Submitted:
18 March 2025
Posted:
19 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Impact of Fungi on Meat Safety and Occupational Health
2.1. Fungi as Meat-Borne Pathogens
2.2. Fungi as Occupational Hazards
3. Occurrence of Moulds in the Slaughterhouse
3.1. Aspergillus spp.
3.1.1. Aspergillus flavus
3.1.2. Aspergillus fumigatus
3.1.3. Aspergillus ochraceus
3.1.4. Aspergillus parasiticus
3.1.5. Aspergillus niger
3.1.6. Aspergillus terreus
3.1.7. Other Isolated Aspergillus spp.
3.1.8. Eurotium (Reclassified as Aspergillus) spp.
3.2. Fusarium spp.
3.3. Penicillium spp.
3.4. Mucor spp.
3.5. Rhizopus spp.
3.6. Cladosporium spp.
3.7. Alternaria spp.
3.8. Botrytis spp.
3.9. Geotrichum spp.
3.11. Scopulariopsis spp.
3.12. Other Moulds Isolated in Slaughterhouses
4. Occurrence of Yeasts in the Slaughterhouse
4.1. Candida spp.
4.2. Cryptococcus spp.
4.3. Rhodoturula spp.
4.4. Other Yeasts Isolated in Slaughterhouses
5. Microbiological Monitoring in Slaughterhouses: The Overlooked Impact of Fungi
6. Conclusions
Disclaimer
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nimsi, K. A., Manjusha, K., Hatha, A. A. M., & Kathiresan, K. Diversity, distribution, and bioprospecting potentials of manglicolous yeasts: a review. FEMS Microbiol. Ecol, 2023, 99(5), fiad044. [CrossRef]
- Kumar, P., Kausar, M. A., Singh, A. B., & Singh, R. Biological contaminants in the indoor air environment and their impacts on human health. Air Qual Atmos Health, 2021, 14(11), 1723-1736. [CrossRef]
- Kraft, S., Buchenauer, L., & Polte, T. Mould, mycotoxins and a dysregulated immune system: a combination of concern?. Int. J. Mol. Sci, 2021, 22(22), 12269. [CrossRef]
- Perricone, M.; Gallo, M.; Corbo, M. R.; Sinigaglia, M.; Bevilacqua, A. Yeasts. In The Microbiological Quality of Food: Foodborne Spoilers; Bevilacqua, A., Corbo, M. R., Sinigaglia, M., Eds.; Elsevier: Amsterdam, Netherlands, 2024; pp. 121–131. [Google Scholar] [CrossRef]
- Lee, E. S., Kim, J. H., Kang, S. M., Kim, B. M., & Oh, M. H. Inhibitory effects of ultraviolet-C light and thermal treatment on four fungi isolated from pig slaughterhouses in Korea. J. Anim. Sci. Technol, 2022, 64(2), 343. [CrossRef]
- Coton, M., Deniel, F., Mounier, J., Joubrel, R., Robieu, E., Pawtowski, A., … & Frémaux, B. Microbial ecology of French dry fermented sausages and mycotoxin risk evaluation during storage. Front Microbiol, 2021, 12, 737140. [CrossRef]
- Almashhadany, D. A. Meat borne diseases. In Meat and Nutrition, IntechOpen: London, UK, 2021, Volume 97391. [CrossRef]
- Franco, L. T., Ismail, A., Amjad, A., & Oliveira, C. A. F. D. Occurrence of toxigenic fungi and mycotoxins in workplaces and human biomonitoring of mycotoxins in exposed workers: a systematic review. Toxin Rev, 2021, 40(4), 576-591. [CrossRef]
- Adesola, R. O., Hossain, D., Ogundijo, O. A., Idris, I., Hamzat, A., Gulumbe, B. H., … & Lucero-Prisno III, D. E. Challenges, Health Risks and Recommendations on Meat Handling Practices in Africa: A Comprehensive Review. Environ. Health Insights, 2024, 18, 11786302241301991. [CrossRef]
- Zhang, X., Liang, J., Wang, B., Lv, Y., & Xie, J. Indoor air design parameters of air conditioners for mould-prevention and antibacterial in island residential buildings. Int. J. Environ. Res. Public Health, 2020, 17(19), 7316. [CrossRef]
- Al-haddad, Z. A. Isolation and Identification of Yeasts from Slaughterhouses in Baghdad province. AJMS, 2024, 3(1), 75-81. [CrossRef]
- Nakamura, A., Takahashi, H., Kondo, A., Koike, F., Kuda, T., Kimura, B., & Kobayashi, M. Distribution of psychrophilic microorganisms in a beef slaughterhouse in Japan after cleaning. PloS one, 2022, 17(8), e0268411. [CrossRef]
- Viegas, C., Faria, T., Dos Santos, M., Carolino, E., Sabino, R., Quintal Gomes, A., & Viegas, S. Slaughterhouses fungal burden assessment: a contribution for the pursuit of a better assessment strategy. Int. J. Environ. Res. Public Health, 2016, 13(3), 297. [CrossRef]
- Viegas, C., Caetano, L. A., & Viegas, S. Occupational exposure to Aspergillus section Fumigati: Tackling the knowledge gap in Portugal. Environ. Res, 2021, 194, 110674. [CrossRef]
- Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis, 2024, 24(7):e428-e438. [CrossRef]
- Marcelloni, A. M., Pigini, D., Chiominto, A., Gioffrè, A., & Paba, E. Exposure to airborne mycotoxins: the riskiest working environments and tasks. Ann. Work Expo. Health, 2024, 68(1), 19-35. [CrossRef]
- Mielniczuk, E., & Skwaryło-Bednarz, B. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy, 2020, 10(4), 509. [CrossRef]
- Schlosser, O., Robert, S., & Noyon, N. Airborne mycotoxins in waste recycling and recovery facilities: Occupational exposure and health risk assessment. Waste Manag, 2020, 105, 395-404. [CrossRef]
- Lohinova, A., & Arsenyeva, L. Knowledge of the factors affecting the storage life of raw meat is the key to the rational use of production resources. Food Sci. Technol, 2022, (2073-8684), 16(3). [CrossRef]
- Aljazzar, A., El-Ghareeb, W. R., Darwish, W. S., Abdel-Raheem, S. M., & Ibrahim, A. M. Mould contamination of buffalo and cattle meat and offal: A comparative study. Buffalo Bull., 2021, 40(4), 59-69. Available online: https://www.researchgate.net/profile/Wageh_Darwish/publication/356260359_MOULD_CONTAMINATION_OF_BUFFALO_AND_CATTLE_MEAT_AND_OFFAL_A_COMPARATIVE_STUDY/links/6193bd9561f0987720a33d1a/MOULD-CONTAMINATION-OF-BUFFALO-AND-CATTLE-MEAT-AND-OFFAL-A-COMPARATIVE-STUDY.pdf.
- Hussein, M. A., Tharwat, A. E., Ali, R. M., Abo-Almagd, E. E., & Fakhry, B. A. Prevalence of mould and aflatoxin in raw and heat-treated meat products. J. Adv. Vet. Res, 2023, 13(7), 1252-1256. Available online: https://advetresearch.com/index.php/AVR/article/view/1409.
- Ghanem, A., Shaltout, F., & Heikal, G. I. Mycological quality of some chicken meat cuts in Gharbiya governorate with special reference to Aspergillus flavus virulent factors. Benha Vet. Med. J., 2022, 42(1), 12-16. [CrossRef]
- Vesković-Moračanin, S. M., Borović, B. R., Velebit, B. M., Rašeta, M. P., & Milićević, D. R. Identification of mycobiota in Serbian slaughterhouses. Zb. Matice srp. prir. nauke, 2009, (117), 45-49. [CrossRef]
- Ja’afaru, M. I., Bernard, A. L., Adeyemo, O. M., & Ogwuche, J. O. Isolation, prevalence of bacteria and fungi from carcasses and different locations within Yola abattoir and antimicrobial resistance profile of Escherichia coli O157: H7. Environ. Adv, 2024, 10, 200102. [CrossRef]
- El Bayomi, R. M., Hebishy, R. M., Darwish, W. S., El-Atabany, A. I. M., & Mahmoud, A. F. A. Mould contamination of some meat products with reference to decontamination trials of Aspergillus flavus using essential oils. Slov. Vet. Res, 2021, 58, 363-372. [CrossRef]
- European Agency for Safety and Health at Work. (2019). Exposure to biological agents and related health problems in animal-related occupations: Health effects related to exposure to biological agents in the workplace. Available online: https://osha.europa.eu/en/publications/exposure-biological-agents-and-related-health-problems-animal-related-occupations.
- Chakravarty, P. Mycobiota and mycotoxin-producing fungi in southern California: their colonisation and in vitro interactions. Mycology, 2022, 13(4), 293-304. [CrossRef]
- Viegas, S., Veiga, L., Almeida, A., dos Santos, M., Carolino, E., & Viegas, C. Occupational exposure to aflatoxin B1 in a Portuguese poultry slaughterhouse. Ann Occup Hyg, 2016, 60(2), 176-183. [CrossRef]
- Borkar, S. G., & Shinde, K. Yeast species of diverse functionality in health sciences: A concise report. GSC biol. pharm. sci., 2023, 25(2), 149-168. [CrossRef]
- Vargová, M., Sasáková, N., Laktičová, K. V., & Zigo, F. Evaluation of the hygienic condition of the slaughterhouse. Acta fytotech. zootech, 2021, 24. [CrossRef]
- Wahab, S. N. A., Mohammed, N. I., Khamidi, M. F., Ahmad, N. A., Noor, Z. M., Ghani, A. A. A. and Ismail, M. R. Sampling and identifying of mould in the library building. In: The 4th International Building Control Conference 2016, Kuala, Lumpur, 7 March 2016. [CrossRef]
- Earle, K., Valero, C., Conn, D. P., Vere, G., Cook, P. C., Bromley, M. J., … & Gago, S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence, 2023, 14(1), 2172264. [CrossRef]
- Rizwan, M.; Imran, M. M.; Irshad, H.; Umair, M.; Najaf, H. D.; Ali, S.; Saeed, L. Aspergillosis: An Occupational Zoonotic Disease. In Zoonosis; Unique Scientific Publishers: Faisalabad, Pakistan, 2023; Volume 4, pp. 380–391. [Google Scholar] [CrossRef]
- Arastehfar, A., Carvalho, A., Houbraken, J., Lombardi, L., Garcia-Rubio, R., Jenks, J. D., … & Hoenigl, M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud. Mycol., 2021, 100(1), 100115-100115. [CrossRef]
- Dos Santos, R. A., Steenwyk, J. L., Rivero-Menendez, O., Mead, M. E., Silva, L. P., Bastos, R. W., … & Rokas, A. Genomic and phenotypic heterogeneity of clinical isolates of the human pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front. Genet, 2020, 11, 459. [CrossRef]
- Haas, D., Posch, J., Schmidt, S., Wüst, G., Sixl, W., Feierl, G., … & Reinthaler, F. F. A case study of airborne culturable microorganisms in a poultry slaughterhouse in Styria, Austria. Aerobiologia, 2005, 21, 193-201. [CrossRef]
- Adeeb, F., & Shooter, D. Emission and evolution of air-borne microflora in slaughter houses. Indoor Built Environ, 2003, 12(3), 179-184. [CrossRef]
- Berekaa, M., & Salama, K. Comprehensive assessment of microbiological and bioaerosol contaminants in Dammam slaughterhouse, Saudi Arabia. J Pure Appl Microbiol, 2015, 9, 69-78. Available online: https://www.researchgate.net/profile/Mahmoud-Berekaa/publication/306016989_Comprehensive_Assessment_of_Microbiological_and_Bioaerosol_Contaminants_in_Dammam_Slaughterhouse_Saudi_Arabia/links/57aacec308ae0932c96fe62f/Comprehensive-Assessment-of-Microbiological-and-Bioaerosol-Contaminants-in-Dammam-Slaughterhouse-Saudi-Arabia.pdf.
- Humbal, C., Joshi, S. K., Trivedi, U. K., & Gautam, S. Evaluating the colonization and distribution of fungal and bacterial bio-aerosol in Rajkot, western India using multi-proxy approach. Air Qual Atmos Health, 2019, 12, 693-704. [CrossRef]
- Al-Fattly, H. H. H. H. Comparative study of bacteria and fungi air polluted slaughterhouse of Al-Diwaniya city. Kufa Journal for Veterinary Medical Sciences, 2013, 4(1), 81-89. [CrossRef]
- Arire, E. O., Sulaimon, A. O., & Samuel, C. M. Microbial Assessment of Slaughter Slabs at the Central Slaughterhouse of Ado Ekiti. Asian Res. J. Agric, 2022, 15(4), 102-107. [CrossRef]
- Al-Yousef, A. F. Isolation of fungi from house fly (Musca domestica) at slaughter house and public places in Riyadh. Egypt. Acad. J. Biol. Sci, 2014, 7(2), 151-155. [CrossRef]
- GR, L. A. A. Role of the Housefly as a Biological Vector for Bacteria and Fungi at Some Slaughterhouses. Pak. J. Biol. Sci, 2022, 25(4), 353-357. [CrossRef]
- Davari, B., Khodavaisy, S., & Ala, F. Isolation of fungi from housefly (Musca domestica L.) at Slaughter House and Hospital in Sanandaj, Iran. J Prev Med Hyg, 2012, 53(3). Available online: https://pubmed.ncbi.nlm.nih.gov/23362625/.
- Paba, E., Chiominto, A., Marcelloni, A. M., Proietto, A. R., & Sisto, R. Exposure to airborne culturable microorganisms and endotoxin in two Italian poultry slaughterhouses. J. Occup. Environ. Hyg., 2014, 11(7), 469-478. [CrossRef]
- Hareeri, R. H., Aldurdunji, M. M., Abdallah, H. M., Alqarni, A. A., Mohamed, S. G., Mohamed, G. A., & Ibrahim, S. R. Aspergillus ochraceus: Metabolites, bioactivities, biosynthesis, and biotechnological potential. Molecules, 2022, 27(19), 6759. [CrossRef]
- Lorán, S., Carramiñana, J. J., Juan, T., Ariño, A., & Herrera, M. Inhibition of Aspergillus parasiticus growth and aflatoxins production by natural essential oils and phenolic acids. Toxins, 2022, 14(6), 384. [CrossRef]
- Yu, R., Liu, J., Wang, Y., Wang, H., & Zhang, H. Aspergillus niger as a secondary metabolite factory. Front. Chem, 2021, 9, 701022. [CrossRef]
- Gautam, A. K., Sharma, S., Avasthi, S., & Bhadauria, R. Diversity, pathogenicity and toxicology of A. niger: an important spoilage fungi. Res. J. Microbiol., 2011, 6(3), 270-280. [CrossRef]
- Lass-Flörl, C., Dietl, A. M., Kontoyiannis, D. P., & Brock, M. Aspergillus terreus species complex. Clin. Microbiol. Rev, 2021, 34(4), e00311-20. [CrossRef]
- Karmakar, B., Saha, B., Jana, K., & Bhattacharya, S. G. Identification and biochemical characterization of Asp t 36, a new fungal allergen from Aspergillus terreus. J Biol Chem, 2020, 295(51), 17852-17864. [CrossRef]
- Deng, J., Li, Y., Yuan, Y., Yin, F., Chao, J., Huang, J., … & Zhu, M. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods, 2023, 12(24), 4452. [CrossRef]
- Ekwomadu, T. I., & Mwanza, M. Fusarium fungi pathogens, identification, adverse effects, disease management, and global food security: A review of the latest research. Agriculture, 2023, 13(9), 1810. [CrossRef]
- Ajmal, M., Hussain, A., Ali, A., Chen, H., & Lin, H. Strategies for Controlling the Sporulation in Fusarium spp. J. Fungi, 2022, 9(1), 10. [CrossRef]
- Shabeer, S., Tahira, R., & Jamal, A. Fusarium spp. mycotoxin production, diseases and their management: an overview. Pak. J. Agric. Res, 2021, 34(2), 278. [CrossRef]
- Hof, H. The medical relevance of Fusarium spp. J. fungi, 2020, 6(3), 117. [CrossRef]
- Tarazona, A., Mateo, E. M., Gómez, J. V., Romera, D., & Mateo, F. Potential use of machine learning methods in assessment of Fusarium culmorum and Fusarium proliferatum growth and mycotoxin production in treatments with antifungal agents. Fungal Biol, 2021, 125(2), 123-133. [CrossRef]
- Demjanová, S., Jevinová, P., Pipová, M., & Regecová, I. Identification of Penicillium verrucosum, Penicillium commune, and Penicillium crustosum isolated from chicken eggs. Processes 2020, 9(1), 53. [CrossRef]
- El Hajj Assaf, C., Zetina-Serrano, C., Tahtah, N., Khoury, A. E., Atoui, A., Oswald, I. P., … & Lorber, S. Regulation of secondary metabolism in the Penicillium genus. Int. J. Mol. Sci, 2020, 21(24), 9462. [CrossRef]
- Damiano, S., Longobardi, C., De Marchi, L., Piscopo, N., Meucci, V., Lenzi, A., & Ciarcia, R. Detection of Ochratoxin A in Tissues of Wild Boars (Sus scrofa) from Southern Italy. Toxins, 2025, 17(2), 74. [CrossRef]
- Martín, J. F. Insight into the genome of diverse Penicillium chrysogenum strains: specific genes, cluster duplications and DNA fragment translocations. Int. J. Mol. Sci, 2020, 21(11), 3936. [CrossRef]
- Lebreton, A., Corre, E., Jany, J. L., Brillet-Guéguen, L., Pèrez-Arques, C., Garre, V., … & Meslet-Cladière, L. Comparative genomics applied to Mucor species with different lifestyles. BMC genomics, 2020, 21, 1-21. [CrossRef]
- Elkhateeb, W. A., & Daba, G. M. Insight into secondary metabolites of Circinella, Mucor and Rhizopus the three musketeers of order Mucorales. Biomed J Sci Tech Res, 2022, 41(2), 32534-32540. Available online: https://www.researchgate.net/profile/Waill-Elkhateeb/publication/358077877_Insight_into_Secondary_Metabolites_of_Circinella_Mucor_and_Rhizopus_the_Three_Musketeers_of_Order_Mucorales/links/61eee91a9a753545e2f3ba9f/Insight-into-Secondary-Metabolites-of-Circinella-Mucor-and-Rhizopus-the-Three-Musketeers-of-Order-Mucorales.pdf.
- González-Jartín, J. M., Ferreiroa, V., Rodriguez-Canas, I., Alfonso, A., Sainz, M. J., Aguín, O., … & Botana, L. M. Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int. J. Food Microbiol, 2022, 365, 109556. [CrossRef]
- Wagner, L., Stielow, J. B., de Hoog, G. S., Bensch, K., Schwartze, V. U., Voigt, K.,… & Walther, G. A new species concept for the clinically relevant Mucor circinelloides complex. Pers.: Mol. Phylogeny Evol. Fungi 2020, 44(1), 67–97. [CrossRef]
- Xie, S., Wang, C., Zeng, T., Wang, H., & Suo, H. Whole-genome and comparative genome analysis of Mucor racemosus C isolated from Yongchuan Douchi. Int J Biol Macromol, 2023, 234, 123397. [CrossRef]
- Opara, N. U. A rare case of pulmonary and gastrointestinal mucormycosis due to Rhizopus spp. in a child with chronic granulomatous disease. Infect. Dis. Rep, 2022, 14(4), 579-586. [CrossRef]
- Birol, D., & Gunyar, O. A. Investigation of presence of endofungal bacteria in Rhizopus spp. ısolated from the different food samples. Arch. Microbiol, 2021, 203(5), 2269-2277. [CrossRef]
- Morales-Franco, B., Nava-Villalba, M., Medina-Guerrero, E. O., Sánchez-Nuño, Y. A., Davila-Villa, P., Anaya-Ambriz, E. J., & Charles-Niño, C. L. Host-pathogen molecular factors contribute to the pathogenesis of Rhizopus spp. in diabetes mellitus. Curr. Trop. Med. Rep, 2021, 8, 6-17. [CrossRef]
- Liu, Q., Chen, Q., Liu, H., Du, Y., Jiao, W., Sun, F., & Fu, M. Rhizopus stolonifer and related control strategies in postharvest fruit: A review. Heliyon. 2024, Apr 10;10(8):e29522. [CrossRef]
- Iturrieta-González, I., García, D., & Gené, J. Novel species of Cladosporium from environmental sources in Spain. MycoKeys, 2021, 77, 1. [CrossRef]
- Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. The genus cladosporium. Stud. Mycol., 2012, 72, 1-401. [CrossRef]
- Aichinger, G., Del Favero, G., Warth, B., & Marko, D. Alternaria toxins—Still emerging?. Compr. Rev. Food Sci. Food Saf., 2021, 20(5), 4390-4406. [CrossRef]
- Chen, A., Mao, X., Sun, Q., Wei, Z., Li, J., You, Y., … & Li, Y. Alternaria mycotoxins: An overview of toxicity, metabolism, and analysis in food. J. Agric. Food Chem, 2021, 69(28), 7817-7830. [CrossRef]
- Hernandez-Ramirez, G., Barber, D., Tome-Amat, J., Garrido-Arandia, M., & Diaz-Perales, A. Alternaria as an inducer of allergic sensitization. J. Fungi, 2021, 7(10), 838. [CrossRef]
- urgensen, C. W., & Madsen, A. M. Exposure to the airborne mould Botrytis and its health effects. Ann Agric Environ Med, 2009, 16(2), 183-196. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-87b53950-a9f0-49ba-a1d2-a07ad19159e9.
- Román-Montes, C. M., Sifuentes-Osornio, J., & Martínez-Gamboa, A. Cutaneous Infections by Geotrichum spp. Curr. Fungal Infect. Rep, 2024, 18(1), 60-68. [CrossRef]
- Pérez-Cantero, A., & Guarro, J. Current knowledge on the etiology and epidemiology of Scopulariopsis infections. Med. Mycol, 2020, 58(2), 145-155. [CrossRef]
- Yapıcıer, Ö. Ş., Kaya, M., Erol, Z., & Öztürk, D. Isolation of Scopulariopsis brevicaulis from Wistar Rats. Etlik Vet Mikrobiyol Derg, 2020, 31(2), 196-200. [CrossRef]
- Garcia-Rubio, R., de Oliveira, H. C., Rivera, J., & Trevijano-Contador, N. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol, 2020, 10, 2993. [CrossRef]
- Lopes, J. P., & Lionakis, M. S. Pathogenesis and virulence of Candida albicans. Virulence, 2022, 13(1), 89-121. [CrossRef]
- El-Diasty, E. M., Ibrahim, M. A. E. H., & El Khalafawy, G. K. Isolation and molecular characterization of medically important yeasts isolated from poultry slaughterhouses and workers. Pak. J. Zool, 2017, 49(2), 609-614. [CrossRef]
- Mixão, V., & Gabaldón, T. Genomic evidence for a hybrid origin of the yeast opportunistic pathogen Candida albicans. BMC Biol, 2020, 18, 1-14. [CrossRef]
- Kothavade, R. J., Kura, M. M., Valand, A. G., & Panthaki, M. H. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J. Med. Microbiol, 2010, 59(8), 873-880. [CrossRef]
- Lima, R., Ribeiro, F. C., Colombo, A. L., & de Almeida Jr, J. N. The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. Front. Fungal Biol, 2022, 3, 957021. [CrossRef]
- Daneshnia, F., de Almeida Júnior, J. N., Ilkit, M., Lombardi, L., Perry, A. M., Gao, M., … & Arastehfar, A. Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. Lancet Microbe, The, 2023, 4(6), e470-e480. [CrossRef]
- Francisco, E. C., de Jong, A. W., & Hagen, F. Cryptococcosis and cryptococcus. Mycopathologia, 2021, 186(5), 729-731. [CrossRef]
- Islam, N., Bharali, R., Talukdar, S., Hussain, S. A., Akand, A. H., & Sarma, H. K. Occurrence and Distribution of Cryptococcus Species in Environmental Sources of Lower Assam Belt of India. J Pure Appl Microbiol, 2020, 14(4), 2781-2800. [CrossRef]
- Giro, A. Review on Cryptococcus disease. J. Trop Dis 2021, 9, 288. Available online: https://www.researchgate.net/profile/Aden-Giro-2/publication/355685039_Review_on_Cryptococcus_Disease/links/6179e7de3c987366c3f4c2e2/Review-on-Cryptococcus-Disease.pdf.
- Gushiken, A. C., Saharia, K. K., & Baddley, J. W. Cryptococcosis. Infectious Disease Clinics, 2021, 35(2), 493-514. [CrossRef]
- Jarros, I. C., Veiga, F. F., Corrêa, J. L., Barros, I. L. E., Gadelha, M. C., Voidaleski, M. F., … & Svidzinski, T. I. E. Microbiological and virulence aspects of Rhodotorula mucilaginosa. EXCLI J, 2020, 19, 687. [CrossRef]
- Hirano, R., Mitsuhashi, T., & Osanai, K. Rhodotorula mucilaginosa fungemia, a rare opportunistic infection without central venous catheter implantation, successfully treated by liposomal amphotericin B. Case Rep Infect Dis, 2022, 2022(1), 7830126. [CrossRef]
- Adegbeye, M. J., Reddy, P. R. K., Chilaka, C. A., Balogun, O. B., Elghandour, M. M., Rivas-Caceres, R. R., & Salem, A. Z. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies–A review. Toxicon, 2020, 177, 96-108. [CrossRef]
- European Commission. (2005). Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the European Union, L338, 1–26. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32005R2073.
- European Commission. (2023). Commission Regulation (EU) 2023/915 of 4 May 2023 on maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj.
- European Parliament & Council of the European Union. (2000). Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Official Journal of the European Communities, L262, 21–45. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0054.
- European Commission. (2019). Commission Directive (EU) 2019/1833 of 24 October 2019 amending Annexes I, III, V and VI to Directive 2000/54/EC of the European Parliament and of the Council as regards purely technical adjustments. Official Journal of the European Union, L279, 54–79. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L1833.
- Mayer, S. Occupational exposure to mycotoxins and preventive measures. In Environmental Mycology in Public Health; Viegas, C., Pinheiro, A. C., Sabino, R., Viegas, S., Veríssimo, C., Eds.; Academic Press: London, UK, 2016; pp. 325–341. [Google Scholar] [CrossRef]
- Viegas, S., Viegas, C., & Oppliger, A. Occupational exposure to mycotoxins: Current knowledge and prospects. Ann. Work Expo. Health, 2018, 62(8), 923-941. [CrossRef]
- Ebah, E. E., Odo, J. I., & Adah, J. A. Screening and identification of some selected fungi species from Abattoir waste water. Int. J. Sch. Res. Multidiscip. Stud., 2022, 1(01), 009-015. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
