Submitted:
25 December 2024
Posted:
26 December 2024
You are already at the latest version
Abstract
A short survey on the Riemann Hypothesis is presented, and various even recent attempts aimed at proving it are described.
Keywords:
1. Introduction
2. About Some Attempts to Prove the RH
2.1. Zero-Free Regions
2.2. The Hilbert-Pólya Conjecture
2.3. The Keiper-Li’s Criterion
2.4. Horizontal Monotonicity
2.5. Hyperbolicity of Jensen Polynomials
2.6. Basing on New Bounds for Large Values of Dirichlet Polynomials
3. Numerical Approach
4. Summary
Compliance with Ethical Standards
Acknowledgments
References
- Bach, E. and Shallit, J., Algorithmic Number Theory, Vol. I: Efficient Algorithms, The MIT Press, Cambridge, Massachusetts – London, England, 1996.
- Bombieri, E., and Lagarias, J., Complements to Li’s criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274–287.
- Bombieri, E., The classical theory of zeta and L-functions, Milan J. Math. 78(1) (2010), 11–59. [CrossRef]
- Bombieri, E., New progress on the zeta function: from old conjectures to a major breakthrough. Proc. Natl. Acad. Sci. USA 116 (23) (2019), 11085-–11086. [https://. [CrossRef]
- Borwein, J.M., Bradley, D.M., and Crandall, R.E., Computational strategies for the Riemann zeta function, J. Comput. Appl. Math. 121 (2000), 247–296.
- Borwein, J., and Bailey, D. Mathematics by Experiment – Plausible Reasoning in the Twenty-First Century, A. K. Peters, Wellesley, MA, 2003.
- Borwein, P., Choi, S., Rooney, B., and Weirathmueller, The Riemann Hypothesis: A resource for the afficionado and virtuoso alike, Spring, CMS Books in Mathematics, Springer, Berlin, 2007. ISBN: 978-0-387-72125-5. [CrossRef]
- Brent, R.P., van de Lune, J., te Riele, H.J.J., and Winter, D.T., On the zeros of the Riemann zeta function in the critical strip. II, Math. Comp. 39, no. 160 (1982), 681–688.
- Brent, R.P., Platt, D.J., and T. Trudgian, Accurate estimation of sums over zeros of the Riemann zeta-function, Math. Comp. 90, no. 332 (2021), 2923–2935.
- Brown, F., Li’s criterion and zero-free regions of L-functions, J. Number Theory 111 (1) (2005), 1–32.
- Coffey, M.W., Relations and positivity results for the derivatives of the Tiemann ξ function, J. Comput. Appl. Math. 166 (2004), 525–534.
- Coffey, M.W., Toward verification of the Riemann hypothesis: application of the Li criterion, Math. Phys. Anal. Geom. 8 (2005), 211–255.
- Coffey, M.W., New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 711–731. [https://www.jstor.org/stable/20209431].
- Conrey, J.B., The Riemann Hypothesis, Notices Amer. Math. Soc., March 2003, pp. 341–353.
- Davenport, H., Multiplicative Number Theory, second ed., Springer-Verlag Berlin Heidelberg, 1980 (first ed.: 1967).
- Edwards, H.M., Riemann’s Zeta Function, Academic Press, New York, 1974.
- Farmer, D.W, Jensen polynomials are not a plausible route to proving the Riemann Hypothesis, Adv. Math. 411 (2022), 108781. [CrossRef]
- Ford, K., Zero-free regions for the Riemann zeta function. In: Number Theory for the Millennium, II (Urbana, IL, 2000), 2002, pp. 25–56. A.K. Peters, Natick, MA. [arXiv:1910.08205v2 [math.NT] 2 May 2022].
- Freitas, P., A Li-type criterion for zero-free half-planes of Riemann’s zeta function, J. London Math. Soc. (2) 73 (2006), 399–-414.
- Goodman, L. and Weisstein, E.W. “Riemann Hypothesis.” From MathWorld – A Wolfram Web Resource. https://mathworld.wolfram.com/RiemannHypothesis.html.
- Gourdon, X., The 1013 First zeros of the Riemann zeta function, and zeros computation at very large height, preprint, 2004. Available online. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf.
- Griffin, M., Ono, K., Rolen, L., and Zagier, D., Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. (PNAS), 2019??, 1902572116 (8 pages). [CrossRef]
- Gun, S., Murty, M.R, and Rath, P., Transcendental sums related to the zeros of zeta functions, Mathematika 64 (2018), 875–897.
- Guth, L., and Maynard, J., New large value estimates for Dirichlet polynomials, arXiv:2405.20552v1 [math.NT], 31 May 2024,.
- Hardy, G.H., Sur les zéros de la fonction ξ(s) de Riemann. C. R. Acad. Sci. Paris 158, (1914), 1012–1014. (Also in “Collected Papers.”).
- Jameson, G.J.O., The Prime Number Theorem, Cambridge University Press, Cambridge, 2004 (first published: 2003).
- Johansson, F., Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numer. Algorithms 69, no. 2 (2015), 253–-270.[. [CrossRef]
- Johansson, F., PhD. Thesis, “Fast and Rigorous Computation of Special Functions to High Precision,” PhD. Thesis, Johannes Kepler Universität, Linz, 2014.
- Keiper, J.B., Power series expansions of Riemann’s ξ function, Math. Comp. 58, no. 198 (1992), 765–773.
- Li, X.-J., The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), 325–333.
- LMFDB, database of L-functions, modular forms, and related objects, https://www.lmfdb.org/zeros/zeta/.
- Maślanka, K., Li’s criterion for the Riemann hypothesis – numerical approach, Opuscula Math. 24, no. 1 (2004), 103–114.
- Matiyasevich, Yu.V., A relationship between certain sums over trivial and nontrivial zeros of the Riemann zeta-function, Mathematical notes of the Academy of Sciences of the USSR, 45 (1989), pp. 131–135. [https://. [CrossRef]
- Matiyasevich, Yu., Saidak, F., and Zvengrowski, P., Horizontal monotonicity of the modulus of the zeta function, the L-function, and related functions, Acta Arithmetica 166, no. 2 (2014), 189–200.
- Montgomery, H.L. and Vaughan, R.C., Multiplicative Number Theory: I. Classical Theory, Cambridge Univ. Press, New York, 2006.
- Mossinghoff, M.J. and Trudgian, T.S, “Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function,” J. Number Theory 157 (2015), 329-–349. [CrossRef]
- Mossinghoff, M.J. and Trudgian, T.S., Oscillations in the Goldbach conjecture, J. Théor. Nombres Bordeaux 34 (2022), 295–307.
- NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov/.
- Odlyzko, A., Tables of zeros of the Riemann zeta function,http://www.dtc.umn.edu/ odlyzko/zeta_tables/index.html.
- Odlyzko, A.M., The 1022-nd zero of the Riemann zeta function, Dynamical, spectral, and arithmetic zeta functions (San Antonio, TX, 1999), pp. 139-–144, Contemp. Math., 290, Amer. Math. Soc., Providence, RI, 2001.
- Odlyzko, A., “Andrew Odlyzko: Tables of zeros of the Riemann zeta function.” http://www.dtc.umn.edu/ odlyzko/zeta_tables/index.html.
- https:www-users.cse.umn.eduõdlyzko/polya/index.htmlhttps:en.wikipedia.orgwikiHilbert%E2%80%93P%C3%B3lya_conjecture.
- Platt, D, and Trudgian, T., The Riemann hypothesis is true up to 3·1012, Bull. London Math. Soc. 53, no. 3 (2021), 792–797. [CrossRef]
- Pólya, G., Über die Nullstellen gewisser ganzer Funktionen, Math. Z. 2 (1918), 352–383.
- Pólya, G., Über trigonometrische Integrale mit nur reellen Nullstellen, J. Reine Angew. Math. 158 (1927), 6–18.
- Riemann, B. , Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie, November 1859, [English translation, by H. Edwards, “On the Number of Primes Less Than a Given Magnitude”, in Edwards, H.M., Riemann’s Zeta Function, Academic Press, New York, 1974, pp. 299–305].
- Saidak, F., and Zvengrowski, P., On the modulus of the Riemann zeta function in the critical strip, Math. Slovaca 53 (2003), 145–172.
- Sarnak, P., Problems of the Millennium: The Riemann Hypothesis (2004). [https://www.claymath.org/sites/default/files/sarnak_rh_0.pdf].
- Spira, R., An inequality for the Riemann zeta-function, Duke Math. J. 32 (1965), 247–250.
- Titchmarsh, E.C., The Theory of the Riemann zeta-function, second ed. (revised by D.R. Heath-Brown), Clarendon Press, Oxford, 1986.
- Voros, A., Sharpening of Li’s criterion for the Riemann hypothesis, Math. Phys. Anal. Geom. 9 (2006), 53–63. [CrossRef]
- Voros, A., Discretized Keiper/Li approach to the Riemann hypothesis, Exp. Math. 29, no. 4 (2020), 452-–469. [CrossRef]
- Wolfram MathWorld, http://mathworld.wolfram.com/RiemannZetaFunction.html.
- Wolfram Mathworld: https://mathworld.wolfram.com/LisCriterion.html.
- ZetaGrid Homepage, http://www.zetagrid.net/.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
