Submitted:
20 March 2025
Posted:
21 March 2025
You are already at the latest version
Abstract
Keywords:
MSC: 42B20; 42B25; 42B35
1. Introduction
- (i)
- If , thenfor all ;
- (ii)
- If for some , thenfor all .
- (i)
- (ii)
- (iii)
- (iv)
- For the case , our results give the boundedness of for p in the full range .
2. Some Lemmas
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- E. Stein, E. E. Stein, E. On the functions of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Amer. Math. Soc.
- Benedek, A.; Calderon, A.; Panzone, R. Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A. 1962, 48, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T. On the function of Marcinkiewicz. Studia Math. 1972, 44, 203–217. [Google Scholar] [CrossRef]
- Al-Salman, A.; Al-Qassem, H.; Cheng, L.; Pan, Y. Lp bounds for the function of Marcinkiewicz. Math. Res. Lett. 2002, 9, 697–700. [Google Scholar]
- Al-Qassem, H.; Al-Salman, A. A note on Marcinkiewicz integral operators. J. Math. Anal. Appl. 2003, 282, 698–710. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, S. A class of singular integral operators with rough kernel on product domains. Hokkaido Math. J. 1995, 1995 24, 1–7. [Google Scholar] [CrossRef]
- Hörmander, L. Estimates for translation invariant operators in Lp space. Acta Math. 1960, 104, 93–139. [Google Scholar] [CrossRef]
- Kim, W.; Wainger, S.; Wright, J.; Ziesler, S. Singular Integrals and Maximal Functions Associated to Surfaces of Revolution. Bull. London Math. Soc. 1996, 28, 291–296. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Pan, Y. On certain estimates for Marcinkiewicz integrals and extrapolation. Collect. Math. 2009, 60, 123–145. [Google Scholar] [CrossRef]
- Al-Salman, A.; Al-Qassem, H. Flat Marcinkiewicz integral operators. Turkish J. Math. 2002, 26, 329–338. [Google Scholar]
- Ding, Y. On Marcinkiewicz integral, Proc. of the conference Singular integrals and related topics III, Oska, Japan, 2001.
- Ding, Y.; Fan, D.; Pan, Y. On the Lp boundedness of Marcinkiewicz integrals. Michigan Math. J. 2002, 50, 17–26. [Google Scholar] [CrossRef]
- Ding, Y.; Lu,S. ; Yabuta, K. A problem on rough parametric Marcinkiewicz functions. Austral. Math. Soc. 2002, 72, 13–21. [Google Scholar]
- Sakamota, M.; Yabuta, K. Boundedness of Marcinkiewicz functions. Studia Math. 1999, 135, 103–142. [Google Scholar]
- Torchinsky, A.; Wang, S. A note on the Marcinkiewicz integral. Colloq. Math. 1990, 61, 235–243. [Google Scholar] [CrossRef]
- Al-Salman, A. A note on parabolic Marcinkiewicz integrals along surfaces. Trans. A Razmadze Math. Inst. 2010, 154, 21–36. [Google Scholar]
- Ali, M. Lp Estimates for Marcinkiewicz Integral Operators and Extrapolation. J. Ineq. Appl.
- Chen, Y.; Ding, Y. Lp bounds for the parabolic Marcinkiewicz integral with rough kernels. J. Korean Math. Soc. 2007, 44, 733–745. [Google Scholar] [CrossRef]
- Liu, F.; Fu, Z.; Jhang, S. Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces. Front. Math. China. 2019, 14, 95–122. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.; Yu, W. Lp bounds for the parabolic Littlewood-Paley operator associated to surfaces of revolution. Bull. Korean Math. Soc. 2012, 29, 787–797. [Google Scholar] [CrossRef]
- Xue, Q.; Ding, Y.; Yabuta, K. Parabolic Littlewood-Paley g-function with rough kernels. Acta Math. Sin. (Engl. Ser.), 2060. [Google Scholar]
- Al-Qassem, H.; Ali, M. A note on generalized parabolic Marcinkiewicz integrals with Grafakos-Stefanov kernels. symmetry.
- Ali, M.; Katatbeh, Q. Generalized parabolic Marcinkiewicz integrals associated with polynomial compound curves with rough kernels. Demon. Math. 53.
- Ali, M.; Katatbeh, Q.; Al-Refai, O.; Al-Shutnawi, B. Estimates for functions of generalized Marcinkiewicz operators related to surfaces of revolution. AIMS Mathematic. 2024, 9, 22287–22300. [Google Scholar] [CrossRef]
- Gao, W.; Tang, L. BLO estimates for Marcinkiewicz integrals associated with Schrödinger operators. Proc. Indian Acad. Sci. Math. Sci. 2019, 129, 1–10. [Google Scholar] [CrossRef]
- Gürbüz, F. A note concerning Marcinkiewicz integral with rough kernel. Infinite Dim. Anal. Quan. Prob Related Topics, 24.
- Jia, H.; Yang, D.; Yuan, W.; Zhang, Y. Estimates for Littlewood–Paley operators on ball Campanato-type function spaces. Results in Mathematics. 2023, 78, 1–37. [Google Scholar] [CrossRef]
- Khalil, O.; Tao, S.; Bechi, A. Boundedness of Marcinkiewicz integral with rough kernel and their commutator on weighted Herz space with variable exponent. Acta Math. Univ. Comenianae. 2023, 2, 145–163. [Google Scholar]
- Liu, F. A note on Marcinkiewicz integral associated to surfaces of revolution. J. Aust. Math. Soc. 2018, 104, 380–402. [Google Scholar] [CrossRef]
- Zhang, J.; He, Q.; Xue, Q. On weighted boundedness and compactness of commutators of Marcinkiewicz integral associated with Schrödinger operators. Ann. Func. Anal.
- Liu, F.; Mao, S. Lp bounds for nonisotropic Marcinkiewicz integrals associated to surfaces. J. Aust. Math. Soc. 2015, 99, 380–398. [Google Scholar] [CrossRef]
- Sato, S. Estimates for singular integrals and extrapolation. Studia Math. 2009, 192, 219–233. [Google Scholar] [CrossRef]
- Yano, S. Notes on Fourier analysis. XXIX. An extrapolation theorem. J. Math. Soc. Japan. 1951, 3, 296–305. [Google Scholar] [CrossRef]
- Al-Salman, A.; Al-Jarrah, A. Lp Estimates of Rough Maximal Functions Along Surfaces with Applications. Acta Math. Sinica, English Series.
- Fan, D.; Pan, Y. Singular integral operators with rough kernels supported by subvarieties. Amer J. Math. 1997, 199, 799–839. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).