-3.630) | (-2.731) | |
| Labor_Intensity t-1 | -0.174*** | -0.267*** | -0.137** | -0.211*** | -0.161*** | -0.125*** | -0.148*** | -0.141*** |
| (-3.468) | (-4.324) | (-2.426) | (-3.307) | (-4.861) | (-3.062) | (-4.172) | (-3.157) | |
| Union t-1 | -0.068 | -0.045* | -0.071 | -0.056*** | -0.008 | -0.022 | -0.021 | -0.024 |
| (-1.445) | (-1.685) | (-1.492) | (-3.116) | (-0.184) | (-0.576) | (-0.615) | (-0.538) | |
| |Ab_Invest_Other| t | 0.060*** | 0.037* | 0.044** | 0.032 | 0.026** | 0.023* | 0.008 | 0.022 |
| (3.532) | (1.924) | (2.495) | (1.559) | (2.019) | (1.775) | (0.587) | (1.591) | |
| MA t-1 | 0.033** | 0.043*** | 0.026* | 0.041*** | 0.008 | 0.016 | 0.000 | 0.018 |
| (2.390) | (3.480) | (1.680) | (3.046) | (0.690) | (1.539) | (0.037) | (1.594) | |
| First-stage regressors | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Constant | 0.088*** | 0.038 | 0.092** | 0.047 | 0.148*** | 0.007 | 0.173*** | 0.026 |
| (2.619) | (0.894) | (2.448) | (0.943) | (5.626) | (0.186) | (6.162) | (0.658) | |
| Chi-squared stats | 8.29*** | 3.59** | 12.03*** | 9.01*** | ||||
| Observations | 14,668 | 14,586 | 12,722 | 12,441 | 18,072 | 18,319 | 15,275 | 16,516 |
| R-squared | 0.196 | 0.195 | 0.197 | 0.203 | 0.182 | 0.192 | 0.187 | 0.194 |
| Clustered std err by firm | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Industry * Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
