Submitted:
10 March 2025
Posted:
11 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Metabolomics
2.1. NMR Spectroscopy
2.2. Mass Spectrometry
2.3. Selection of the Method
3.
3.1. Biomarker Discovery and Risk Prediction in T2D
3.2. Amino Acids and Metabolite Profiles in T2D
3.3. Applications of Metabolomics Risk Assessment in T2D
3.4. Mendelian Randomization Studies in T2D
3.5. Microbiome-Related Metabolites and the Risk of T2D
3.6. Heterogeneity of T2D
3.7. Integrative Profiling and Future Directions in T2D
4. Metabolomics of Cardiovascular Diseases
4.1. Metabolites Associated with CAD
4.2. Mechanisms Linking Metabolites to CAD
4.3. Metabolomic Profiling and Disease Mechanisms in CAD
5. Comparative Analysis Between Type 2 Diabetes and Cardiovascular Diseases
6. Microbiota and Cardiovascular Diseases
7. Clinical Implications and Future Directions
Data Availability Statement
References
- Buergel, T. , Steinfeldt, J., Ruyoga, G., et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 2022, 28, 2309–2320. [Google Scholar]
- World Health Organization. Urgent action needed as global diabetes cases increase four-fold over past decades. 2020.
- Yin, X. , Chan, L.S., Bose, D., et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat. Commun. 2022, 13, 1644. [Google Scholar]
- Yin, X. , Bose, D., Kwon, A., et al. Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk. Am J Hum Genet, 1727; 6. [Google Scholar]
- Xie, R. , Seum, T., Sha, S., et al. Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics. Cardiovasc. Diabetol. 2025; 24, 18. [Google Scholar]
- Mora-Ortiz, M. , Alcala-Diaz, J.F., Rangel-Zuñiga, O.A., et al. Metabolomics analysis of type 2 diabetes remission identifies 12 metabolites with predictive capacity: a CORDIOPREV clinical trial study. BMC Med. 2022; 20, 373. [Google Scholar]
- Long, J. , Yang, Z., Wang, L., et al. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: a systematic review and meta-analysis. BMC Endocr. Disord.
- Laakso, M. Cardiovascular disease in type 2 diabetes: challenge for treatment and prevention. J. Intern. Med. 2001, 249, 225–235. [Google Scholar]
- Batty, M. , Bennett, M.R., Yu, E., et al. The role of oxidative stress in atherosclerosis. Cells 2022, 11, 3843. [Google Scholar]
- Lu, S. , Huang, Z., Liu, B., et al. Metabolomics in cardiovascular diseases. Int. J. Drug Discov. Pharmacol. 2024, 3, 100019. [Google Scholar]
- Nicholson, J.K. , Lindon, J.C., Holmes, E. Systems biology: Metabonomics. Nature, 2008; 455, 1054–1056. [Google Scholar]
- Lankinen, M.A. , Nuotio, P., Kauppinen, S., et al. Effects of genetic risk on incident type 2 diabetes and glycemia: The T2D-GENE lifestyle intervention trial. J. Clin. Endocrinol. Metab.
- Karjalainen, M.K. , Karthikeyan, S., Oliver-Williams, C., et al. Genome-wide characterization of circulating metabolic biomarkers. Nature.
- Bauermeister, A. , Mannochio-Russo, H., Costa-Lotufo, L.V., et al. Mass spectrometry-based metabolomics in microbiome investigation. Nat. Rev. Microbiol.
- Di Minno, A. , Gelzo, M., Caterino, M., et al. Challenges in metabolomics-based tests, biomarkers revealed by metabolomic analysis, and the promise of the application of metabolomics in precision medicine. Int. J. Mol. Sci. 5213. [Google Scholar]
- Johnson, C. , Ivanisevic, J., Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol.
- Markley, J.L. , Brüschweiler, R., Edison, A.S., et al. The future of NMR-based metabolomics. Curr. Opin. Biotechnol.
- Geyer, T. , Rübenthaler, J., Alunni-Fabbroni, M., et al. NMR-based lipid metabolite profiles to predict outcomes in patients undergoing interventional therapy for a Hepatocellular Carcinoma (HCC): A substudy of the SORAMIC trial. Cancers, 2787. [Google Scholar]
- Anh, N.K. , Thu, N.Q., Tien, N.T.N., et al. Advancements in mass spectrometry-based targeted metabolomics and lipidomics: Implications for clinical research. Molecules, 5934. [Google Scholar]
- Crook, A.A. , Powers, R. Quantitative NMR-based biomedical metabolomics: Current status and applications. Molecules, 5128. [Google Scholar]
- Emwas, A.H. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 2015, 1277, 161–193. [Google Scholar]
- Marshall, D.D. , Powers, R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog. Nucl. Magn. Reson. Spectrosc.
- Son, A. , Kim, W., Park, J., et al. Mass spectrometry advancements and applications for biomarker discovery, diagnostic innovations, and personalized medicine. Int. J. Mol. Sci. 9880. [Google Scholar]
- Al-Akl, N.S. , Khalifa, O., Ponirakis, G., et al. Untargeted metabolomic profiling reveals differentially expressed serum metabolites and pathways in Type 2 diabetes patients with and without cognitive decline: A Cross-Sectional Study. Int. J. Mol. Sci. 2247. [Google Scholar]
- Triebl, A. , Trötzmüller, M., Hartler, J., et al. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. J. Chromatogr. B Analyt Technol Biomed Life Sci.
- Dona, A.C. , Kyriakides, M., Scott, F., et al. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput. Struct. Biotechnol. J.
- Titkare, N. , Chaturvedi, S., Borah, S., et al. Advances in mass spectrometry for metabolomics: strategies, challenges, and innovations in disease biomarker discovery. Biomed Chromatogr. 6019. [Google Scholar]
- Xie, R. , Herder, C., Sha, S., et al. Novel type 2 diabetes prediction score based on traditional risk factors and circulating metabolites: model derivation and validation in two large cohort studies. eClinicalMedicine, 1029. [Google Scholar]
- Mosley, J.D. , Shi, M., Agamasu, D., et al. Branched chain amino acids and type 2 diabetes: a bidirectional Mendelian randomization analysis. Obesity.
- Lotta, L.A. , Scott, R.A., Sharp, S.J., et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis. PLoS Med. 1002. [Google Scholar]
- Jin, Z. , Hu, W., Yang, Y. Serum metabolomic analysis revealed potential metabolite biomarkers for diabetes mellitus with coronary heart disease. Analytical Methods 2023. [Google Scholar]
- Laakso, M. Biomarkers for Type 2 Diabetes. Molecular Metabolism 2019, 27, S139–S146. [Google Scholar]
- Morze, J. , Wittenbecher, C., Schwingshackl, L., et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care, 1013. [Google Scholar]
- Ahola-Olli, A. V. , Mustelin, L., Kalimeri, M., et al. Circulating metabolites and the risk of Type 2 Diabetes: A prospective study of 11,896 young adults from four Finnish Cohorts. Diabetologia, 2298. [Google Scholar]
- Mahendran, Y. , Cederberg, H., Vangipurapu, J., et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care 2013, 36, 3732–3738. [Google Scholar]
- Gu, X. , Al Dubayee, M., Alshahrani, A., et al. Distinctive metabolomics patterns associated with insulin resistance and Type 2 Diabetes Mellitus. Front. Mol. Biosci. 2020, 7. [Google Scholar] [CrossRef]
- Yang, S. J. , Kwak, S. Y., Jo, G., et al. Serum metabolite profile associated with incident Type 2 Diabetes in Koreans: Findings from the Korean genome and epidemiology study. Sci. Rep.
- Yang, K. , Li, J., Hui, X., et al. Assessing the causal relationship between metabolic biomarkers and coronary artery disease by Mendelian randomization studies. Sci Rep. 2024, 14, 19034. [Google Scholar] [CrossRef]
- Yuan, S. , Larsson, S.C. An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study. Diabetologia, 2359. [Google Scholar]
- Yuan, S. , Merino, J., Larsson, S.C. Causal factors underlying diabetes risk informed by Mendelian randomisation analysis: evidence, opportunities and challenges. Diabetologia.
- Aikens, R.C. , Zhao, W., Saleheen, D., et al. Systolic blood pressure and risk of type 2 diabetes: a Mendelian randomization study. Diabetes.
- De Silva, N.M.G. , Borges, M.C., Hingorani, A.D., et al. Liver function and risk of type 2 diabetes: bidirectional Mendelian randomization study. Diabetes, 1681. [Google Scholar]
- Martin, S. , Sorokin, E.P., Thomas, E.L., et al. Estimating the effect of liver and pancreas volume and fat content on risk of diabetes: a Mendelian randomization study. Diabetes Care.
- Wainberg, M. , Mahajan, A., Kundaje, A., et al. Homogeneity in the association of body mass index with type 2 diabetes across the UK Biobank: A Mendelian randomization study. PLoS Med. 1002. [Google Scholar]
- Karlsson, T. , Rask-Andersen, M., Pan, G., et al. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat. Med. 2019, 25, 1390–1395. [Google Scholar] [CrossRef]
- Yuan, S. , Larsson, S.C. A causal relationship between cigarette smoking and type 2 diabetes mellitus: a Mendelian randomization study. Sci. Rep. 1934. [Google Scholar]
- Li, X. , Tang, J., Lin, S., et al. Mendelian randomization analysis demonstrates the causal effects of IGF family members in diabetes. Front Med. 2024, 11, 1332162. [Google Scholar] [CrossRef]
- Zhang, Y. , Wang, H., Sang, Y., et al. Gut microbiota in health and disease: advances and future prospects. Med Comm, 7001; 5. [Google Scholar]
- Zhu, T. , Goodarzi, M.O. Metabolites linking the gut microbiome with risk for type 2 diabetes. Curr. Nutr. Rep. 2020, 2, 83–93. [Google Scholar] [CrossRef]
- Xie, C. , Qi, C., Zhang, J., et al. When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies. Biochem. Pharmacol. 2025, 233, 116791. [Google Scholar] [CrossRef]
- Yu, W. , Sun, S., Fu, Q., et al. The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol, 1519; 16. [Google Scholar]
- Navab-Moghadam, F. , Sedighi, M., Khamseh, M.E., et al. The association of type II diabetes with gut microbiota composition. Microb Pathog. 2017, 110, 110,630–636. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S. , DeVon, H.A., Cantor, R.M., et al. Relationships and mendelian randomization of gut microbe-derived metabolites with metabolic syndrome traits in the METSIM Cohort. Metabolites.
- Abildinova, G.Z. , Benberin, V.V., Vochshenkova, T.A., et al. The gut-brain-metabolic axis: exploring the role of microbiota in insulin resistance and cognitive function. Front. Microbiol. 1463. [Google Scholar]
- Zheng, X. , Chen, M., Zhuang, Y., et al. Genetic associations between gut microbiota and type 2 diabetes mediated by plasma metabolites: a Mendelian randomization study. Front. Endocrinol. 1430. [Google Scholar]
- Laakso, M. , Kuusisto, J., Stančáková, A., et al. The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. J Lipid Res, 58.
- Vangipurapu, J. , Fernandes Silva, L., Kuulasmaa, T., et al. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care, 1319. [Google Scholar]
- Newgard, C.B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef]
- Lynch, C.J. , Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol.
- McCarthy, M.I. Painting a new picture of personalised medicine for diabetes. Diabetologia 2017, 60, 793–799. [Google Scholar] [CrossRef]
- Udler, M.S. , Kim, J., von Grotthuss, M., et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 1002. [Google Scholar]
- Suzuki, K. , Hatzikotoulas, K., Southam, L., et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature.
- Haffner, S.M. , Lehto, S., Rönnemaa, T., et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998, 339(4), 229–234. [Google Scholar] [CrossRef]
- Nayor, M. , Brown, K.J., Vasan, R.S. The molecular basis of predicting atherosclerotic cardiovascular disease risk. Circ. Res. 2021, 128, 287–303. [Google Scholar] [CrossRef]
- Tang, Y. , Zou, Y., Cui, J., et al. Analysis of two intestinal bacterial metabolites (trimethylamine N-oxide and phenylacetylglutamine) in human serum samples of patients with T2D and AMI using a liquid chromatography tandem mass spectrometry method. Clin Chim Acta.
- Zhu, Q. , Qin, M., Wang, Z., et al. Plasma metabolomics provides new insights into the relationship between metabolites and outcomes and left ventricular remodeling of coronary artery disease. Cell Biosci 2022, 12, 173. [Google Scholar]
- Guo, Z. , Zhong, Y., Zhou, L., et al. Unveiling the microbiota-metabolite-myocardium axis: a novel perspective on cardiovascular health. Front. Microbiol. 1389. [Google Scholar]
- Lv, J. , Pan, C., Cai, Y., et al. Plasma metabolomics reveals the shared and distinct metabolic disturbances associated with cardiovascular events in coronary artery disease. Nat Comm, 5729. [Google Scholar]
- Ma, Y. , Chu, M., Fu, Z., et al. The association of metabolomic profiles of a healthy lifestyle with heart failure risk in a prospective study. Nutrients. 2023, 15, 2934. [Google Scholar] [CrossRef]
- Ikegami, R. , Shimizu, I., Yoshida, Y., et al. Metabolomic analysis in heart failure. Circ J. 2017, 82, 10–16. [Google Scholar] [PubMed]
- Gibson, K. , Forrest, I.S., Petrazzini, B.O., et al. Evaluation of a machine learning-based metabolic marker for coronary artery disease in the UK Biobank. Atherosclerosis. 1191. [Google Scholar]
- Sun, M. , Liu, W., Jiang, H., et al. Large-scale comprehensive plasma metabolomic analyses reveal potential biomarkers for the diagnosis of early-stage coronary atherosclerosis. Clin Chim Acta. 2024, 562, 119832. [Google Scholar] [PubMed]
- Wang, Q. , Cao, Y., Jia, L. Lipidomics-based investigation of its impact on the pathogenesis of coronary atherosclerosis: a Mendelian randomization study. Hereditas.
- Zhu, Q. , Wu, Y., Mai, J., et al. Comprehensive metabolic profiling of inflammation indicated key roles of glycerophospholipid and arginine metabolism in coronary artery disease. Front. Immunol. 8294. [Google Scholar]
- Jauhiainen, R. , Vangipurapu, J., Laakso, A., et al. The association of 9 amino acids with cardiovascular events in Finnish men in a 12-year follow-up study.
- Iliou, A. , Mikros, E., Karaman, I., et al. Metabolic phenotyping and cardiovascular disease: an overview of evidence from epidemiological settings. Heart. 1123. [Google Scholar]
- Prechtl, L. , Carrard, J., Gallart-Ayala, H., et al. Features urea cycle alterations associated with coronary artery disease. Sci Rep. 2584. [Google Scholar]
- Omori, K. , Katakami, N., Yamamoto, Y., et al. Identification of metabolites associated with onset of CAD in diabetic patients using CE-MS analysis: A pilot study. J Atheroscler Thromb. 2: 1;26(3).
- Vernon, S.T. , Tang, O., Kim, T., et al. Metabolic signatures in coronary artery disease: Results from the BioHEART-CT Study. Cells. 9: 22;10(5).
- Deng, K. , Gupta, D.K., Shu, X.O., et al. Circulating metabolite profiles and risk of coronary heart disease among racially and geographically diverse populations. Circ Genom Precis Med. 0044. [Google Scholar]
- Yang Sheng, Feng Gao, Zhenyu Zhu, et al. Metabolites and coronary heart disease: A two sample Mendelian Randomization. International Journal of Cardiology Cardiovascular Risk and Prevention, 0036.
- Mei, Z. , Xu, L., Huang, Q., et al. Metabonomic biomarkers of plaque burden and instability in patients with coronary atherosclerotic disease after moderate lipid-lowering therapy. J Am Heart Assoc. 0369. [Google Scholar]
- Zhu, Q. , Qin, M., Wang, Z., et al. Plasma metabolomics provides new insights into the relationship between metabolites and outcomes and left ventricular remodeling of coronary artery disease. Cell Biosci. 2022, 12, 173. [Google Scholar]
- Anlar, G.G. , Anwardeen, N., Ashmar, S.A., et al. Metabolomics profiling of stages of coronary artery disease progression. Metabolites.
- Xue, H. , Chen, X., Yu, C., et al. Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease. Circ Res. 4: (5).
- Laakso, M. , Fernandes Silva, L. Statins and risk of type 2 diabetes: mechanism and clinical implications. Front Endocrinol. 1: 19;14, 1239. [Google Scholar]
- Cohan, A.T. , Barrington, W.T., Daniel M. Jordan, D.M., et al. An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nat Commun, 5: (1).
- Lu, Y. , Li, G., Viallon, V., et al. A large study of metabolomics reveals common and distinct metabolic biomarkers for type 2 diabetes, coronary heart disease, and stroke. Am J Epidemiol.
- Liu, Y. , Liu Ju-E, He, H., et al. Characterizing the metabolic divide: distinctive metabolites differentiating CAD-T2DM from CAD patients. Cardiovasc Diabetol.
- Nicholson, J.K. , Lindon, J.C. Systems biology: Metabonomics. Nature. 1: (7216), 7216. [Google Scholar]
- Long, J. , Yang, Z., Wang, L., et al. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: a systematic review and meta-analysis. BMC Endocr Disord.
- Lu, S. , Huang, Z., Liu, B., et al. Metabolomics in cardiovascular diseases. International Journal of Drug Discovery and Pharmacology. 2024, 3(4), 100019. [Google Scholar]
- Johnson, C. , Ivanisevic, J., Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol.
- Di Minno, A. , Gelzo, M., Caterino, M., et al. Challenges in metabolomics-based tests, biomarkers revealed by metabolomic analysis, and the promise of the application of metabolomics in precision medicine. International Journal of Molecular Sciences. 5213. [Google Scholar]
- Kurilshikov, A. , Medina-Gomez, C., Bacigalupe, R., et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet.
- Bui, T.V.A. , Hwangbo, H., Lai, Y., et al. The gut-heart axis: updated review for the roles of microbiome in cardiovascular health. 2023,53(8), 499-518.
- Qin, J. , Li, R., Raes, J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature.
- Bui, T.V.A. , Hwangbo, H., Lai, Y., et al. The gut-heart axis: updated review for the roles of microbiome in cardiovascular health. Korean Circ J. 2023, 53, 499–5189. [Google Scholar] [CrossRef]
- Kim, M. , Huda, M.N., Bennett, B.J., et al. Sequence meets function - microbiota and cardiovascular disease. Cardiovasc Res.
- Talmor-Barkan, Y. , Bar, N., Shaul, A.A., et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med.
- Org, E. , Blum, Y., Kasela, S., et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol.
- World Health Organization. Urgent action needed as global diabetes cases increase four-fold over past decades. Accessed , 2025. 23 January.
- Chaudhry, U.A.R. , Fortescue, R., Bowen, L., et al. Comparison of mortality in people with type 2 diabetes between different ethnic groups: Systematic review and meta-analysis of longitudinal studies. PLoS One. e: 17;20(1), 0314. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
