Submitted:
15 December 2024
Posted:
17 December 2024
You are already at the latest version
Abstract
Keywords:
MSC: 94A17; 62E86; 90C30
1. Introduction
2. Literature Review
2.1. On Weighted Entropy
2.1. On Possibility-Weighted Entropy and Probability-Possibility Transformations
3. Analytical Results and Inversion Procedure
3.1. Analytical Study of the Maximum Point of Weighted Entropy
3.2. An Inversion Procedure Anchored in the Optimal Point of Weighted Entropy
4. Eliciting a Novel Probability-possibility Transformation
5. Discussion of Results
5.1. Checking Axioms
- A1) Bijectivity. If ■ is such a transformation, should be injective so that there is an inverse transformation ■; the domain of is the open interval (from Proposition 2), with a defined from which one sets for normalization. From Equations 4, we have and manipulating the expression one gets ; thus, for a given , it follows that is defined as a one-to-one correspondence with and ; yet, is not surjective concerning the whole unit interval , but stands only in the restriction mentioned, the open interval , and bijectivity only applies there;
- A2) Concerning co-monotonicity, one should observe that the following equivalence holds: ; one has ■ and inverting both members, we obtain from what one can multiply by (because ), then obtaining and ;
- A3) Consistency, entailing that for one should have ; then, it should hold that with ; one can research the behavior of in the interval ; has a single minimum point at with value =; so, if we want to ensure that the inequality stands, a sufficient condition is that we have and then ; so, there is a threshold relative to for ensuring consistency of the transformation; previously, we had already the condition but now that quantity is lessened about to ensure axiom A3. We denote that threshold as ;
- A4) Support preserving, meaning if and only if . From proposition 5 we know that, for , the following implication holds ■; then, with we can evaluate the extension by continuity with the limit and infer .
5.2. Numerical Examples
- The one derived from the weighted Gini-Simpson index (see [77]) denoted and computed like ;
- The heuristic weak probability-possibility consistency principle of Zadeh (e.g., [55], [62]), computed like , meaning the inner product of the vectors of probabilities and of the possibility distribution(s) at stake, which was discussed with consistency axioms and proved to be a solution for predicting given [70]; one has that , and the smaller the value (close to 0) the more orthogonal are the vectors, while near the value 1 approximates the ‘vacuous distribution’ ( for ), reflecting trivial possibility.
- A measure of specificity (e.g., [13], [82]), evaluated as coupled with the condition , assessing how a possibility distribution is countering uncertainty, the maximal specificity () being attained when a singleton is totally possible and all the other impossible, the so-called ‘dogmatic distribution’ ( and if ); on the opposite, the minimal specificity is achieved with the ‘vacuous distribution’, all singletons being totally possible, implying maximum uncertainty and ignorance and thus null specificity ();
- Last, it will be evaluated the total possibilistic uncertainty (e.g., [83,84]) here denoted with which can be considered inversely related with specificity; once more, the maximum value being (if , ) attained with the ‘vacuous distribution’, and the minimum value (equal to 0) relative to the ‘dogmatic distribution’.
5.2.1. Numerical Example Computed with the Optimal Point of Weighted Entropy
5.2.2. Numerical Example with an Imported Probability Distribution
5.2.3. Numerical Example used to Check Consistency When the Threshold is violated
5.3. General Comments and Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belis, M.; Guiaşu, S. A quantitative-qualitative measure of information in cybernetic systems. IEEE T. Inf. Theory 1968, 14(4), 593-594. [CrossRef]
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior 3rd Ed.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 15-30.
- Debreu, G. Theory of Value –An Axiomatic Analysis of Economic Equilibrium. Yale University Press: NewHaven and London, 1959; pp. 50-73.
- Longo, G. The communication problem: the statistical, the semantic and the effectiveness viewpoints — sources having utilities and the useful entropy. In Quantitative-Qualitative Measure of Information; International Centre for Mechanical Sciences; Springer: Vienna, Austria, 1972; Volume 138, pp. 17-26. [CrossRef]
- Monroe, T.; Beruvides, M.; Tercero-Gómez, V. Derivation and application of the subjective-objective probability relationship from entropy: the entropy decision risk model (EDRM). Systems 2020, 8, 46. [CrossRef]
- Zadeh, L. A. (1968). Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23(2), 421-427. [CrossRef]
- Zadeh, L. A. (1965). Fuzzy sets. Inform. Control 1965, 8, 338-353. [CrossRef]
- Dubois, D.; Prade, H. Reasoning and learning in the setting of possibility theory - overview and perspectives. Int. J. Approx. Reason. 2024, 171, 109028. [CrossRef]
- Dubois, D.; Prade, H.; Sandri, S. On possibility/probability transformations. In Fuzzy Logic; Lowen, R., Roubens, M., Eds; Theory and Decision Library; Springer: Dordrecht, Netherlands, 1993; Volume 12, pp. 103-112. [CrossRef]
- Denoeux, T. Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. Fuzzy Sets Syst. 2023, 453, 1-36. [CrossRef]
- Dubois, D., Prade, H. Possibility theory. In Granular, Fuzzy, and Soft Computing. Encyclopedia of Complexity and Systems Science Series; Lin, T.Y., Liau, C.J., Kacprzyk, J. Eds; Springer: New York, USA, 2023, pp. 859-876. [CrossRef]
- Dubois, D.; Pap, E.; Prade, H. Hybrid probabilistic-possibilistic mixtures and utility functions. In Preferences and Decisions under Incomplete Knowledge; Fodor, J., De Baets, B., Perny, P., Eds; Studies in Fuzziness and Soft Computing; Physica: Heidelberg, Germany, 2000; Volume 51, pp. 51-73. [CrossRef]
- Elmore, P.; Anderson, D.; Petry, F. Evaluation of heterogeneous uncertain information fusion. J. Amb. Intel. Hum. Comp. 2020, 11(6), 799-811. [CrossRef]
- Le Carrer, N.; Ferson, S. Beyond probabilities: a possibilistic framework to interpret ensemble predictions and fuse imperfect sources of information. Q. J. Roy. Meteor. Soc. 2021, 147, 3410-3433. [CrossRef]
- Hartley, R. V. L. Transmission of information. Bell Syst. Tech. J. 1928, 7(3), 535-563. [CrossRef]
- Higashi, M.; Klir, G. J. Measures of uncertainty and information based on possibility distributions. Int. J. Gen. Syst. 1982, 9, 43-58. [CrossRef]
- Shannon, C. E.. A mathematical theory of cryptography. Alcatel-Lucent 1945 https://www.iacr.org/museum/shannon/shannon45.pdf (assessed on 01 August 2024).
- Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379-423. [CrossRef]
- Kapur, J. N. A comparative assessment of various measures of entropy. J. Inf. Optim. Sci. 1983, 4(3), 207-232. [CrossRef]
- Csiszár, I. Axiomatic characterizations of information measures. Entropy 2008, 10(3), 261-273. [CrossRef]
- Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 1957, 106(4), 620-630. [CrossRef]
- Pal, N. R.; Pal, S. K. Entropy: a new definition and its applications. IEEE T. Syst. Man Cyb. 1991, 21(5), 1260-1270. [CrossRef]
- Guiaşu, S. Weighted entropy. Rep. Math. Phys. 1971, 2(3), 165-179. [CrossRef]
- Skala, H. J. Remarks on semantic information. In Information, Inference and Decision; Menges, G., Ed.; Theory and Decision Library; Springer: Dordrecht, Netherlands, 1974; Volume 1, pp. 181-188. [CrossRef]
- Bouchon, B. Useful information and questionnaires, Inform. Control 1976, 32, 368-378. [CrossRef]
- Sharma, B. D.; Mitter, J.; Mohan, M. On measures of “useful” information. Inform. Control 1978, 39(3), 323-336. [CrossRef]
- Aggarwal, N. L.; Picard, C. F. Functional equations and information measures with preference. Kybernetika 1978, 14(3), 174-181. http://www.kybernetika.cz/content/1978/3/174 (accessed on 20 August 2024).
- Dial, G.; Taneja, I. J. On weighted entropy of type (α, β) and its generalizations. Aplikace Matematiky 1981, 26(6), 418–425. : http://dml.cz/dmlcz/103931 (accessed on 10 August 2024).
- Batty, M. Cost, Accessibility and weighted entropy. Geogr. Anal. 1983, 15(3), 256-267. [CrossRef]
- Nawrocki, D.N.; Harding, W.H. State-value weighted entropy as a measure of investment risk. Appl. Econ. 1986, 18(4), 411-419. [CrossRef]
- Guiaşu, S. Grouping data by using the weighted entropy. J. Stat. Plan. Infer. 1986, 15, 63-69. [CrossRef]
- Jumarie, G. A concept of observed weighted entropy and its application to pattern recognition. Pattern Recogn. Lett. 1987, 5, 191-194. [CrossRef]
- Criado, F.; Gachechiladze, T. Entropy of fuzzy sets. Fuzzy Sets Syst. 1997, 88, 99-107.https://doi.org/10.1016/S0165-0114(96)00073-5.
- Cios, K.J.; Pedrycz, W.; Swiniarski, R.W. Fuzzy sets. In Data Mining Methods for Knowledge Discovery; The Springer International Series in Engineering and Computer Science; Springer: Boston, MA., USA, 1998; Volume 458, pp. 73-129. [CrossRef]
- Simpson, E. Measurement of diversity. Nature 1949, 163, 688. [CrossRef]
- Casquilho, J. P.; Mena-Matos, H. On the optimal point of the weighted Simpson index. Mathematics 2024, 12, 507. [CrossRef]
- Hu, W.; Starr, A. G.; Zhou, Z.; Leung, A. Y. T. A systematic approach to integrated fault diagnosis of flexible manufacturing systems. Int. J. Mach. Tool. Manu. 2000, 40(11), 1587-1602. [CrossRef]
- Guiaşu, R.C.; Guiaşu, S. Conditional and weighted measures of ecological diversity. Int. J. Uncertain. Fuzz. 2003, 11(3), 283-300. [CrossRef]
- Srivastava, A.; Maheshwari, S. A new weighted information generating function for discrete probability distributions. Cybern. Inf. Technol. 2011, 11(4), 24-30. http://cit.iict.bas.bg/CIT_2011/v11-4/Srivastava-Maheshwari-24-30.pdf (accessed on 03 August 2024).
- Hooda, D. S.; Sharma, D. K. Generalized ‘useful’ information generating functions. J. Appl. Math. Inform. 2009, 27(3-4), 591-601. http://koreascience.or.kr/article/JAKO200919463950671.pdf (accessed on 05 August 2024).
- Ebanks, B. R. Weighted entropies. Centr. Eur. J. Math. 2010, 8(3), 602-61. [CrossRef]
- Casquilho, J.A.P. Ecomosaico florestal: composição, índices de informação e abdução. Rev. Árvore 2012, 36(2), 321-329. [CrossRef]
- Casquilho, J.; Neves, M.; Rego, F. C. Extensões da função de Shannon e equilíbrios de proporções – uma aplicação ao mosaico de paisagem. An. Inst. Sup. Agron. 1997, 46, 77-99. http://hdl.handle.net/10400.5/16181 (accessed on 30 August 2024).
- Patsakis, C.; Mermigas, D.; Pirounias, S.; Chondrokoukis, G. The role of weighted entropy in security quantification. Int J. Inf. Electron. Eng. 2013, 3(2), 156-159. [CrossRef]
- Singer, G.; Anuar, R.; Ben-Gal, I. A weighted information-gain measure for ordinal classification trees. Expert Syst. Appl. 2020, 152, 113375. [CrossRef]
- Gkelsinis, T.; Karagrigoriou, A. Theoretical aspects on measures of directed information with simulations. Mathematics 2020, 8(4), 587. [CrossRef]
- Zhou, J.; Chen, K.; Liu, J. A clustering algorithm based on the weighted entropy of conditional attributes for mixed data. Concurr. Comp.- Pract. E. 2021, 33(17), e6293. [CrossRef]
- Li, Y-M.; Xiang, Y. Detecting disease association with rare variants using weighted entropy. J. Genet. 2023, 102, 34. [CrossRef]
- Li, Y.; Zhang, S.; Xu, T.; Zhu, M.; Zhu, Q. Relatively important node identification for cyber-physical power systems based on relatively weighted entropy. Int. J. Elec. Power 2024, 160, 110050. [CrossRef]
- Bouchon-Meunier, B. ; Marsala, C. Entropy and monotonicity in artificial intelligence. Int. J. Approx. Reason. 2020, 124. 111-122. [CrossRef]
- Aggarwal, M. An entropy framework for randomness and fuzziness. Expert Syst. Appl. 2024, 243, 122431 . [CrossRef]
- Aggarwal, M. Bridging the gap between probabilistic and fuzzy entropy. IEEE T. Fuzzy Syst. 2020, 28(9), 2175-2184. [CrossRef]
- Cox, R. T. Probability, frequency and reasonable expectation. Am. J. Phys. 1946, 14(1), 1-13. [CrossRef]
- Dubois, D., Prade, H. Possibility theory and its applications: Where do we stand? In Springer Handbook of Computational Intelligence; Kacprzyk, J., Pedrycz, W., Eds; Springer: Berlin, Heidelberg, Germany, 2015; pp. 31-60. [CrossRef]
- Zadeh, L. A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3-28. [CrossRef]
- Gaines B. R,; Kohout L Possible automata. In Proceedings of the International Symposium on Multiple-Valued Logic, Bloomington, Indiana, USA, 13–16 May 1975. IEEE Press, pp. 183–196. https://cspages.ucalgary.ca/~gaines/reports/SYS/PA75/PA75.pdf (accessed on 15 August 2024).
- Zio, E.; Pedroni, N. Literature review of methods for representing uncertainty. Cahiers de Sécurité Industrielle 2013, 3, 1-49. [CrossRef]
- Dubois, D. Possibility theory and statistical reasoning. Compu. Stat. Data An. 2006, 51(1), 47-69. [CrossRef]
- Denœux, T.; Dubois, D.; Prade, H. Representations of uncertainty in artificial intelligence: probability and possibility. In A Guided Tour of Artificial Intelligence Research; Marquis, P., Papini, O., Prade, H., Eds; Springer: Cham, Switzerland, 2020; pp. 69-117. [CrossRef]
- Dubois, H.; Prade, D. Fuzzy Sets and Systems: Theory and Applications; Academic Press, Inc. Chestnut Hill, MA, USA; Academic Press Ltd: London, UK. 1980.
- Dubois, H.; Prade, D. Evidence measures based on fuzzy information. Automatica, 1985, 21(5), 547-562. [CrossRef]
- Dubois, D.; Prade, H. On several representations of an uncertain body of evidence. In Fuzzy Information and Decision Processes; Gupta, M.M. , Sanchez, E., Eds; North-Holland: Amsterdam, Netherlands, 1982; pp. 167-182. https://hal.science/hal-04072719v1/file/Dubois82.pdf (accessed on 25 August 2024).
- Dubois, D.; Prade, H. Unfair coins and necessity measures: towards a possibilistic interpretation of histograms. Fuzzy Sets Syst. 1983, 10, 15-20. [CrossRef]
- Dubois, D.; Prade, H. Fuzzy sets and statistical data. Eur. J. Oper. Res. 1986, 25, 345-356. [CrossRef]
- Yamada, K. Probability-possibility transformation based on evidence theory. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (vol.1), Vancouver, Canada, 25 July 2001, pp. 70-75. [CrossRef]
- Yager, R. G. Entropy and specificity in a mathematical theory of evidence. Int. J. Gen. Syst. 1983, 9(4),249-260. [CrossRef]
- Jenhani, I.; Khlifi, G.; Sidiropoulos, P.; Jansen, H.; Frangou, G. Non-specificity-based supervised discretization for possibilistic classification. In Scalable Uncertainty Management^; Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N., Eds; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13562 pp. 249-26. [CrossRef]
- Klir, G.J.; Mariano, M. On the uniqueness of possibilistic measure of uncertainty and information. Fuzzy Sets Syst. 1987, 24(2), 197-219. [CrossRef]
- Dubois, D.; Prade, H. A note on measures of specificity for fuzzy sets. Bulletin pour les Sous-ensembles Flous et Leurs Applications 1984, 19, 83-89. https://hal.science/hal-04583421 (accessed on 20 August 2024).
- Delgado, M.; Moral, S. On the concept of possibility-probability consistency. Fuzzy Sets Syst. 1987, 21(3), 311-318. [CrossRef]
- Klir, G. J. A principle of uncertainty and information invariance. Int. J. Gen. Syst. 1990, 17(2-3), 249-275. [CrossRef]
- Sudkamp, T. On probability-possibility transformations. Fuzzy Sets Syst. 1992, 51(1), 73-81. [CrossRef]
- Salicone, S.; Jetti, H.V. A general mathematical approach based on the possibility theory for handling measurement results and all uncertainties. Metrology 2021, 1, 76–92. [CrossRef]
- Oussalah, M. On the probability/possibility transformations: a comparative analysis. Int. J. Gen. Syst. 2000, 29(5), 671-718. [CrossRef]
- Mei, W.; Li, G.; Xu, Y.; Shi, L. Probability-possibility transformation under perspective of random-fuzzy dual interpretation of unknown uncertainty. TechRxiv 2022 (preprint). [CrossRef]
- Jin, L.; Kalina, M.; Mesiar, R.; Borkotokey, S. Characterization of the possibility-probability transformations and some applications. Inf. Sci. 2019, 477, 281-290. [CrossRef]
- Casquilho, J. P. On the weighted Gini–Simpson index: estimating feasible weights using the optimal point and discussing a link with possibility theory. Soft Comput. 2020, 24, 17187–17194. [CrossRef]
- Liang, S.; Peng, C.;. Liao, Z.; Wang, Y. State space approximation for general fractional order dynamic systems. Int. J. Syst. Sci. 2014, 45(10), 2203-2212. [CrossRef]
- Dubois, D.; Prade, H. Practical methods for constructing possibility distributions. Int. J. Intell. Syst. 2015, 31(3), 215-239. [CrossRef]
- De Luca, A.; Termini, S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inform. Control 1972, 20(4), 301-312. [CrossRef]
- Mei, W.; Liu, L.; Dong, J. The integrated sigma-max system and its application in target recognition. Inf. Sci. 2021, 555, 198-214. [CrossRef]
- Yager, R. R. On the specificity of a possibility distribution. Fuzzy Sets Syst. 1992, 50, 279-292. [CrossRef]
- Klir, G. J.; Parviz, B. Probability-possibility transformations; a comparison. Int. J. Gen. Syst. 1992, 21(3), 291-310. [CrossRef]
- Voskoglou, M. G. Methods for assessing human-machine performance under fuzzy conditions. Mathematics 2019, 7, 230.
- 85. http://dx.doi.org/10.3390/math7030230. [CrossRef]
- Österreicher, F.; Casquilho, J. A. P. On the Gini-Simpson index and its generalisation – a historic note. S. Afr. Stat. J. 2018, 52(2), 129-137. [CrossRef]
- Mei, W. Probability/possibility systems for modeling of random/fuzzy information with parallelization consideration. Int. J. Fuzzy Syst. 2019, 21, 1975-1987. [CrossRef]
- Giakoumakis, S.; Papadopoulos, B. Novel transformation of unimodal (a)symmetric possibility distributions into probability distributions. Fuzzy Sets Syst. 2024, 476, 108790. [CrossRef]
- Andrés-Sánchez, J. Calculating insurance claim reserves with an intuitionistic fuzzy chain-ladder method. Mathematics 2024, 12, 845. [CrossRef]
- Parkash, O.; Singh, V.; Sharma, R. Weighted entropic and divergence models in probability spaces and their solicitations for influencing an imprecise distribution. In Reliability Engineering for Industrial Processes; Kapur, P.K., Pham, H., Singh, G., Kumar, V., Eds; Springer Series in Reliability Engineering, 2024, pp. 213-229. Springer, Cham, Switzerlan. [CrossRef]
- Sánchez, L.; Costa, N.; Couso, I.; Strauss, O. Integrating imprecise data in generative models using interval-valued variational autoencoders. Inf. Fusion 2025, 114, 102659. [CrossRef]
- Bonacic, M.; López-Ospina, H.; Bravo, C.; Pérez, J. A fuzzy entropy approach for portfolio selection. Mathematics 2024, 12, 1921.
- Zadeh, L.A. Toward a restriction-centered theory of truth and meaning (RCT). In Fifty Years of Fuzzy Logic and its Applications; Tamir, D., Rishe, N., Kandel, A., Eds; Studies in Fuzziness and Soft Computing; Springer. Cham, Switzerland, 2015; Volume 326, pp. 1-24. [CrossRef]
- Zadeh, L. A. The information principle. Inf. Sci., 2015, 294, 540-549. [CrossRef]
- Zadeh, L.A. Toward a restriction-centered theory of truth and meaning (RCT). In Fifty Years of Fuzzy Logic and its Applications; Tamir, D., Rishe, N., Kandel, A., Eds; Studies in Fuzziness and Soft Computing; Springer. Cham, Switzerland, 2015; Volume 326, pp. 1-24. [CrossRef]
- Murari, A.; Rossi, R.; Spolladore, L.; Lungaroni, M.; Gaudio, P.; Gelfusa, M. A practical utility-based objective approach to model selection for regression in scientific applications. Artiff. Intell. Rev. 2023, 56, S2825-S2859. [CrossRef]
- Miao, J.; Xing, H. Dynamic discrete choice under rational inattention. Econ. Theory 2024, 77, 597-652. [CrossRef]
- Casquilho, J. P. Discussing an expected utility and weighted entropy framework. Nat. Science 2014, 6, 545-551. [CrossRef]
- Casquilho, J. P.; Rego, F. C. Discussing landscape compositional scenarios generated with maximization of non-expected utility decision models based on weighted entropies. Entropy 2017, 19, 66. [CrossRef]
| Input probability | Possibility distributions | |||||
|---|---|---|---|---|---|---|
| Index | ||||||
| 0.23 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
| 0.21 | 0.84 | 0.93 | 0.77 | 0.91 | 0.98 | |
| 0.19 | 0.71 | 0.87 | 0.56 | 0.83 | 0.94 | |
| 0.16 | 0.56 | 0.79 | 0.37 | 0.70 | 0.85 | |
| 0.12 | 0.42 | 0.71 | 0.21 | 0.52 | 0.69 | |
| 0.07 | 0.28 | 0.63 | 0.09 | 0.30 | 0.44 | |
| 0.02 | 0.16 | 0.56 | 0.02 | 0.09 | 0.14 | |
| Measures | ||||||
| 0.70 | 0.86 | 0.59 | 0.78 | 0.87 | ||
| 0.50 | 0.25 | 0.66 | 0.44 | 0.33 | ||
| 2.11 | 2.54 | 1.73 | 2.25 | 2.46 | ||
| Input probability | Possibility distributions | |||||
|---|---|---|---|---|---|---|
| Index | ||||||
| 0.32 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
| 0.23 | 0.30 | 0.67 | 0.68 | 0.72 | 0.91 | |
| 0.17 | 0.18 | 0.55 | 0.45 | 0.53 | 0.79 | |
| 0.12 | 0.12 | 0.47 | 0.28 | 0.38 | 0.64 | |
| 0.08 | 0.09 | 0.43 | 0.16 | 0.25 | 0.48 | |
| 0.05 | 0.07 | 0.40 | 0.08 | 0.16 | 0.33 | |
| 0.03 | 0.06 | 0.38 | 0.03 | 0.09 | 0.21 | |
| Measures | ||||||
| 0.45 | 0.69 | 0.60 | 0.65 | 0.80 | ||
| 0.86 | 0.52 | 0.72 | 0.65 | 0.44 | ||
| 0.85 | 1.96 | 1.55 | 1.75 | 2.26 | ||
| 0.32 | 0.30 | 0.18 | 0.10 | 0.05 | 0.03 | 0.02 | |
| 1.00 | 0.68 | 0.20 | 0.11 | 0.07 | 0.06 | 0.05 | |
| 1.00 | 0.90 | 0.56 | 0.45 | 0.40 | 0.38 | 0.38 | |
| 1.00 | 0.68 | 0.38 | 0.20 | 0.10 | 0.05 | 0.02 | |
| 1.00 | 0.94 | 0.56 | 0.31 | 0.16 | 0.09 | 0.06 | |
| 1.00 | 0.98 | 0.74 | 0.50 | 0.30 | 0.20 | 0.14 |
| 0.34 | 0.29 | 0.18 | 0.10 | 0.04 | 0.03 | 0.02 | |
| 1.00 | 0.33 | 0.11 | 0.06 | 0.04 | 0.03 | 0.03 | |
| 1.00 | 0.76 | 0.50 | 0.40 | 0.35 | 0.34 | 0.33 | |
| 1.00 | 0.66 | 0.37 | 0.19 | 0.09 | 0.05 | 0.02 | |
| 1.00 | 0.85 | 0.53 | 0.29 | 0.12 | 0.09 | 0.06 | |
| 1.00 | 0.95 | 0.73 | 0.49 | 0.25 | 0.20 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
