Water is one of the most valuable and essential resources for human life, yet its scarcity has become a pressing global issue exacerbated by climate change and population growth. To address the increasing demand for water driven by urbanization, industrial expansion, tourism, and agricultural needs, many countries are turning to desalination as a viable solution. This study investigates the integration of renewable energy sources (RES) with desalination technologies to enhance both sustainability and efficiency. A comprehensive review of major desalination methods has been conducted, with a particular focus on the application of solar and wind energy. Additionally, the challenges associated with renewable energy-powered desalination, including the need for effective energy storage systems and the inherent volatility of power supply were explored. Our findings indicate that coupling renewable energy with desalination not only significantly reduces carbon emissions but also enhances the sustainability of water supply systems. The study also emphasizes the importance of emerging technologies, such as hybrid energy storage systems (HESS) and machine learning (ML), in optimizing RES powered desalination processes. Ultimately, this study aims to guide future research and development initiatives, promoting the global adoption of desalination systems powered by renewable energy.
Keywords:
Subject:
Environmental and Earth Sciences - Water Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.