Submitted:
21 March 2025
Posted:
24 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Pathophysiology of AD
1.1.1. Aβ and Associated Hypotheses
1.1.2. Tau Proteins and Associated Hypotheses
1.1.3. Neuroimmunomodulation Hypothesis and Oxidative Stress
1.1.4. Oxidative Stress and Mitochondrial Dysfunction Hypotheses
1.2. AD Risk Factors
1.3. AD Symptomology
1.4. Diagnosis of AD
1.4.1. Cognitive and Functional Tests for Diagnosis of AD
2. Methods
3. Available Pharmacotherapies
3.1. Cholinesterase Inhibitors (ChEIs)
| Study | Test | Outcome |
|---|---|---|
| Lanctot, Hermann, Yau, et al. (2003) [7] | CIBIC-Plus and CGIC, minimal or greater improvement | 9% MD vs placebo |
| ADAS-Cog, 4+ point improvement | 10% MD vs placebo |
3.1.1. Donepezil
| Study | Test | Outcome |
|---|---|---|
| Guo, Wang, and Liu (2020) [33] | ADAS-Cog | 2.93 MD vs placebo |
| SIB | -4.70 MD vs placebo | |
| CGI | 0.34 MD vs placebo | |
| ADCS-ADL and ADL | 3.01 MD vs placebo | |
| Chen, Lai, and Tao (2024) [3] | ADAS-Cog | 5 mg QD: -1.95 MD vs placebo, I2 of 24% |
| 10 mg QD: -2.01 MD vs placebo, I2 of 51% | ||
| CIBIC-Plus | 5 mg QD: 1.77 M-H Ratio vs placebo, I2 of 43% | |
| 10 mg QD: 1.68 M-H Ratio vs placebo, I2 of 0% | ||
| ADCS-ADL | 10 mg QD: 1.70 MD vs placebo, I2 of 85% | |
| Waring, Tang, Robieson, et al. (2015) [21] | ADAS-Cog, ITT population | APOE4 carrier: -2.34 LSMD vs placebo |
| APOE4 carrier: -2.95 change from baseline when treated | ||
| APOE4 non-carrier: -1.71 LSMD vs placebo | ||
| APOE4 non-carrier:-4.09 change from baseline when treated | ||
| APOE4 negative: -1.71 LSMD vs placebo | ||
| APOE4 heterozygote: -2.31 LSMD vs placebo | ||
| APOE4 homozygote: -2.32 LSMD vs placebo | ||
| ADAS-Cog, Completer population | APOE4 carrier: -3.53 LSMD vs placebo | |
| APOE4 non-carrier: -1.62 LSMD vs placebo, without statistical significance | ||
| APOE4 heterozygote: -3.42 LSMD vs placebo | ||
| Dou, Tan, and Tan (2018) [34] | ADAS-Cog | 5 mg QD: -0.33 SMD vs placebo |
| 10 mg QD: -0.40 SMD vs placebo | ||
| SIB and MMSE | 23 mg QD: 0.53 SMD vs placebo | |
| ADCS-ADL and BADLS | 10 mg QD: 0.15 SMD vs placebo | |
| CIBIC-Plus and CGIC | 5 mg QD: 1.98 OR vs placebo | |
| 10 mg QD: 2.15 OR vs placebo | ||
| 23 mg QD: 1.99 OR vs placebo | ||
| Lanctot, Hermann, Yau, et al. (2003) [7] | ADAS-Cog, 4+ point improvement | Study 1: 107/305 respond to ChEI. 27/150 respond to placebo |
| Study 2: 76/298 respond to ChEI. 17/152 respond to placebo | ||
| Study 3: 125/544 respond to ChEI. 38/274 respond to placebo | ||
| CIBIC-Plus and CGIC, minimal or greater improvement | 13% vs placebo |
3.1.2. Rivastigmine
| Study | Test | Outcome |
|---|---|---|
| Chen, Lai, and Tao (2024) [3] | ADAS-Cog | 12 mg QD: -2.01 MD vs placebo, I2 of 38% |
| CIBIC-Plus | 12 mg QD: 1.73 M-H risk ratio vs placebo, I2 of 0% | |
| ADCS-ADL | 12 mg QD: 1.80 MD vs placebo | |
| Rosler, Anand, Cicin-Sain, et al. (1999) [30] | ADAS-Cog, 4+ point improvement in ITT population | 10.4 mg QD: 24% vs baseline |
| 3.7 mg QD: 15% vs baseline | ||
| Placebo: 16% vs baseline | ||
| CGIC, improvement in ITT population | 10.4 mg QD: 37% vs baseline | |
| 3.7 mg QD: 30% vs baseline | ||
| Placebo: 20% vs baseline | ||
| PDS, 10%+ improvement in ITT population | 10.4 mg QD: 29% vs baseline | |
| 3.7 mg QD: 19% vs baseline | ||
| Placebo: 19% vs baseline | ||
| GDS | 10.4 mg QD: -0.06 MD vs baseline | |
| 3.7 mg QD: -0.22 MD vs baseline | ||
| Placebo: -0.26 MD vs baseline | ||
| MMSE | 10.4 mg QD: 0.21 MD vs baseline | |
| 3.7 mg QD: -0.62 MD vs baseline | ||
| Placebo: -0.47 MD vs baseline | ||
| Farlow, Grossber, Sadowsky, et al. (2013) [14] | SIB | 13.3 mg QD patch: 4.9 LSMD vs baseline |
| ADCS-ADL-SIV | 13.3 mg QD patch: 1.2 LSMD vs baseline | |
| ADCS-CGIC | 13.3 mg QD patch: 24.6% with improvement vs baseline | |
| NPI-12 | 13.3 mg QD patch: -1.6 LSMD vs baseline | |
| Dou, Tan, and Tan (2018) [34] | ADAS-Cog | 12 mg QD: -0.29 SMD vs placebo |
| 5 cm2 QD: -0.17 SMD vs placebo, without statistical significance | ||
| 10 cm2 QD: -0.25 SMD vs placebo | ||
| 15 cm2 QD: -0.35 SMD vs placebo | ||
| ADCS-ADL and BADLS | 12 mg QD: 0.21 SMD vs placebo | |
| 5 cm2 QD: 0.28 SMD vs placebo, statistically insignificant | ||
| 10 cm2 QD: 0.24 SMD vs placebo | ||
| 15 cm2 QD: 0.42 SMD vs placebo | ||
| CIBIC-Plus and CGIC | 12 mg QD: 1.80 OR vs placebo | |
| 5 cm2 QD: 1.55 OR vs placebo, without statistical significance | ||
| 10 cm2 QD: 1.57 OR vs placebo | ||
| 15 cm2 QD: 2.77 OR vs placebo | ||
| Lanctot, Hermann, Yau, et al. (2003) [7] | ADAS-Cog, 4+ point improvement | 149/167 respond to ChEI. 44/220 respond to placebo |
| CIBIC-Plus and CGIC, minimal or greater improvement | 12% vs placebo |
3.1.3. Galantamine
| Study | Test | Outcome |
|---|---|---|
| Chen, Lai, and Tao (2024) [3] | ADAS-Cog | 24 mg QD: -3.03 MD vs placebo, I2 of 0% |
| 32 mg QD: -3.29 MD vs placebo, I2 of 0% | ||
| CIBIC-Plus | 24 mg QD: 1.15 M-H risk ratio vs placebo, I2 of 27% | |
| 32 mg QD: 1.34 M-H risk ratio vs placebo, I2 of 0% | ||
| ADCS-ADL | 24 mg QD: 1.88 MD vs placebo, I2 of 0% | |
| Dou, Tan, and Tan (2018) [34] | ADAS-Cog | 24 mg QD: -0.50 SMD vs placebo |
| 32 mg QD: -0.51 SMD vs placebo | ||
| ADCS-ADL and BADLS | 24 mg QD: 0.21 SMD vs placebo | |
| CIBIC-Plus and CGIC | 24 mg QD: 1.34 OR vs placebo, without statistical significance | |
| 32 mg QD: 1.48 OR vs placebo, without statistical significance | ||
| Lanctot, Hermann, Yau, et al. (2003) [7] | ADAS-Cog, 4+ point improvement | Study 1: 64/357 respond to ChEI. 27/196 respond to placebo. |
| Study 2: 64/414 respond to ChEI. 33/203 respond to placebo. | ||
| Study 3: 61/240 respond to ChEI. 24/123 respond to placebo. | ||
| Study 4: 59/179 respond to ChEI. 23/83 respond to placebo. | ||
| CIBIC-Plus and CGIC, minimal or greater improvement | 5% vs placebo |
3.2. NMDA Receptor (NMDAR) Antagonists
3.2.1. Memantine
| Study | Test | Outcome |
|---|---|---|
| Guo, Wang, and Liu (2020) [33] | ADAS-Cog | 1.33 MD vs placebo |
| SIB | -2.50 MD vs placebo | |
| CGI | 0.30 MD vs placebo | |
| ADCS-ADL and ADL | -3.89 MD vs placebo | |
| Chen, Lai, and Tao (2024) [3] | ADAS-Cog | 20 mg QD: -1.23 MD vs placebo, I2 of 11% |
| CIBIC-Plus | 20 mg QD: 1.26 M-H risk ratio, I2 of 0% | |
| ADCS-ADL | 20 mg QD: 0.09 MD vs placebo, I2 of 0%, without statistical significance | |
| Wilkinson, Wirth, and Goebel (2014) [37] | Cognitive decline (4+ points on ADAS-Cog, 5+ points on SIB, or 1+ point on BGP-Cog) in memantine vs placebo treated patients | Moderate to severe AD: 0.60 OR in favor of treatment |
| Moderate AD: 0.63 OR in favor of treatment | ||
| Severe AD: 0.48 OR in favor of treatment | ||
| Matsunaga, Kishi, and Iwata [4] | Overall cognition (SIB, ADAS-Cog, SMMSE/MMSE) | -0.27 SMD vs placebo with I2 of 52% |
| ADAS-Cog | -0.17 SMD vs placebo with I2 of 0% | |
| SMMSE | -0.35 SMD vs placebo | |
| SIB | -0.31 SMD vs placebo | |
| ADLs | -0.09 SMD vs placebo | |
| Dou, Tan, and Tan (2018) [34] | ADAS-Cog | 20 mg QD: -0.24 SMD vs placebo |
| SIB and MMSE | 20 mg QD: 0.34 SMD vs placebo | |
| ADCS-ADL and BADLS | 20 mg QD: 0.12 SMD vs placebo | |
| CIBIC-Plus and CGIC | 20 mg QD: 1.24 OR vs placebo, without statistical significance |
3.3. Anti-Amyloid Therapies
3.3.1. Lecanemab
| Study | Test | Outcome |
|---|---|---|
| Terao and Kodama (2024) [18] | ADAS-Cog | -1.5808 MD vs placebo |
| CDR-SB | -0.4350 MD vs placebo | |
| Qiao, Chi, Zhang, et al. (2023) [5] | CDR-SB | -0.45 MD vs placebo with 0% I2 |
| ADCOMS | -0.05 MD vs placebo with 0% I2 | |
| ADAS-Cog | -1.11 MD vs placebo with 97% I2 | |
| Ebell, Barry, Baduni, et al. (2024) [44] | ADAS-Cog | -1.8 MD over placebo |
| CDR-SB | -0.43 MD over placebo | |
| Functional score | 0.19 MD over placebo |
3.3.2. Donanemab
| Study | Test | Outcome |
|---|---|---|
| Terao and Kodama (2024) [18] | ADAS-Cog | -1.4353 MD vs placebo |
| CDR-SB | -0.5859 MD vs placebo | |
| Sims, Zimmer, Evans, et al. (2023) [26] | iADRS | Low/Medium Tau Population: 3.25 LSM over placebo |
| Combined Population: 2.92 LSM over placebo | ||
| CDR-SB | Low/Medium Tau Population: -0.67 LSM over placebo | |
| Combined Population: -0.70 LSM over placebo | ||
| ADCS-iADL | Low/Medium Tau Population: 1.83 LSM over placebo | |
| Combined Population: 1.70 LSM over placebo | ||
| ADAS-Cog | Low/Medium Tau Population: -1.52 LSM over placebo | |
| Combined Population: -1.33 LSM over placebo | ||
| Ebell, Barry, Baduni, et al. (2024) [44] | ADAS-Cog | -1.41 MD over placebo |
| MMSE | 0.49 MD over placebo | |
| CDR-SB | -0.59 MD over placebo |
3.4. Combination Therapies
| Study | Test | Outcome |
|---|---|---|
| Guo, Wang, and Liu (2020) [33] | ADAS-Cog | 5.01 MD vs placebo |
| SIB | -9.61 MD vs placebo | |
| CGI | 2.88 MD vs placebo | |
| ADCS-ADL and ADL | -13.06 MD vs placebo | |
| Dou, Tan, and Tan (2018) [34] | SIB and MMSE | 0.76 SMD vs placebo |
| ADCS-ADL and BADLS | 0.32 SMD vs placebo |
4. Discussion
Abbreviations
| Aβ | Amyloid β |
| AβO | Aβ oligomers |
| ACTION Study | Activities of Daily Living and Cognition Study |
| AD | Alzheimer’s Disease |
| ADAS | Alzheimer’s Disease Assessment Scale |
| ADAS-Cog | Alzheimer’s Disease Assessment Scale - Cognitive Subscale |
| ADCOMS | Alzheimer’s Disease Composite Score |
| ADCS-ADL | Alzheimer’s Disease Cooperative Study - Activities of Daily Living |
| ADCS-CGIC | ADCS Clinical Global Impression of Change |
| ADL | Activities of Daily Living |
| APP | Amyloid Precursor Protein |
| ARIA | Amyloid Related Imaging Abnormalities |
| BADLS | Bristol Activities of Daily Living Scale |
| BBB | Blood Brain Barrier |
| BID | Twice per day |
| CAA | Cerebral Amyloid Angiopathy |
| CDR | Clinical Dementia Rating |
| CDR-SB | CDR-Sum of Boxes |
| CGI | Clinical Global Impression |
| CGIC | Clinical Global Impression of Change |
| ChEIs | Cholinesterase Inhibitors |
| CIBIC+ | Clinicians Interview Based Impression of Change Plus Caregiver Input |
| CSF | Cerebrospinal Fluid |
| DM | Diabetes Mellitus |
| DNA | Deoxyribonucleic Acid |
| DMN | Default Mode Network |
| ER | Endoplasmic Reticulum |
| GI | gastrointestinal |
| IDCS-iADL | Alzheimer’s Disease Cooperative Study Instrumental Activities of Daily Living Scale |
| iADRS | Integrated Alzheimer’s Disease Rating Scale |
| MCI | Mild Cognitive Impairment |
| MD | Mean Difference |
| MMSE | Mini Mental State Examination |
| mPFC | Medial Prefrontal Cortex |
| mtDNA | Mitochondrial DNA |
| NFT | Neurofibrillary Tangle |
| NMDAR | NMDA Receptor |
| NNH | Number Needed To Harm |
| NNT | Number Needed To Treat |
| NSAIDs | Non-steroidal Anti-inflammatory Drugs |
| OR | Odds Ratio |
| PCC | Posterior Cingulate Cortex |
| PET | Positron Emission Tomography |
| QD | Per day |
| RCT | Randomized Clinical Trial |
| ROS | Reactive Oxygen Species |
| SIB | Severe Impairment Battery |
| SMD | Standardized Mean Difference |
| SN | Salience Network |
| VMRI | Volumetric MRI |
References
- Jack CR Jr, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association workgroup. Alzheimers Dement. 2024, 20, 5143–5169. [Google Scholar]
- Wolk DA, Dickerson BC. Clinical features and diagnosis of Alzheimer disease [Internet]. Wolters Kluwer: UpToDate; 2024. [cited 2024 Nov 19] available from https://www.uptodate.com/contents/clinical-features-and-diagnosis-of-alzheimer-disease?search=alzheimer%27s%20disease&topicRef=5073&source=see_link#H29.
- Chen Y, Lai M, Tao M. Evaluating the efficacy and safety of Alzheimer’s disease drugs: A meta-analysis and systematic review. Medicine (Baltimore). 2024, 103, e37799. [Google Scholar]
- Matsunaga S, Kishi T, Iwata N. Memantine monotherapy for Alzheimer’s disease: A systematic review and meta-analysis. PloS One. 2015, 10, e0123289. [Google Scholar]
- Qiao Y, Chi Y, Zhang Q, Ma Y. Safety and efficacy of lecanemab for Alzheimer’s disease: A systematic review and meta-analysis of randomized clinical trials. Front Aging Neurosci. 2023, 15, 1169499. [Google Scholar]
- Knorz AL, Quante A. Alzheimer’s disease: Efficacy of mono-and combination therapy. A systematic review. J Geriatr Psychiatry Neurol. 2022, 35, 475–486. [Google Scholar]
- Lanctôt KL, Herrmann N, Yau KK, Khan LR, Liu BA, LouLou MM, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: A meta-analysis. CMAJ. 2003, 169, 557–564. [Google Scholar]
- Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res Rev. 2021, 72, 101496. [Google Scholar]
- Zeliger, HI. Oxidative stress: Its impact on human health and disease onset. Academic Press; 2022. 291-297p.
- Wu W, Ji Y, Wang Z, Wu X, Li J, Gu F, et al. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Eur J Med Res. 2023, 28, 544. [Google Scholar]
- Wong-Guerra M, Calfio C, Maccioni RB, Rojo LE. Revisiting the neuroinflammation hypothesis in Alzheimer’s disease: A focus on the druggability of current targets. Front Pharmacol. 2023, 14, 1161850. [Google Scholar]
- Klaassens BL, van Gerven JMA, Klaassen ES, van der Grond J, Rombouts SARB. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer’s disease. Neuroimage 2019, 199, 143–152.
- Adhikary K, Sarkar R, Chowdhury SR, Banerjee P. A review of diverse neurological disorders: Pathophysiology, molecular mechanisms, and therapeutics. Academic Press; 2024. 235-247p.
- Farlow MR, Grossberg GT, Sadowsky CH, Meng X, Somogyi M. A 24-week, randomized, controlled trial of rivastigmine patch 13.3 mg/24 h versus 4.6 mg/24 h in severe Alzheimer’s dementia. CNS Neurosci Ther. 2013, 19, 745–752. [Google Scholar]
- McAleese KE, Miah M, Graham S, Hadfield GM, Walker L, Johnson M, et al. Frontal white matter lesions in Alzheimer’s disease are associated with both small vessel disease and AD-associated cortical pathology. Acta neuropathol 2021, 142, 937–950.
- Canu E, McLaren DG, Fitzgerald ME, Bendlin BB, Zoccatelli G, Alessandrini F, et al. Mapping the structural brain changes in Alzheimer’s disease: The independent contribution of two imaging modalities. J Alzheimers Dis 2011, 26, 263–274.
- Hamano T, Mutoh T, editors. Autophagy dysfunction in Alzheimer’s disease and dementia. Academic Press; 2022. 73-89p.
- Terao I, Kodama W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: A systematic review and network meta-analysis. Ageing Res Rev. 2024, 94, 102203. [Google Scholar]
- Cline EN, Bicca MA, Viola KL, Klein WL. The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 2018, 64, S567–S567.
- Younes K, Sha SJ. The most valuable player or the tombstone: Is Tau the correct target to treat Alzheimer’s disease? Brain. 2023, 146, 2211–2213. [Google Scholar]
- Waring JF, Tang Q, Robieson WZ, King DP, Das U, Dubow J, et al. APOE-ɛ4 carrier status and donepezil response in patients with Alzheimer’s disease. J Alzheimers Dis. 2015, 47, 137–148. [Google Scholar]
- Iketani R, Ohno K, Kawasaki Y, Matsumoto K, Yamada H, Kishino S. Apolipoprotein E gene polymorphisms affect the efficacy of thiazolidinediones for Alzheimer’s disease: A systematic review and meta-analysis. Biol Pharm Bull. 2018, 41, 1017–1023. [Google Scholar] [CrossRef]
- Tahami Monfared AA, Phan NN, Pearson I, Mauskopf J, Cho M, Zhang Q, et al. A systematic review of clinical practice guidelines for Alzheimer’s disease and strategies for future advancements. Neurol Ther. 2023, 12, 1257–1284. [Google Scholar]
- Harvey PD, Mohs RC. Functional neurobiology of aging. Academic Press; 2001. 53-63.
- Eli Lilly. A study of donanemab (LY3002813) in participants with early Alzheimer’s disease (TRAILBLAZER-ALZ 2) [Internet]. ClinicalTrials.gov ; 2024. [cited 2024 Nov 18]. Available from https://clinicaltrials.gov/study/NCT04437511?intr=donanemab&locStr=United%20States&country=United%20States&rank=5.
- Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023, 330, 512–527. [Google Scholar]
- Assunção SS, Sperling RA, Ritchie C, Kerwin DR, Aisen PS, Lansdall C, et al. Meaningful benefits: A framework to assess disease-modifying therapies in preclinical and early Alzheimer’s disease. Alzheimers Res Ther. 2022, 14, 54. [Google Scholar]
- Press D, Buss SS. Treatment of Alzheimer disease [Internet]. Wolters Kluwer: UpToDate; 2024. [cited 2024 Nov 18]. Available from https://www.uptodate.com/contents/treatment-of-alzheimer-disease?search=alzheimers&topicRef=5071&source=see_link Reference class.
- Press D, Alexander M. Cholinesterase inhibitors in the treatment of dementia [Internet]. Wolters Kluwer: UpToDate; 2024. [cited 2024 Nov 18]. Available from https://www.uptodate.com/contents/cholinesterase-inhibitors-in-the-treatment-of-dementia?sectionName=Duration+of+therapy&search=alzheimers&topicRef=5073&anchor=H691890260&source=see_link#H691890260.
- Rosler M, Anand R, Cicin-Sain A, Gauthier S, Agid Y, Dal-Bianco P, et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: International randomised controlled trial. BMJ. 1999, 318, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Marucci G, Buccioni M, Dal Ben D, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021, 190, 108352. [Google Scholar]
- Juurlink D, Mamdani M, Gomes T. Cognitive enhanvers for the treatment of Alzheimer’s disease [Internet]. Ontario Drug Policy Research Network (ODPRN); 2015. [cited 2025 Jan 5]. Available from https://odprn.ca/wp-content/uploads/2016/02/cognitive-enhancers-consolidated-final_Updated_Feb-29-2016.pdf.
- Guo J, Wang Z, Liu R, Huang Y, Zhang N, Zhang R. Memantine, donepezil, or combination therapy - What is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain behav, 2020; 10, e01831.
- Dou KX, Tan MS, Tan CC, Cao XP, Hou XH, Guo QH, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: A network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther. 2018, 10, 126. [Google Scholar]
- Rogers SL, Doody RS, Mohs RC, Friedhoff LT, Donepezil Study Group. Donepezil improves cognition and global function in Alzheimer disease: A 15-week, double-blind, placebo-controlled study. Arch Intern Med. 1998, 158, 1021–1031. [Google Scholar]
- Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT, et al. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res. 2012, 9, 746–758. [Google Scholar]
- Wilkinson D, Wirth Y, Goebel C. Memantine in patients with moderate to severe Alzheimer’s disease: Meta-analyses using realistic definitions of response. Dement Geriatr Cogn Disord 2014, 37, 71–85.
- Livingston G, Katona C. The place of memantine in the treatment of Alzheimer’s disease: A number needed to treat analysis. Int J Geriatr Psychiatry. 2004, 19, 919–925. [Google Scholar] [CrossRef]
- van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023, 388, 9–21. [Google Scholar]
- Brockmann R, Nixon J, Love BL, Yunusa I. Impacts of FDA approval and Medicare restriction on antiamyloid therapies for Alzheimer’s disease: Patient outcomes, healthcare costs, and drug development. Lancet Reg Health Am. 2023, 20, 100467. [Google Scholar]
- Avgerinos KI, Manolopoulos A, Ferrucci L, Kapogiannis D. Critical assessment of anti-amyloid-β monoclonal antibodies effects in Alzheimer’s disease: A systematic review and meta-analysis highlighting target engagement and clinical meaningfulness. Sci Rep. 2024, 14, 25741. [Google Scholar]
- Beshir SA, Hussain N, Menon VB, Al Haddad AH, Al Zeer RA, Elnour AA. Advancements and challenges in antiamyloid therapy for Alzheimer’s disease: A comprehensive review. Int J Alzheimers Dis. 2024, 2024, 2052142. [Google Scholar]
- Padda IS, Parmar M. Aducanumab [Internet]. StatPearls Publishing: StatPearls; 2024 [cited 2024 Nov 21]. Available from https://www.ncbi.nlm.nih.gov/books/NBK573062/.
- Ebell MH, Barry HC, Baduni K, Grasso G. Clinically important benefits and harms of monoclonal antibodies targeting amyloid for the treatment of Alzheimer disease: A systematic review and meta-analysis. Ann Fam Med. 2024, 22, 50–62. [Google Scholar]
- Dhadda S, Kanekiyo M, Li D, Swanson CJ, Irizarry M, Berry S, et al. Consistency of efficacy results across various clinical measures and statistical methods in the lecanemab phase 2 trial of early Alzheimer’s disease. Alzheimers Res Ther. 2022, 14, 182. [Google Scholar]
- Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RY, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther 2021, 13, 1–4.
- Jeremic D, Navarro-Lopez JD, Jimenez-Diaz L. Donanemab outperformed Aducanumab and Lecanemab on cognitive, but not on biomarker and safety outcomes: Systematic review, frequentist and Bayesian network meta-analyses. medRxiv. 2024, 2024-03.
- George, J. George, J. Alzheimer’s drug trials should report effect sizes, researchers say - How effective are anti-amyloid treatments? [Internet]. MedPage Today; 2023 [cited 2025 Jan 5]. Available from https://www.medpagetoday.com/neurology/alzheimersdisease/107522.
- van Dyck CH, Schmitt FA, Olin JT, Memantine MEM-MD-02 Study Group. A responder analysis of memantine treatment in patients with Alzheimer disease maintained on donepezil. Am J Geriatr Psychiatry. 2006, 14, 428–437. [Google Scholar]
- Muñoz-Jiménez M, Zaarkti A, García-Arnés JA, García-Casares N. Antidiabetic drugs in Alzheimer’s disease and mild cognitive impairment: A systematic review. Dement Geriatr Cogn Disord. 2021, 49, 423–434. [Google Scholar]
- Leinonen A, Koponen M, Hartikainen S. Systematic review: Representativeness of participants in RCTs of acetylcholinesterase inhibitors. PloS One. 2015, 10, e0124500. [Google Scholar]
- Rajan KB, Weuve J, Barnes LL, McAninch EA, Wilson RS, Evans DA. Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020–2060). Alzheimers Dement. 2021, 17, 1966–1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
