Submitted:
03 February 2025
Posted:
05 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Replay-based methods: These techniques mitigate forgetting by storing past data explicitly in memory buffers or generating synthetic samples to rehearse previous knowledge.
- Regularization-based methods: Regularization techniques impose constraints on model updates to retain previously learned knowledge, often by penalizing drastic changes in important parameters [3].
- Dynamic architecture-based methods: These approaches dynamically expand or modify the model architecture to accommodate new tasks while preserving existing knowledge.
2. Background and Problem Definition
2.1. Formal Definition of Continual Learning
2.2. Challenges in Continual Learning
2.2.1. Catastrophic Forgetting
2.2.2. Knowledge Transfer and Interference
2.2.3. Resource Constraints
2.2.4. Task Boundaries and Learning Paradigms
- Task-incremental learning: Task identities are known, and separate task-specific classifiers may be used [19].
- Domain-incremental learning: The same task is learned under shifting data distributions [20].
- Class-incremental learning: New classes are introduced over time, and the model must integrate them into a unified classifier.
- Each paradigm presents unique challenges in terms of model design, adaptation, and evaluation.
2.3. Comparison with Related Learning Paradigms
- Online Learning: Online learning processes data in a sequential manner but does not necessarily retain knowledge from past data distributions, whereas continual learning aims to accumulate knowledge over time.
- Meta-Learning: Meta-learning focuses on learning how to learn across multiple tasks, whereas continual learning focuses on long-term retention and adaptation [21].
- Multi-Task Learning: Multi-task learning trains a model on multiple tasks simultaneously, whereas continual learning handles tasks sequentially [22].
2.4. Importance of Continual Learning
- Autonomous Systems: Self-driving cars and robotic agents must continuously learn from new interactions and environments.
- Healthcare: Diagnostic models must adapt to evolving medical data without retraining from scratch [23].
- Personalized AI: User-adaptive AI systems, such as recommendation engines and virtual assistants, require continual adaptation based on user preferences.
3. Taxonomy of Continual Learning Approaches
3.1. Replay-Based Methods
3.1.1. Experience Replay
3.1.2. Generative Replay
- DGR (Deep Generative Replay) trains a generative model to generate previous task data, which is then replayed alongside new task data.
- Brain-Inspired Replay mimics biological memory consolidation by incorporating generative models for long-term knowledge retention.
3.2. Regularization-Based Methods
3.2.1. Penalty-Based Regularization
3.2.2. Knowledge Distillation
- Learning without Forgetting (LwF) uses distillation loss to ensure that the model’s predictions on old tasks remain stable while learning new tasks.
- Variational Continual Learning (VCL) integrates Bayesian learning with knowledge distillation to improve stability.
3.3. Dynamic Architecture-Based Methods
3.3.1. Network Expansion
- Progressive Neural Networks (PNN) create a new sub-network for each task while maintaining lateral connections to prior networks.
- Dynamically Expandable Networks (DEN) selectively grow network components while reusing prior representations [33].
3.3.2. Parameter Isolation
- PathNet enables task-specific routing by selecting a subset of network paths for each task.
- Supermask Superposition learns task-specific masks over a fixed network to enable multi-task learning without forgetting [35].
3.4. Hybrid Approaches
- MER (Meta-Experience Replay) combines experience replay with meta-learning to enhance sample efficiency [36].
- ER-RingBuffer uses a memory buffer with a regularization mechanism to balance stability and adaptability.
3.5. Comparison of Approaches
4. Evaluation Metrics and Benchmarks
4.1. Evaluation Metrics
4.1.1. Average Accuracy (ACC)
4.1.2. Forgetting Measure (FM)
4.1.3. Forward Transfer (FWT)
4.1.4. Backward Transfer (BWT)
4.1.5. Memory Overhead
4.2. Benchmark Datasets
4.2.1. Permuted MNIST
4.2.2. Split MNIST
4.2.3. Split CIFAR-10 and Split CIFAR-100
4.2.4. CORe50
4.2.5. TinyImageNet
4.2.6. Omniglot
4.3. Experimental Protocols
- Task-Incremental Learning (Task-IL): The model is provided with task identifiers and learns separate classifiers for each task.
- Domain-Incremental Learning (Domain-IL): The model encounters data from the same set of classes but under different distributions (e.g., lighting changes in images).
- Class-Incremental Learning (Class-IL): New classes are introduced over time, and the model must integrate them into a single classifier [54].
5. Applications of Continual Learning
5.1. Autonomous Systems and Robotics
5.1.1. Self-Driving Cars
- Adapt to new weather conditions and road structures without retraining from scratch.
- Improve object detection and classification as new obstacles or traffic signs appear.
- Learn from real-time driving experiences to enhance trajectory planning and collision avoidance.
5.1.2. Robotics and Human-Robot Interaction
5.2. Healthcare and Medical Diagnosis
5.2.1. Medical Imaging and Diagnosis
- Incremental learning of new disease patterns (e.g., emerging virus strains).
- Adaptation to different medical imaging devices and data distributions [68].
- Reducing the need for large-scale retraining, which is costly and time-consuming.
5.2.2. Personalized Medicine
5.3. Natural Language Processing (NLP)
5.4. Finance and Fraud Detection
5.5. Cybersecurity and Threat Detection
5.6. Recommender Systems and Personalized AI
- Personalized content recommendations that evolve with user behavior [80].
- Dynamic adaptation to new product trends and emerging market preferences.
- Real-time updates to user preference models for better engagement.
5.7. Scientific Discovery and Research
5.8. Edge AI and IoT Devices
- Smart home devices that adapt to user preferences over time [84].
- Industrial IoT systems that optimize performance based on sensor data.
- Wearable health monitoring devices that learn from user activity and vitals.
5.9. Summary
6. Challenges and Future Directions
6.1. Challenges in Continual Learning
6.1.1. Catastrophic Forgetting
6.1.2. Scalability and Computational Efficiency
6.1.3. Task-Free and Online Learning
6.1.4. Transfer Learning vs. Interference
6.1.5. Evaluation Protocols and Standardization
6.1.6. Memory and Privacy Constraints
6.1.7. The Stability-Plasticity Dilemma
6.2. Future Directions in Continual Learning
6.2.1. Neuroscience-Inspired Learning Mechanisms
6.2.2. Self-Supervised and Unsupervised Continual Learning
6.2.3. Meta-Learning for Continual Learning
6.2.4. Lifelong Multi-Modal Learning
6.2.5. Continual Learning for Foundation Models
6.2.6. Human-AI Collaboration in Continual Learning
6.2.7. Applications in Real-World Dynamic Environments
6.3. Summary
7. Conclusion
References
- Yoon, J.; Jeong, W.; Lee, G.; Yang, E.; Hwang, S.J. Federated continual learning with weighted inter-client transfer. In Proceedings of the International Conference on Machine Learning. PMLR, 2021, pp. 12073–12086.
- Caccia, M.; Rodriguez, P.; Ostapenko, O.; Normandin, F.; Lin, M.; Page-Caccia, L.; Laradji, I.H.; Rish, I.; Lacoste, A.; Vázquez, D.; et al. Online fast adaptation and knowledge accumulation (osaka): a new approach to continual learning. Advances in Neural Information Processing Systems 2020, 33, 16532–16545.
- Wang, Z.; Mehta, S.V.; Póczos, B.; Carbonell, J.G. Efficient Meta Lifelong-Learning with Limited Memory. In Proceedings of the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 535–548.
- Mendez, J.A.; Eaton, E. A General Framework for Continual Learning of Compositional Structures.
- Hurtado, J.; Raymond, A.; Soto, A. Optimizing reusable knowledge for continual learning via metalearning. Advances in Neural Information Processing Systems 2021, 34, 14150–14162.
- Li, Y.; Zhao, L.; Church, K.; Elhoseiny, M. Compositional Language Continual Learning. In Proceedings of the International Conference on Learning Representations, 2019.
- Golatkar, A.; Achille, A.; Ravichandran, A.; Polito, M.; Soatto, S. Mixed-privacy forgetting in deep networks. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 792–801.
- Ehret, B.; Henning, C.; Cervera, M.; Meulemans, A.; Von Oswald, J.; Grewe, B.F. Continual learning in recurrent neural networks. In Proceedings of the International Conference on Learning Representations, 2020.
- Cermelli, F.; Fontanel, D.; Tavera, A.; Ciccone, M.; Caputo, B. Incremental learning in semantic segmentation from image labels. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4371–4381.
- Zhu, F.; Zhang, X.Y.; Wang, C.; Yin, F.; Liu, C.L. Prototype augmentation and self-supervision for incremental learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 5871–5880.
- Wei, N.; Zhou, T.; Zhang, Z.; Zhuo, Y.; Chen, L. Visual working memory representation as a topological defined perceptual object. Journal of Vision 2019, 19, 12–12. [CrossRef]
- Douillard, A.; Chen, Y.; Dapogny, A.; Cord, M. Plop: Learning without forgetting for continual semantic segmentation. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4040–4050.
- Ke, Z.; Liu, B.; Ma, N.; Xu, H.; Shu, L. Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning. Advances in Neural Information Processing Systems 2021, 34, 22443–22456.
- Arevian, A.C.; Kapoor, V.; Urban, N.N. Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nature Neuroscience 2008, 11, 80–87. [CrossRef]
- Singh, P.; Verma, V.K.; Mazumder, P.; Carin, L.; Rai, P. Calibrating cnns for lifelong learning. Advances in Neural Information Processing Systems 2020, 33, 15579–15590.
- Aso, Y.; Sitaraman, D.; Ichinose, T.; Kaun, K.R.; Vogt, K.; Belliart-Guérin, G.; Plaçais, P.Y.; Robie, A.A.; Yamagata, N.; Schnaitmann, C.; et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife 2014, 3, e04580. [CrossRef]
- Michieli, U.; Zanuttigh, P. Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1114–1124.
- Li, J.; Ji, Z.; Wang, G.; Wang, Q.; Gao, F. Learning from Students: Online Contrastive Distillation Network for General Continual Learning.
- Kumaran, D.; Hassabis, D.; McClelland, J.L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in cognitive sciences 2016, 20, 512–534. [CrossRef]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research 2020, 21, 5485–5551.
- Bellitto, G.; Pennisi, M.; Palazzo, S.; Bonicelli, L.; Boschini, M.; Calderara, S.; Spampinato, C. Effects of Auxiliary Knowledge on Continual Learning. arXiv preprint arXiv:2206.02577 2022.
- Xu, J.; Zhu, Z. Reinforced continual learning. Advances in Neural Information Processing Systems 2018, 31.
- Marsocci, V.; Scardapane, S. Continual barlow twins: continual self-supervised learning for remote sensing semantic segmentation. IEEE J-STARS 2023.
- Derakhshani, M.M.; Zhen, X.; Shao, L.; Snoek, C. Kernel continual learning. In Proceedings of the International Conference on Machine Learning. PMLR, 2021, pp. 2621–2631.
- Clem, R.L.; Celikel, T.; Barth, A.L. Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex. Science 2008, 319, 101–104. [CrossRef]
- Zhai, M.; Chen, L.; Tung, F.; He, J.; Nawhal, M.; Mori, G. Lifelong gan: Continual learning for conditional image generation. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2759–2768.
- Liu, X.; Hu, Y.S.; Cao, X.S.; Bagdanov, A.D.; Li, K.; Cheng, M.M. Long-Tailed Class Incremental Learning. In Proceedings of the European Conference on Computer Vision. Springer, 2022, pp. 495–512.
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Computing Surveys 2022, 54, 1–41. [CrossRef]
- Von Oswald, J.; Zhao, D.; Kobayashi, S.; Schug, S.; Caccia, M.; Zucchet, N.; Sacramento, J. Learning where to learn: Gradient sparsity in meta and continual learning. Advances in Neural Information Processing Systems 2021, 34, 5250–5263.
- Cossu, A.; Tuytelaars, T.; Carta, A.; Passaro, L.; Lomonaco, V.; Bacciu, D. Continual Pre-Training Mitigates Forgetting in Language and Vision. arXiv preprint arXiv:2205.09357 2022.
- Borsos, Z.; Mutny, M.; Krause, A. Coresets via bilevel optimization for continual learning and streaming. Advances in Neural Information Processing Systems 2020, 33, 14879–14890.
- Geishauser, C.; van Niekerk, C.; Lin, H.C.; Lubis, N.; Heck, M.; Feng, S.; Gasic, M. Dynamic Dialogue Policy for Continual Reinforcement Learning. In Proceedings of the Proceedings of the 29th International Conference on Computational Linguistics, 2022, pp. 266–284.
- Doan, T.; Mirzadeh, S.I.; Pineau, J.; Farajtabar, M. Efficient Continual Learning Ensembles in Neural Network Subspaces. arXiv preprint arXiv:2202.09826 2022.
- Ye, F.; Bors, A.G. Task-Free Continual Learning via Online Discrepancy Distance Learning. arXiv preprint arXiv:2210.06579 2022.
- Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-Based Generative Modeling through Stochastic Differential Equations. In Proceedings of the International Conference on Learning Representations, 2020.
- Yan, S.; Xie, J.; He, X. Der: Dynamically expandable representation for class incremental learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3014–3023.
- Efrat, A.; Levy, O. The Turking Test: Can Language Models Understand Instructions? arXiv preprint arXiv:2010.11982 2020.
- Kulesza, A.; Taskar, B.; et al. Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning 2012, 5, 123–286. [CrossRef]
- Doshi, K.; Yilmaz, Y. Continual learning for anomaly detection in surveillance videos. In Proceedings of the CVPR Workshops, 2020, pp. 254–255.
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine Learning. PMLR, 2021, pp. 8748–8763.
- Rostami, M.; Kolouri, S.; Pilly, P.; McClelland, J. Generative continual concept learning. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2020, Vol. 34, pp. 5545–5552.
- Fernando, C.; Banarse, D.; Blundell, C.; Zwols, Y.; Ha, D.; Rusu, A.A.; Pritzel, A.; Wierstra, D. Pathnet: Evolution channels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734 2017.
- Sun, J.; Wang, S.; Zhang, J.; Zong, C. Distill and replay for continual language learning. In Proceedings of the Proceedings of the 28th international conference on computational linguistics, 2020, pp. 3569–3579.
- Rostami, M. Lifelong domain adaptation via consolidated internal distribution. Advances in Neural Information Processing Systems 2021, 34, 11172–11183.
- Deng, D.; Chen, G.; Hao, J.; Wang, Q.; Heng, P.A. Flattening Sharpness for Dynamic Gradient Projection Memory Benefits Continual Learning. Advances in Neural Information Processing Systems 2021, 34, 18710–18721.
- Ahn, H.; Cha, S.; Lee, D.; Moon, T. Uncertainty-based continual learning with adaptive regularization. Advances in Neural Information Processing Systems 2019, 32.
- Caccia, L.; Belilovsky, E.; Caccia, M.; Pineau, J. Online learned continual compression with adaptive quantization modules. In Proceedings of the International Conference on Machine Learning. PMLR, 2020, pp. 1240–1250.
- Zniyed, Y.; Nguyen, T.P.; et al. Efficient tensor decomposition-based filter pruning. Neural Networks 2024, 178, 106393.
- Wang, L.; Zhang, X.; Yang, K.; Yu, L.; Li, C.; Hong, L.; Zhang, S.; Li, Z.; Zhong, Y.; Zhu, J. Memory Replay with Data Compression for Continual Learning. In Proceedings of the International Conference on Learning Representations, 2021.
- Iscen, A.; Zhang, J.; Lazebnik, S.; Schmid, C. Memory-efficient incremental learning through feature adaptation. In Proceedings of the European Conference on Computer Vision. Springer, 2020, pp. 699–715.
- Liu, M.; Chang, S.; Huang, L. Incremental Prompting: Episodic Memory Prompt for Lifelong Event Detection. arXiv preprint arXiv:2204.07275 2022.
- Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. Advances in Neural Information Processing Systems 2020, 33, 21002–21012.
- Doan, T.; Bennani, M.A.; Mazoure, B.; Rabusseau, G.; Alquier, P. A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In Proceedings of the International Conference on Artificial Intelligence and Statistics. PMLR, 2021, pp. 1072–1080.
- Bennani, M.A.; Doan, T.; Sugiyama, M. Generalisation guarantees for continual learning with orthogonal gradient descent. arXiv preprint arXiv:2006.11942 2020.
- Gopalakrishnan, S.; Singh, P.R.; Fayek, H.; Ramasamy, S.; Ambikapathi, A. Knowledge capture and replay for continual learning. In Proceedings of the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 10–18.
- Lin, H.; Zhang, Y.; Qiu, Z.; Niu, S.; Gan, C.; Liu, Y.; Tan, M. Prototype-guided continual adaptation for class-incremental unsupervised domain adaptation. In Proceedings of the European Conference on Computer Vision. Springer, 2022, pp. 351–368.
- Wu, C.; Herranz, L.; Liu, X.; van de Weijer, J.; Raducanu, B.; et al. Memory replay gans: Learning to generate new categories without forgetting. Advances in Neural Information Processing Systems 2018, 31.
- Mirzadeh, S.I.; Farajtabar, M.; Gorur, D.; Pascanu, R.; Ghasemzadeh, H. Linear Mode Connectivity in Multitask and Continual Learning. In Proceedings of the International Conference on Learning Representations, 2020.
- Zhou, M.; Xiao, J.; Chang, Y.; Fu, X.; Liu, A.; Pan, J.; Zha, Z.J. Image de-raining via continual learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4907–4916.
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 2021.
- Wang, L.; Zhang, M.; Jia, Z.; Li, Q.; Bao, C.; Ma, K.; Zhu, J.; Zhong, Y. Afec: Active forgetting of negative transfer in continual learning. Advances in Neural Information Processing Systems 2021, 34, 22379–22391.
- Yang, G.; Pan, F.; Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature 2009, 462, 920–924. [CrossRef]
- Biesialska, M.; Biesialska, K.; Costa-jussà, M.R. Continual Lifelong Learning in Natural Language Processing: A Survey. In Proceedings of the Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 6523–6541.
- Peng, B.; Risteski, A. Continual learning: a feature extraction formalization, an efficient algorithm, and fundamental obstructions. arXiv preprint arXiv:2203.14383 2022.
- Zhao, J.; Zhang, X.; Zhao, B.; Hu, W.; Diao, T.; Wang, L.; Zhong, Y.; Li, Q. Genetic dissection of mutual interference between two consecutive learning tasks in Drosophila. Elife 2023, 12, e83516. [CrossRef]
- Singh, P.; Mazumder, P.; Rai, P.; Namboodiri, V.P. Rectification-based knowledge retention for continual learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15282–15291.
- Carr, M.F.; Jadhav, S.P.; Frank, L.M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nature neuroscience 2011, 14, 147–153. [CrossRef]
- Douillard, A.; Cord, M.; Ollion, C.; Robert, T.; Valle, E. Podnet: Pooled outputs distillation for small-tasks incremental learning. In Proceedings of the European Conference on Computer Vision. Springer, 2020, pp. 86–102.
- Yan, S.; Hong, L.; Xu, H.; Han, J.; Tuytelaars, T.; Li, Z.; He, X. Generative Negative Text Replay for Continual Vision-Language Pretraining. In Proceedings of the European Conference on Computer Vision. Springer, 2022, pp. 22–38.
- Ye, F.; Bors, A.G. Learning latent representations across multiple data domains using lifelong vaegan. In Proceedings of the European Conference on Computer Vision. Springer, 2020, pp. 777–795.
- Mi, F.; Kong, L.; Lin, T.; Yu, K.; Faltings, B. Generalized class incremental learning. In Proceedings of the CVPR Workshops, 2020, pp. 240–241.
- Liu, T.; Ungar, L.; Sedoc, J. Continual Learning for Sentence Representations Using Conceptors. In Proceedings of the Proceedings of NAACL-HLT, 2019, pp. 3274–3279.
- Hayashi-Takagi, A.; Yagishita, S.; Nakamura, M.; Shirai, F.; Wu, Y.I.; Loshbaugh, A.L.; Kuhlman, B.; Hahn, K.M.; Kasai, H. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015, 525, 333–338. [CrossRef]
- Mirzadeh, S.I.; Chaudhry, A.; Yin, D.; Hu, H.; Pascanu, R.; Gorur, D.; Farajtabar, M. Wide neural networks forget less catastrophically. In Proceedings of the International Conference on Machine Learning. PMLR, 2022, pp. 15699–15717.
- Wang, Y.; Huang, Z.; Hong, X. S-Prompts Learning with Pre-trained Transformers: An Occam’s Razor for Domain Incremental Learning. arXiv preprint arXiv:2207.12819 2022.
- Hou, S.; Pan, X.; Loy, C.C.; Wang, Z.; Lin, D. Learning a unified classifier incrementally via rebalancing. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 831–839.
- Petit, G.; Popescu, A.; Schindler, H.; Picard, D.; Delezoide, B. FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning. arXiv preprint arXiv:2211.13131 2022.
- Zhang, C.; Song, N.; Lin, G.; Zheng, Y.; Pan, P.; Xu, Y. Few-shot incremental learning with continually evolved classifiers. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12455–12464.
- Dong, S.; Hong, X.; Tao, X.; Chang, X.; Wei, X.; Gong, Y. Few-shot class-incremental learning via relation knowledge distillation. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2021, Vol. 35, pp. 1255–1263.
- Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; Wilson, A.G. Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407 2018.
- Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-efficient transfer learning for NLP. In Proceedings of the International Conference on Machine Learning. PMLR, 2019, pp. 2790–2799.
- Mazumder, P.; Singh, P.; Rai, P. Few-shot lifelong learning. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2021, Vol. 35, pp. 2337–2345.
- Liu, H.; Gu, L.; Chi, Z.; Wang, Y.; Yu, Y.; Chen, J.; Tang, J. Few-Shot Class-Incremental Learning via Entropy-Regularized Data-Free Replay. In Proceedings of the European Conference on Computer Vision. Springer, 2022, pp. 146–162.
- Li, A.; Boyd, A.; Smyth, P.; Mandt, S. Variational Beam Search for Learning with Distribution Shifts. arXiv preprint arXiv:2012.08101 2020.
- Mirzadeh, S.I.; Farajtabar, M.; Pascanu, R.; Ghasemzadeh, H. Understanding the role of training regimes in continual learning. Advances in Neural Information Processing Systems 2020, 33, 7308–7320.
- Jha, S.; Schiemer, M.; Ye, J. Continual learning in human activity recognition: an empirical analysis of regularization. arXiv preprint arXiv:2007.03032 2020.
- Banayeeanzade, M.; Mirzaiezadeh, R.; Hasani, H.; Soleymani, M. Generative vs. Discriminative: Rethinking The Meta-Continual Learning. Advances in Neural Information Processing Systems 2021, 34, 21592–21604.
- Berga, D.; Masana, M.; Van de Weijer, J. Disentanglement of color and shape representations for continual learning. arXiv preprint arXiv:2007.06356 2020.
- Saha, G.; Garg, I.; Roy, K. Gradient Projection Memory for Continual Learning. In Proceedings of the International Conference on Learning Representations, 2020.
- Qin, C.; Joty, S. Continual Few-shot Relation Learning via Embedding Space Regularization and Data Augmentation. In Proceedings of the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 2776–2789.
- Pham, V.T.; Zniyed, Y.; Nguyen, T.P. Enhanced network compression through tensor decompositions and pruning. IEEE Transactions on Neural Networks and Learning Systems 2024. [CrossRef]
- Aljundi, R.; Babiloni, F.; Elhoseiny, M.; Rohrbach, M.; Tuytelaars, T. Memory aware synapses: Learning what (not) to forget. In Proceedings of the Proceedings of the European Conference on Computer Vision, 2018, pp. 139–154.
- Wołczyk, M.; Piczak, K.; Wójcik, B.; Pustelnik, L.; Morawiecki, P.; Tabor, J.; Trzcinski, T.; Spurek, P. Continual Learning with Guarantees via Weight Interval Constraints. In Proceedings of the International Conference on Machine Learning. PMLR, 2022, pp. 23897–23911.
- Ramasesh, V.V.; Dyer, E.; Raghu, M. Anatomy of catastrophic forgetting: Hidden representations and task semantics. arXiv preprint arXiv:2007.07400 2020.
- Fini, E.; da Costa, V.G.T.; Alameda-Pineda, X.; Ricci, E.; Alahari, K.; Mairal, J. Self-supervised models are continual learners. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9621–9630.
- Isele, D.; Cosgun, A. Selective experience replay for lifelong learning. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2018, Vol. 32.
- González, O.C.; Sokolov, Y.; Krishnan, G.P.; Delanois, J.E.; Bazhenov, M. Can sleep protect memories from catastrophic forgetting? Elife 2020, 9. [CrossRef]
- Pasunuru, R.; Stoyanov, V.; Bansal, M. Continual Few-Shot Learning for Text Classification. In Proceedings of the Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 5688–5702.
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences 2017, 114, 3521–3526. [CrossRef]
- Kang, Z.; Fini, E.; Nabi, M.; Ricci, E.; Alahari, K. A soft nearest-neighbor framework for continual semi-supervised learning. arXiv preprint arXiv:2212.05102 2022.
- Liu, Q.; Yu, X.; He, S.; Liu, K.; Zhao, J. Lifelong Intent Detection via Multi-Strategy Rebalancing. arXiv preprint arXiv:2108.04445 2021.
- Wang, R.; Bao, Y.; Zhang, B.; Liu, J.; Zhu, W.; Guo, G. Anti-retroactive interference for lifelong learning. In Proceedings of the European Conference on Computer Vision. Springer, 2022, pp. 163–178.
- Stan, S.; Rostami, M. Unsupervised model adaptation for continual semantic segmentation. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2021, Vol. 35, pp. 2593–2601.
- Hocquet, G.; Bichler, O.; Querlioz, D. Ova-inn: Continual learning with invertible neural networks. In Proceedings of the International Joint Conference on Neural Networks. IEEE, 2020, pp. 1–7.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).