Submitted:
28 December 2024
Posted:
30 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mitochondria in Physiology
3. Mitochondria in Pathology
4. Mitochondria in Hematopoiesis and Erythropoiesis
5. Mitochondria in β-thalassemia
6. Mitochondria-Targeting therapy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weatherall DJ: Thalassemia as a global health problem: recent progress toward its control in the developing countries. Ann N Y Acad Sci 2010, 1202, 17–23. [CrossRef] [PubMed]
- Higgs DR, Engel JD, Stamatoyannopoulos G: Thalassaemia. Lancet 2012, 379, 373–383. [CrossRef] [PubMed]
- Taher A: Iron overload in thalassemia and sickle cell disease. Semin Hematol 2005, 42, S5–S9. [CrossRef] [PubMed]
- Musallam KM, Cappellini MD, Viprakasit V, Kattamis A, Rivella S, Taher AT: Revisiting the non-transfusion-dependent (NTDT) vs. transfusion-dependent (TDT) thalassemia classification 10 years later. Am J Hematol 2021, 96, E54–E56.
- Dadheech S, Jain S, Madhulatha D, Sharma V, Joseph J, Jyothy A, Munshi A: Association of Xmn1 -158 gammaG variant with severity and HbF levels in beta-thalassemia major and sickle cell anaemia. Mol Biol Rep 2014, 41, 3331–3337. [CrossRef]
- Thein SL: Genetic association studies in beta-hemoglobinopathies. Hematology Am Soc Hematol Educ Program 2013, 2013, 354–361. [CrossRef]
- Giardine B, Borg J, Viennas E, Pavlidis C, Moradkhani K, Joly P, Bartsakoulia M, Riemer C, Miller W, Tzimas G, Wajcman H, Hardison RC, Patrinos GP: Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Res 2014, 42, D1063–D1069. [CrossRef]
- Sankaran VG, Weiss MJ: Anemia: progress in molecular mechanisms and therapies. Nat Med 2015, 21, 221–230. [CrossRef]
- Weatherall DJ: Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet 2001, 2, 245–255. [CrossRef]
- Gilman JG, Huisman TH: DNA sequence variation associated with elevated fetal G gamma globin production. Blood 1985, 66, 783–787. [CrossRef]
- Bianchi N, Cosenza LC, Lampronti I, Finotti A, Breveglieri G, Zuccato C, Fabbri E, Marzaro G, Chilin A, De AG, Borgatti M, Gallucci C, Alfieri C, Ribersani M, Isgro A, Marziali M, Gaziev J, Morrone A, Sodani P, Lucarelli G, Gambari R, Paciaroni K: Structural and Functional Insights on an Uncharacterized Agamma-Globin-Gene Polymorphism Present in Four beta0-Thalassemia Families with High Fetal Hemoglobin Levels. Mol Diagn Ther 2016, 20, 161–173.
- Sebastiani P, Farrell JJ, Alsultan A, Wang S, Edward HL, Shappell H, Bae H, Milton JN, Baldwin CT, Al-Rubaish AM, Naserullah Z, Al-Muhanna F, Alsuliman A, Patra PK, Farrer LA, Ngo D, Vathipadiekal V, Chui DH, Al-Ali AK, Steinberg MH: BCL11A enhancer haplotypes and fetal hemoglobin in sickle cell anemia. Blood Cells Mol Dis 2015, 54, 224–230.
- Lai Y, Zhou L, Yi S, Chen Y, Tang Y, Yi S, Yang Z, Wei H, Zheng C, He S: The association between four SNPs (rs7482144, rs4671393, rs28384513 and rs4895441) and fetal hemoglobin levels in Chinese Zhuang beta-thalassemia intermedia patients. Blood Cells Mol Dis 2017, 63, 52–57. [CrossRef] [PubMed]
- Stadhouders R, Aktuna S, Thongjuea S, Aghajanirefah A, Pourfarzad F, van IW, Lenhard B, Rooks H, Best S, Menzel S, Grosveld F, Thein SL, Soler E: HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J Clin Invest 2014, 124, 1699–1710. [CrossRef]
- Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, Wahlberg K, Ulug P, Spector TD, Garner C, Matsuda F, Farrall M, Lathrop M: Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci U S A 2007, 104, 11346–11351.
- Liu D, Zhang X, Yu L, Cai R, Ma X, Zheng C, Zhou Y, Liu Q, Wei X, Lin L, Yan T, Huang J, Mohandas N, An X, Xu X: KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of beta-thalassemia. Blood 2014, 124, 803–811. [CrossRef]
- Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras MG, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina MD, Sollaino C, Moi P, Hirschhorn JN, Orkin SH, Abecasis GR, Schlessinger D, Cao A: Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 2008, 105, 1620–1625.
- Mejri A, Mansri M, Hadj FS, Ouali F, Bibi A, Hafsia R, Messaoud T, Siala H: First description of the rs45496295 polymorphism of the C/EBPE gene in beta-thalassemia intermedia patients. Hemoglobin 2016, 40, 411–416. [CrossRef]
- Sherva R, Sripichai O, Abel K, Ma Q, Whitacre J, Angkachatchai V, Makarasara W, Winichagoon P, Svasti S, Fucharoen S, Braun A, Farrer LA: Genetic modifiers of Hb E/beta0 thalassemia identified by a two-stage genome-wide association study. BMC Med Genet 2010, 11, 51.
- Sun Y, Habara A, Le CQ, Nguyen N, Chen R, Murphy GJ, Chui DHK, Steinberg MH, Cui S: Pharmacologic induction of PGC-1alpha stimulates fetal haemoglobin gene expression. Br J Haematol 2022, 197, 97–109. [CrossRef]
- Lin J, Handschin C, Spiegelman BM: Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005, 1, 361–370. [CrossRef] [PubMed]
- Liang H, Balas B, Tantiwong P, Dube J, Goodpaster BH, O’Doherty RM, DeFronzo RA, Richardson A, Musi N, Ward WF: Whole body overexpression of PGC-1alpha has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab 2009, 296, E945–E954. [CrossRef] [PubMed]
- Cui S, Tanabe O, Lim KC, Xu HE, Zhou XE, Lin JD, Shi L, Schmidt L, Campbell A, Shimizu R, Yamamoto M, Engel JD: PGC-1 coactivator activity is required for murine erythropoiesis. Mol Cell Biol 2014, 34, 1956–1965. [CrossRef] [PubMed]
- Scarpulla RC: Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 2011, 1813, 1269–1278. [CrossRef] [PubMed]
- Sen T, Chen J, Singbrant S: Decreased PGC1beta expression results in disrupted human erythroid differentiation, impaired hemoglobinization and cell cycle exit. Sci Rep 2021, 11, 17129. [CrossRef]
- Siekevitz P: Powerhouse of the Cell. Sci Am 1957, 197, 131–144. [CrossRef]
- Spinelli JB, Haigis MC: The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018, 20, 745–754. [CrossRef]
- Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de CR, Cohen P: The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 2015, 21, 443–454. [CrossRef]
- Rizzuto R, De SD, Raffaello A, Mammucari C: Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012, 13, 566–578. [CrossRef]
- Liu X, Kim CN, Yang J, Jemmerson R, Wang X: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996, 86, 147–157. [CrossRef]
- de ML, Arruda AP, da Costa RM, Benchimol M: Identification of a Ca2+-ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and Ca2+. J Biol Chem 2006, 281, 16384–16390. [CrossRef] [PubMed]
- Yau WW, Yen PM: Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. Int J Mol Sci 2020, 21.
- Melchinger P, Garcia BM: Mitochondria are midfield players in steroid synthesis. Int J Biochem Cell Biol 2023, 160, 106431.
- Popov LD: Mitochondrial biogenesis: An update. J Cell Mol Med 2020, 24, 4892–4899. [CrossRef]
- Jornayvaz FR, Shulman GI: Regulation of mitochondrial biogenesis. Essays Biochem 2010, 47, 69–84. [CrossRef]
- Seo BJ, Yoon SH, Do JT: Mitochondrial Dynamics in Stem Cells and Differentiation. Int J Mol Sci 2018, 19.
- Roy M, Reddy PH, Iijima M, Sesaki H: Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol 2015, 33, 111–118. [CrossRef]
- Mishra P, Chan DC: Metabolic regulation of mitochondrial dynamics. J Cell Biol 2016, 212, 379–387. [CrossRef]
- Ploumi C, Daskalaki I, Tavernarakis N: Mitochondrial biogenesis and clearance: a balancing act. FEBS J 2017, 284, 183–195. [CrossRef]
- Chen Y, Zhou Z, Min W: Mitochondria, Oxidative Stress and Innate Immunity. Front Physiol 2018, 9, 1487. [CrossRef]
- Chen S, Liao Z, Xu P: Mitochondrial control of innate immune responses. Front Immunol 2023, 14, 1166214. [CrossRef] [PubMed]
- Cox AG, Pearson AG, Pullar JM, Jonsson TJ, Lowther WT, Winterbourn CC, Hampton MB: Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins. Biochem J 2009, 421, 51–58. [CrossRef] [PubMed]
- Cardenas-Rodriguez M, Chatzi A, Tokatlidis K: Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 2018, 23, 509–520. [CrossRef] [PubMed]
- Belot A, Puy H, Hamza I, Bonkovsky HL: Update on heme biosynthesis, tissue-specific regulation, heme transport, relation to iron metabolism and cellular energy. Liver Int 2024, 44, 2235–2250. [CrossRef] [PubMed]
- La Morgia C, Maresca A, Caporali L, Valentino ML, Carelli V: Mitochondrial diseases in adults. J Intern Med 2020, 287, 592–608. [CrossRef] [PubMed]
- Kozhukhar N, Alexeyev MF: 35 Years of TFAM Research: Old Protein, New Puzzles. Biology (Basel) 2023, 12.
- Tuppen HA, Blakely EL, Turnbull DM, Taylor RW: Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 2010, 1797, 113–128. [CrossRef]
- Taylor RW, Turnbull DM: Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005, 6, 389–402. [CrossRef]
- Yuan J, Zhao J, Ye C, Pang L, Zhang X, Luk A, Du Y, Fan KY, Zhang X, Li B, Chen C: Leber’s Hereditary Optic Neuropathy with Mitochondrial DNA Mutation G11778A: A Systematic Literature Review and Meta-Analysis. Biomed Res Int 2023, 2023, 1107866.
- Gao R, Gu L, Zuo W, Wang P: Long-term prognostic factors and outcomes in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes: a clinical and biochemical marker analysis. Front Neurol 2024, 15, 1491283. [CrossRef]
- Zhao Y, Hou Y, Zhao X, Liufu T, Yu M, Zhang W, Xie Z, Zhang VW, Yuan Y, Wang Z: The clinical, myopathological, and genetic analysis of 155 Chinese mitochondrial ophthalmoplegia patients with mitochondrial DNA single large deletions. Mol Genet Genomic Med 2024, 12, e2328. [CrossRef] [PubMed]
- Pyle A, Anugrha H, Kurzawa-Akanbi M, Yarnall A, Burn D, Hudson G: Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol Aging 2016, 38, 216.
- Podlesniy P, Figueiro-Silva J, Llado A, Antonell A, Sanchez-Valle R, Alcolea D, Lleo A, Molinuevo JL, Serra N, Trullas R: Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol 2013, 74, 655–668. [CrossRef] [PubMed]
- Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Dadarao CR, Nemade LS, Kishor KN, Borah S, Shrikant DS, Behera A, Dhawal BD, Gaikwad N, Kalam AA, Ghosh A: Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023, 71, 83–92.
- Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J: Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024, 50, 61.
- He YH, Lu X, Wu H, Cai WW, Yang LQ, Xu LY, Sun HP, Kong QP: Mitochondrial DNA content contributes to healthy aging in Chinese: a study from nonagenarians and centenarians. Neurobiol Aging 2014, 35, 1779–4.
- Gao X, Campian JL, Qian M, Sun XF, Eaton JW: Mitochondrial DNA damage in iron overload. J Biol Chem 2009, 284, 4767–4775. [CrossRef]
- Nie H, Chen G, He J, Zhang F, Li M, Wang Q, Zhou H, Lyu J, Bai Y: Mitochondrial common deletion is elevated in blood of breast cancer patients mediated by oxidative stress. Mitochondrion 2016, 26, 104–112. [CrossRef]
- Mohamed SA, Hanke T, Erasmi AW, Bechtel MJ, Scharfschwerdt M, Meissner C, Sievers HH, Gosslau A: Mitochondrial DNA deletions and the aging heart. Exp Gerontol 2006, 41, 508–517. [CrossRef]
- Mbiandjeu SCT, Siciliano A, Matte A, Federti E, Perduca M, Melisi D, Andolfo I, Amoresano A, Iolascon A, Valenti MT, Turrini F, Bovi M, Pisani A, Recchiuti A, Mattoscio D, Riccardi V, Dalle CL, Brugnara C, Mohandas N, De FL: Nrf2 Plays a Key Role in Erythropoiesis during Aging. Antioxidants (Basel) 2024, 13.
- Chien MC, Huang WT, Wang PW, Liou CW, Lin TK, Hsieh CJ, Weng SW: Role of mitochondrial DNA variants and copy number in diabetic atherogenesis. Genet Mol Res 2012, 11, 3339–3348. [CrossRef] [PubMed]
- Zhang G, Qu Y, Dang S, Yang Q, Shi B, Hou P: Variable copy number of mitochondrial DNA (mtDNA) predicts worse prognosis in advanced gastric cancer patients. Diagn Pathol 2013, 8, 173. [CrossRef] [PubMed]
- Hu Y, Liu W, Fang W, Dong Y, Zhang H, Luo Q: Tumor energy metabolism: implications for therapeutic targets. Mol Biomed 2024, 5, 63.
- Lyu Y, Wang T, Huang S, Zhang Z: Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate Immunity. J Innate Immun 2023, 15, 665–679. [CrossRef]
- Filippi MD, Ghaffari S: Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood 2019, 133, 1943–1952. [CrossRef]
- Papoin J, Yan H, Leduc M, Le GM, Narla A, Palis J, Steiner LA, Gallagher PG, Hillyer CD, Gautier EF, Mohandas N, Blanc L: Phenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways. Am J Hematol 2024, 99, 99–112.
- Lyu J, Ni M, Weiss MJ, Xu J: Metabolic regulation of erythrocyte development and disorders. Exp Hematol 2024, 131, 104153. [CrossRef]
- Fontenay M, Cathelin S, Amiot M, Gyan E, Solary E: Mitochondria in hematopoiesis and hematological diseases. Oncogene 2006, 25, 4757–4767. [CrossRef]
- Simsek T, Kocabas F, Zheng J, DeBerardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA: The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010, 7, 380–390. [CrossRef]
- Rossmann MP, Hoi K, Chan V, Abraham BJ, Yang S, Mullahoo J, Papanastasiou M, Wang Y, Elia I, Perlin JR, Hagedorn EJ, Hetzel S, Weigert R, Vyas S, Nag PP, Sullivan LB, Warren CR, Dorjsuren B, Greig EC, Adatto I, Cowan CA, Schreiber SL, Young RA, Meissner A, Haigis MC, Hekimi S, Carr SA, Zon LI: Cell-specific transcriptional control of mitochondrial metabolism by TIF1gamma drives erythropoiesis. Science 2021, 372, 716–721.
- Anso E, Weinberg SE, Diebold LP, Thompson BJ, Malinge S, Schumacker PT, Liu X, Zhang Y, Shao Z, Steadman M, Marsh KM, Xu J, Crispino JD, Chandel NS: The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol 2017, 19, 614–625. [CrossRef] [PubMed]
- Luis TC, Lawson H, Kranc KR: Divide and Rule: Mitochondrial Fission Regulates Quiescence in Hematopoietic Stem Cells. Cell Stem Cell 2020, 26, 299–301. [CrossRef] [PubMed]
- Zhang A, Liu W, Qiu S: Mitochondrial genetic variations in leukemia: a comprehensive overview. Blood Sci 2024, 6, e00205. [CrossRef] [PubMed]
- Samimi A, Khodayar MJ, Alidadi H, Khodadi E: The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis. Stem Cell Rev Rep 2020, 16, 262–275. [CrossRef] [PubMed]
- Liu X, Zhang Y, Ni M, Cao H, Signer RAJ, Li D, Li M, Gu Z, Hu Z, Dickerson KE, Weinberg SE, Chandel NS, DeBerardinis RJ, Zhou F, Shao Z, Xu J: Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation. Nat Cell Biol 2017, 19, 626–638.
- Gonzalez-Ibanez AM, Ruiz LM, Jensen E, Echeverria CA, Romero V, Stiles L, Shirihai OS, Elorza AA: Erythroid Differentiation and Heme Biosynthesis Are Dependent on a Shift in the Balance of Mitochondrial Fusion and Fission Dynamics. Front Cell Dev Biol 2020, 8, 592035.
- Finsterer J: Hematological manifestations of primary mitochondrial disorders. Acta Haematol 2007, 118, 88–98. [CrossRef]
- Chaichompoo P, Svasti S, Smith DR: The Roles of Mitophagy and Autophagy in Ineffective Erythropoiesis in beta-Thalassemia. Int J Mol Sci 2022, 23.
- Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J: Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008, 454, 232–235. [CrossRef]
- Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008, 112, 1493–1502. [CrossRef]
- Liu GY, Sabatini DM: mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020, 21, 183–203. [CrossRef] [PubMed]
- Chaichompoo P, Nithipongvanitch R, Kheansaard W, Tubsuwan A, Srinoun K, Vadolas J, Fucharoen S, Smith DR, Winichagoon P, Svasti S: Increased autophagy leads to decreased apoptosis during beta-thalassaemic mouse and patient erythropoiesis. Sci Rep 2022, 12, 18628. [CrossRef] [PubMed]
- Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK: Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci U S A 2010, 107, 832–837. [CrossRef]
- Menon V, Slavinsky M, Hermine O, Ghaffari S: Mitochondrial regulation of erythropoiesis in homeostasis and disease. Br J Haematol 2024, 205, 429–439. [CrossRef]
- Lee HC, Yin PH, Lu CY, Chi CW, Wei YH: Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 2000, 348 Pt 2, 425–432.
- Khungwanmaythawee K, Sornjai W, Paemanee A, Jaratsittisin J, Fucharoen S, Svasti S, Lithanatudom P, Roytrakul S, Smith DR: Mitochondrial Changes in beta0-Thalassemia/Hb E Disease. PLoS One 2016, 11, e0153831.
- Leecharoenkiat A, Wannatung T, Lithanatudom P, Svasti S, Fucharoen S, Chokchaichamnankit D, Srisomsap C, Smith DR: Increased oxidative metabolism is associated with erythroid precursor expansion in beta0-thalassaemia/Hb E disease. Blood Cells Mol Dis 2011, 47, 143–157. [CrossRef]
- Mathias LA, Fisher TC, Zeng L, Meiselman HJ, Weinberg KI, Hiti AL, Malik P: Ineffective erythropoiesis in beta-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol 2000, 28, 1343–1353. [CrossRef]
- Liu CS, Tsai CS, Kuo CL, Chen HW, Lii CK, Ma YS, Wei YH: Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic Res 2003, 37, 1307–1317. [CrossRef]
- Lal A, Gomez E, Calloway C: Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia. JCI Insight 2016, 1.
- Moriconi C, Dzieciatkowska M, Roy M, D’Alessandro A, Roingeard P, Lee JY, Gibb DR, Tredicine M, McGill MA, Qiu A, La CF, Francis RO, Hod EA, Thomas T, Picard M, Akpan IJ, Luckey CJ, Zimring JC, Spitalnik SL, Hudson KE: Retention of functional mitochondria in mature red blood cells from patients with sickle cell disease. Br J Haematol 2022, 198, 574–586.
- Esperti S, Nader E, Stier A, Boisson C, Carin R, Marano M, Robert M, Martin M, Horand F, Cibiel A, Renoux C, Van BR, Blans C, Dargaud Y, Joly P, Gauthier A, Poutrel S, Romana M, Roussel D, Connes P: Increased retention of functional mitochondria in mature sickle red blood cells is associated with increased sickling tendency, hemolysis and oxidative stress. Haematologica 2023, 108, 3086–3094.
- Martino S, Arlet JB, Odievre MH, Jullien V, Moras M, Hattab C, Lefebvre T, Gouya L, Ostuni MA, Lefevre SD, Le Van KC: Deficient mitophagy pathways in sickle cell disease. Br J Haematol 2021, 193, 988–993. [CrossRef]
- Suragani RN, Cadena SM, Cawley SM, Sako D, Mitchell D, Li R, Davies MV, Alexander MJ, Devine M, Loveday KS, Underwood KW, Grinberg AV, Quisel JD, Chopra R, Pearsall RS, Seehra J, Kumar R: Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 2014, 20, 408–414.
- Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J, Grapton D, Paubelle E, Payen E, Beuzard Y, Leboulch P, Ribeil JA, Arlet JB, Cote F, Courtois G, Ginzburg YZ, Daniel TO, Chopra R, Sung V, Hermine O, Moura IC: An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nat Med 2014, 20, 398–407.
- Matte A, Wilson AB, Gevi F, Federti E, Recchiuti A, Ferri G, Brunati AM, Pagano MA, Russo R, Leboeuf C, Janin A, Timperio AM, Iolascon A, Gremese E, Dang L, Mohandas N, Brugnara C, De FL: Mitapivat reprograms the RBC metabolome and improves anemia in a mouse model of hereditary spherocytosis. JCI Insight 2023, 8.
- Matte A, Federti E, Kung C, Kosinski PA, Narayanaswamy R, Russo R, Federico G, Carlomagno F, Desbats MA, Salviati L, Leboeuf C, Valenti MT, Turrini F, Janin A, Yu S, Beneduce E, Ronseaux S, Iatcenko I, Dang L, Ganz T, Jung CL, Iolascon A, Brugnara C, De FL: The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a beta-thalassemia mouse model. J Clin Invest 2021, 131.
- Quezado ZMN, Kamimura S, Smith M, Wang X, Heaven MR, Jana S, Vogel S, Zerfas P, Combs CA, Almeida LEF, Li Q, Quezado M, Horkayne-Szakaly I, Kosinski PA, Yu S, Kapadnis U, Kung C, Dang L, Wakim P, Eaton WA, Alayash AI, Thein SL: Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model. Blood Cells Mol Dis 2022, 95, 102660.
- Jagadeeswaran R, Vazquez BA, Thiruppathi M, Ganesh BB, Ibanez V, Cui S, Engel JD, Diamond AM, Molokie RE, DeSimone J, Lavelle D, Rivers A: Pharmacological inhibition of LSD1 and mTOR reduces mitochondrial retention and associated ROS levels in the red blood cells of sickle cell disease. Exp Hematol 2017, 50, 46–52.
- Lechauve C, Keith J, Khandros E, Fowler S, Mayberry K, Freiwan A, Thom CS, Delbini P, Romero EB, Zhang J, Motta I, Tillman H, Cappellini MD, Kundu M, Weiss MJ: The autophagy-activating kinase ULK1 mediates clearance of free alpha-globin in beta-thalassemia. Sci Transl Med 2019, 11.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
