Submitted:
17 March 2025
Posted:
18 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Main Result
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- A. Ali, A.M. Alanazi, T.S. Hassan, Y. Shang, On unicyclic graphs with a given number of pendent vertices or matching number and their graphical edge-weight-function indices, Mathematics 12 (2024) 3658. [CrossRef]
- A. Ali, B. Furtula, I. Gutman, D. Vukičević, Augmented Zagreb index: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 85 (2021) 211–244.
- K. Aarthi, S. Elumalai, S. Balachandran, S. Mondal, Extremal values of the atom-bond sum-connectivity index in bicyclic graphs, J. Appl. Math. Comput. 69 (2023) 4269–4285. [CrossRef]
- S. Balachandran, T. Vetrík, Exponential second Zagreb index of chemical trees, Trans. Combin. 10 (2021) 97–106.
- J. Bera, K.C. Das, The minimal molecular tree for the exponential Randić index, Mathematics 12 (2024) 3601. [CrossRef]
- W. Carballosa, Y. Quintana, J.M. Rodríguez, J.M. Sigarreta, Exponential topological indices: optimal inequalities and applications, J. Math. Chem. 61 (2023) 933–949. [CrossRef]
- M. Chen, Y. Zhu, Extremal unicyclic graphs of Sombor index, Appl. Math. Comput. 463 (2024) 128374. [CrossRef]
- R. Cruz, J. Monsalve, J. Rada, Trees with maximum exponential Randić index, Discrete Appl. Math. 283 (2020) 634–643. [CrossRef]
- R. Cruz, J. Monsalve, J. Rada, The balanced double star has maximum exponential second Zagreb index, J. Combin. Optim. 41 (2021) 544–552. [CrossRef]
- R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715–732.
- R. Cruz, J. Rada, Extremal graphs for exponential VDB indices, Kragujev. J. Math. 46 (2022) 105–113. [CrossRef]
- R. Cruz, J. Rada, W. Sanchez, Extremal unicyclic graphs with respect to vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 88 (2022) 481–503. [CrossRef]
- K.C. Das, On the exponential atom-bond connectivity index of graphs, Mathematics 13 (2025) 269. [CrossRef]
- K.C. Das, S. Elumalai, S. Balachandran, Open problems on the exponential vertex-degree-based topological indices of graphs, Discrete Appl. Math. 293 (2021) 38–49. [CrossRef]
- K.C. Das, I. Gutman, I. Milovanović, E. Milovanović, B. Furtula, Degree-based energies of graphs, Linear Algebra Appl. 554 (2018) 185–204. [CrossRef]
- K.C. Das, S. Mondal, On exponential geometric-arithmetic index of graphs, J. Math. Chem. 60 (2024) 205–217. [CrossRef]
- K.C. Das, S. Mondal, D. Y. Huh, On the exponential augmented Zagreb index of graphs, J. Appl. Math. Comput. 70 (2024) 839–865. [CrossRef]
- K.C. Das, S. Mondal, D. Huh, Open problem on the maximum exponential augmented Zagreb index of unicyclic graphs, Comput. Appl. Math. 43 (2024) 317. [CrossRef]
- H. Deng, T. Vetrík, S. Balachandran, On the harmonic index and diameter of unicyclic graphs, Math. Rep. (Bucur.) 22 (2020) 11–18.
- M. Eliasi, Unicyclic and bicyclic graphs with maximum exponential second Zagreb index, Discrete Appl. Math. 307 (2022) 172–179. [CrossRef]
- S.M. Ergotić, On unicyclic graphs with minimum Graovac-Ghorbani index, Mathematics 12 (2024) 384. [CrossRef]
- X. Guo, Y. Gao, Arithmetic-geometric spectral radius and energy of graphs, MATCH Commun. Math. Comput. Chem. 83 (2020) 651–660.
- A. Hertz, S. Bonte, G. Devillez, V. Dusollier, H. Mélot, D. Schindl, Extremal chemical graphs for the arithmetic-geometric index, MATCH Commun. Math. Comput. Chem. 93 (2025) 791–818.
- A. Jahanbani, M. Cancan, R. Motamedi, Extremal Trees for the Exponential of Forgotten Topological Index, J. Math. 2022 (2022) 7455701. [CrossRef]
- G. Li, M. Zhang, Sharp bounds on the arithmetic-geometric index of graphs and line graphs, Discrete Appl. Math. 318 (2022) 47–60. [CrossRef]
- H. Liu, Comparison between Merrifield-Simmons index and some vertex-degree-based topological indices, Comput. Appl. Math. 42 (2023) 89. [CrossRef]
- H. Liu, Extremal problems on Sombor indices of unicyclic graphs with a given diameter, Comput. Appl. Math. 41 (2022) 138. [CrossRef]
- H. Liu, Y. Huang, Sharp bounds on the symmetric division deg index of graphs and line graphs, Comp. Appl. Math. 42 (2023) 285. [CrossRef]
- Q. Liu, Q. Li, H. Zhang, Unicyclic graphs with extremal Lanzhou index, Appl. Math. - J. Chinese Univ. 37 (2022) 350–365. [CrossRef]
- V. Maitreyi, S. Elumalai, S. Balachandran, H. Liu, The minimum Sombor index of trees with given number of pendant vertices, Comp. Appl. Math. 42 (2023) 331. [CrossRef]
- I.Ž. Milovanović, M.M. Matejić, E.I. Milovanović, Upper bounds for arithmetic-geometric index of graphs, Sci. Publ. State Univ. Novi Pazar Ser. A: Appl. Math. Inform. Mech. 10 (2018) 49–54. [CrossRef]
- S. Moon, S. Park, Bounds for the geometric-arithmetic index of unicyclic graphs, J. Appl. Math. Comput. 69 (2023) 2955–2971. [CrossRef]
- W. Ning, K. Wang, On the Estrada indices of unicyclic graphs with fixed diameters, Mathematics 9 (2021) 2395. [CrossRef]
- P. Nithyaa, S. Elumalai, S. Balachandran, M. Masrec, Ordering unicyclic graphs with a fixed girth by Sombor indices, MATCH Commun. Math. Comput. Chem. 92 (2024) 205–224.
- J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29–41.
- J.M. Rodríguez, J.L. Sánchez, J.M. Sigarreta, E. Tours, Bounds on the arithmetic-geometric index, Symmetry 13 (2021) 689. [CrossRef]
- V.S. Shegehalli, R. Kanabur, Arithmetic-geometric indices of path graph, J. Comput. Math. Sci. 6 (2015) 19–24.
- V.S. Shegehalli, R. Kanabur, Arithmetic-geometric indices of some class of graph, J. Comput. Math. Sci. 6 (2015) 194–199.
- V.S. Shegehalli, R. Kanabur, Computation of new degree-based topological indices of graphene, J. Math. 2016 (2016) 1–6. [CrossRef]
- W.A. Stein, Sage Mathematics Software (Version 6.8), The Sage Development Team, http://www.sagemath.org, 2015.
- S. Vujošević, G. Popivoda, Ž.K. Vukićević, B. Furtula, R. Škrekovski, Arithmetic-geometric index and its relations with geometric-arithmetic index, Appl. Math. Comput. 391 (2021) 125706. [CrossRef]
- Ž.K. Vukićević, S. Vujošević, G. Popivoda, Unicyclic graphs with extremal values of arithmetic-geometric index, Discrete Appl. Math. 302 (2021) 67–75. [CrossRef]
- H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20. [CrossRef]
- Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL, 2008.
- L. Zheng, G. X. Tian, S. Y. Cui, On spectral radius and energy of arithmetic-geometric matrix of graphs, MATCH Commun. Math. Comput. Chem. 83 (2020) 635–650.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
