Submitted:
25 March 2025
Posted:
31 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. AI-Assisted Medical Data Analysis for MS Diagnosis and Monitoring
3. AI-Modelling to Predict Risk of MS, Progression of MS and Treatment Response
4. AI-Assisted Drug Discovery
5. AI-Assisted Personalized Medicine Approach to MS Care
6. AI-Assisted Fundamental Research Using Single-Cell Data
7. Discussion
8. Conclusion
Author Contributions
Funding
References
- Jakimovski, D. , et al., Multiple sclerosis. Lancet, 2024. 403(10422): p. 183-202.
- Portaccio, E.; Magyari, M.; Havrdova, E.K.; Ruet, A.; Brochet, B.; Scalfari, A.; Di Filippo, M.; Tur, C.; Montalban, X.; Amato, M.P. Multiple sclerosis: emerging epidemiological trends and redefining the clinical course. Lancet Reg. Heal. - Eur. 2024, 44, 100977. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.L.; Tyor, W.R. Update on Disease-Modifying Therapies for Multiple Sclerosis. J. Investig. Med. 2017, 65, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.; Dennehy, D.; Conboy, K.; Mikalef, P. Artificial intelligence in information systems research: A systematic literature review and research agenda. Int. J. Inf. Manag. 2021, 60. [Google Scholar] [CrossRef]
- Tafti, D., M. Ehsan, and K.L. Xixis, Multiple Sclerosis, in StatPearls. 2025: Treasure Island (FL) ineligible companies. Disclosure: Moavia Ehsan declares no relevant financial relationships with ineligible companies. Disclosure: Kathryn Xixis declares no relevant financial relationships with ineligible companies.
- Gustavsen, S.; Olsson, A.; Søndergaard, H.B.; Andresen, S.R.; Sørensen, P.S.; Sellebjerg, F.; Oturai, A. The association of selected multiple sclerosis symptoms with disability and quality of life: a large Danish self-report survey. BMC Neurol. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Khattap, M.G.; Elaziz, M.A.; Hassan, H.G.E.M.A.; Elgarayhi, A.; Sallah, M. AI-based model for automatic identification of multiple sclerosis based on enhanced sea-horse optimizer and MRI scans. Sci. Rep. 2024, 14, 1–26. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Pan, C.; Sun, J.; Tang, C. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J. Comput. Sci. 2018, 28, 1–10. [Google Scholar] [CrossRef]
- Wang, S.-H.; Tang, C.; Sun, J.; Yang, J.; Huang, C.; Phillips, P.; Zhang, Y.-D. Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling. Front. Neurosci. 2018, 12, 818. [Google Scholar] [CrossRef]
- Cunill, V. , et al., Relapsing-Remitting Multiple Sclerosis Is Characterized by a T Follicular Cell Pro-Inflammatory Shift, Reverted by Dimethyl Fumarate Treatment. Front Immunol, 2018. 9: p. 1097.
- E Gabr, R.; Coronado, I.; Robinson, M.; Sujit, S.J.; Datta, S.; Sun, X.; Allen, W.J.; Lublin, F.D.; Wolinsky, J.S.; A Narayana, P. Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study. Mult. Scler. J. 2020, 26, 1217–1226. [Google Scholar] [CrossRef]
- Coronado, I.; E Gabr, R.; A Narayana, P. Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis. Mult. Scler. J. 2021, 27, 519–527. [Google Scholar] [CrossRef]
- La Rosa, F. , et al., Multiple sclerosis cortical lesion detection with deep learning at ultra-high-field MRI. NMR Biomed, 2022. 35(8): p. e4730.
- Gentile, G.; Jenkinson, M.; Griffanti, L.; Luchetti, L.; Leoncini, M.; Inderyas, M.; Mortilla, M.; Cortese, R.; De Stefano, N.; Battaglini, M. BIANCA-MS: An optimized tool for automated multiple sclerosis lesion segmentation. Hum. Brain Mapp. 2023, 44, 4893–4913. [Google Scholar] [CrossRef]
- Valverde, S.; Cabezas, M.; Roura, E.; González-Villà, S.; Pareto, D.; Vilanova, J.C.; Ramió-Torrentà, L.; Rovira, À.; Oliver, A.; Lladó, X. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 2017, 155, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Young, A.L.; Wijeratne, P.A.; Prados, F.; Arnold, D.L.; Narayanan, S.; Guttmann, C.R.G.; Barkhof, F.; Alexander, D.C.; Thompson, A.J.; et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Roca, P.; Attye, A.; Colas, L.; Tucholka, A.; Rubini, P.; Cackowski, S.; Ding, J.; Budzik, J.-F.; Renard, F.; Doyle, S.; et al. Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagn. Interv. Imaging 2020, 101, 795–802. [Google Scholar] [CrossRef]
- Optic Neuritis Study, G. , Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol, 2008. 65(6): p. 727-32.
- Dongil-Moreno, F.J.; Ortiz, M.; Pueyo, A.; Boquete, L.; Sánchez-Morla, E.M.; Jimeno-Huete, D.; Miguel, J.M.; Barea, R.; Vilades, E.; Garcia-Martin, E. Diagnosis of multiple sclerosis using optical coherence tomography supported by explainable artificial intelligence. Eye 2024, 38, 1502–1508. [Google Scholar] [CrossRef]
- Ortiz, M.; Mallen, V.; Boquete, L.; Sánchez-Morla, E.M.; Cordón, B.; Vilades, E.; Dongil-Moreno, F.J.; Miguel-Jiménez, J.M.; Garcia-Martin, E. Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence. Mult. Scler. Relat. Disord. 2023, 74, 104725. [Google Scholar] [CrossRef]
- Kenney, R.C.; Liu, M.; Hasanaj, L.; Joseph, B.; Abu Al-Hassan, A.; Balk, L.J.; Behbehani, R.; Brandt, A.; Calabresi, P.A.; Frohman, E.; et al. The Role of Optical Coherence Tomography Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis. Neurology 2022, 99, e1100–e1112. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.; Ramon-Julvez, U.; Vilades, E.; Cordon, B.; Mayordomo, E.; Garcia-Martin, E. Explainable artificial intelligence toward usable and trustworthy computer-aided diagnosis of multiple sclerosis from Optical Coherence Tomography. PLOS ONE 2023, 18, e0289495. [Google Scholar] [CrossRef]
- Wei, W.; Poirion, E.; Bodini, B.; Durrleman, S.; Ayache, N.; Stankoff, B.; Colliot, O. Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med Image Anal. 2019, 58, 101546. [Google Scholar] [CrossRef]
- Rostami, A.; Robatjazi, M.; Dareyni, A.; Ghorbani, A.R.; Ganji, O.; Siyami, M.; Raoofi, A.R. Enhancing classification of active and non-active lesions in multiple sclerosis: machine learning models and feature selection techniques. BMC Med Imaging 2024, 24, 345. [Google Scholar] [CrossRef]
- Amini, A.; Shayganfar, A.; Amini, Z.; Ostovar, L.; HajiAhmadi, S.; Chitsaz, N.; Rabbani, M.; Kafieh, R. Deep learning for discrimination of active and inactive lesions in multiple sclerosis using non-contrast FLAIR MRI: A multicenter study. Mult. Scler. Relat. Disord. 2024, 87, 105642. [Google Scholar] [CrossRef]
- Shekari, F.; Vard, A.; Adibi, I.; Danesh-Mobarhan, S. Investigating the feasibility of differentiating MS active lesions from inactive ones using texture analysis and machine learning methods in DWI images. Mult. Scler. Relat. Disord. 2024, 82, 105363. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, M.; Lyman, C.; Ferrari, H.; Bergsland, N.; Fuchs, T.A.; Jakimovski, D.; Schweser, F.; Weinstock-Guttmann, B.; Benedict, R.H.; Riolo, J.; et al. DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, feasible, and clinically relevant thalamic atrophy measurement on clinical quality T2-FLAIR MRI in multiple sclerosis. NeuroImage: Clin. 2021, 30, 102652. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Kellermann, G.; Watkinson, J.; Gärtner, F.; Huhndorf, M.; Stürner, K.; Jansen, O.; Larsen, N. AI supported detection of cerebral multiple sclerosis lesions decreases radiologic reporting times. Eur. J. Radiol. 2024, 178, 111638. [Google Scholar] [CrossRef]
- Barnett, M.; Wang, D.; Beadnall, H.; Bischof, A.; Brunacci, D.; Butzkueven, H.; Brown, J.W.L.; Cabezas, M.; Das, T.; Dugal, T.; et al. A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis. npj Digit. Med. 2023, 6, 1–9. [Google Scholar] [CrossRef]
- Tolkach, Y.; Wolgast, L.M.; Damanakis, A.; Pryalukhin, A.; Schallenberg, S.; Hulla, W.; Eich, M.-L.; Schroeder, W.; Mukhopadhyay, A.; Fuchs, M.; et al. Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study. Lancet Digit. Heal. 2023, 5, e265–e275. [Google Scholar] [CrossRef]
- Gehrung, M.; Crispin-Ortuzar, M.; Berman, A.G.; O’donovan, M.; Fitzgerald, R.C.; Markowetz, F. Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat. Med. 2021, 27, 833–841. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for cancers of unknown primary. Nature 2021, 594, 106–110. [Google Scholar] [CrossRef]
- Nagpal, K.; Foote, D.; Liu, Y.; Chen, P.-H.C.; Wulczyn, E.; Tan, F.; Olson, N.; Smith, J.L.; Mohtashamian, A.; Wren, J.H.; et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. npj Digit. Med. 2019, 2, 1–10. [Google Scholar] [CrossRef]
- Swiderska-Chadaj, Z., et al. Contextual Classification of Tumor Growth Patterns in Digital Histology Slides. 2019. Cham: Springer International Publishing.
- Compston, A. , Occasional essay: Multiple sclerosis in the digital age: ‘seeing through a glass darkly’. Journal of Neurology, Neurosurgery & Psychiatry, 2020. 91(10): p. 1017-1023.
- Kilic, A.K.; Kurne, A.T.; Oguz, K.K.; Soylemezoglu, F.; Karabudak, R. Mass lesions in the brain: tumor or multiple sclerosis? Clinical and imaging characteristics and course from a single reference center. Turk. Neurosurg. 2013, 23, 728–35. [Google Scholar] [CrossRef]
- Friedrich, M.; Struffert, T.; Dohmen, H.; Uhl, E. Two patients with cerebral lesions: is it tumor or multiple sclerosis? Illustrative cases. J. Neurosurgery: Case Lessons 2022, 4, CASE22212. [Google Scholar] [CrossRef]
- Plantone, D.; Renna, R.; Sbardella, E.; Koudriavtseva, T. Concurrence of Multiple Sclerosis and Brain Tumors. Front. Neurol. 2015, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Anzalone, N.; Storelli, L.; Del Poggio, A.; Cacciaguerra, L.; Manfredi, A.A.; Meani, A.; Filippi, M. Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics. Investig. Radiol. 2021, 56, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Llufriu, S.; Kornak, J.; Ratiney, H.; Oh, J.; Brenneman, D.; Cree, B.A.; Sampat, M.; Hauser, S.L.; Nelson, S.J.; Pelletier, D. Magnetic Resonance Spectroscopy Markers of Disease Progression in Multiple Sclerosis. JAMA Neurol. 2014, 71, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.L.; Wolinsky, J.S.; Matthews, P.M.; Falini, A. The use of magnetic resonance spectroscopy in the evaluation of the natural history of multiple sclerosis. J Neurol Neurosurg Psychiatry 1998, 64 (Suppl 1), S94–S101. [Google Scholar]
- Ekşi, Z.; Özcan, M.E.; Çakıroğlu, M.; Öz, C.; Aralaşmak, A. Differentiation of multiple sclerosis lesions and low-grade brain tumors on MRS data: machine learning approaches. Neurol. Sci. 2021, 42, 3389–3395. [Google Scholar] [CrossRef]
- Hurwitz, B.J. The diagnosis of multiple sclerosis and the clinical subtypes. Ann. Indian Acad. Neurol. 2009, 12, 226–30. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023, 23, 1–15. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. Artificial Intelligence for Clinical Prediction: Exploring Key Domains and Essential Functions. Comput. Methods Programs Biomed. Updat. 2024, 5. [Google Scholar] [CrossRef]
- Matinfar, F.; Golpaygani, A.T. A Fuzzy Expert System for Early Diagnosis of Multiple Sclerosis. J. Biomed. Phys. Eng. 2022, 12, 181–188. [Google Scholar] [CrossRef]
- Brownlee, W.J.; Miller, D.H. Clinically isolated syndromes and the relationship to multiple sclerosis. J. Clin. Neurosci. 2014, 21, 2065–2071. [Google Scholar] [CrossRef]
- Darvishi, S.; Hamidi, O.; Poorolajal, J. Prediction of Multiple sclerosis disease using machine learning classifiers: a comparative study. J Prev Med Hyg 2021, 62, E192–E199. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; Schiffmann, S.; Schmitz, K.; Brunkhorst, R.; Lerch, F.; Ferreiros, N.; Wicker, S.; Tegeder, I.; Geisslinger, G.; Ultsch, A. Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Berek, K.; Bsteh, G.; Auer, M.; Di Pauli, F.; Zinganell, A.; Berger, T.; Deisenhammer, F.; Hegen, H. Cerebrospinal Fluid Findings in 541 Patients With Clinically Isolated Syndrome and Multiple Sclerosis: A Monocentric Study. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, T.G.; Romanescu, C.; Popescu, B.O. The Blood–Brain Barrier—A Key Player in Multiple Sclerosis Disease Mechanisms. Biomolecules 2022, 12, 538. [Google Scholar] [CrossRef]
- Gopalan, R. B-134 Artificial Intelligence (AI)-Driven Clinical Decision Support: Potential to Predict the Risk for Multiple Sclerosis. Clin. Chem. 2023, 69. [Google Scholar] [CrossRef]
- Tacchella, A.; Romano, S.; Ferraldeschi, M.; Salvetti, M.; Zaccaria, A.; Crisanti, A.; Grassi, F. Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study. F1000Res 2017, 6, 2172. [Google Scholar] [CrossRef]
- Bonacchi, R.; Filippi, M.; Rocca, M.A. Role of artificial intelligence in MS clinical practice. NeuroImage: Clin. 2022, 35, 103065. [Google Scholar] [CrossRef]
- Kanber, B.; Nachev, P.; Barkhof, F.; Calvi, A.; Cardoso, J.; Cortese, R.; Prados, F.; Sudre, C.H.; Tur, C.; Ourselin, S.; et al. High-dimensional detection of imaging response to treatment in multiple sclerosis. npj Digit. Med. 2019, 2, 49. [Google Scholar] [CrossRef]
- Praet, J.; Anderhalten, L.; Comi, G.; Horakova, D.; Ziemssen, T.; Vermersch, P.; Lukas, C.; van Leemput, K.; Steppe, M.; Aguilera, C.; et al. A future of AI-driven personalized care for people with multiple sclerosis. Front. Immunol. 2024, 15, 1446748. [Google Scholar] [CrossRef]
- Lesjak, Ž.; Galimzianova, A.; Koren, A.; Lukin, M.; Pernuš, F.; Likar, B.; Špiclin, Ž. A Novel Public MR Image Dataset of Multiple Sclerosis Patients With Lesion Segmentations Based on Multi-rater Consensus. Neuroinformatics 2018, 16, 51–63. [Google Scholar] [CrossRef]
- Muslim, A.M.; Mashohor, S.; Al Gawwam, G.; Mahmud, R.; Hanafi, M.B.; Alnuaimi, O.; Josephine, R.; Almutairi, A.D. Brain MRI dataset of multiple sclerosis with consensus manual lesion segmentation and patient meta information. Data Brief 2022, 42, 108139. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Martínez-Heras, E.; Ontaneda, D.; Carrasco, F.P. Artificial Intelligence and Multiple Sclerosis. Curr. Neurol. Neurosci. Rep. 2024, 24, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Placido, D.; Yuan, B.; Hjaltelin, J.X.; Zheng, C.; Haue, A.D.; Chmura, P.J.; Yuan, C.; Kim, J.; Umeton, R.; Antell, G.; et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat. Med. 2023, 29, 1113–1122. [Google Scholar] [CrossRef]
- Kohli, M.D.; Summers, R.M.; Geis, J.R. Medical Image Data and Datasets in the Era of Machine Learning—Whitepaper from the 2016 C-MIMI Meeting Dataset Session. J. Digit. Imaging 2017, 30, 392–399. [Google Scholar] [CrossRef]
- Pontillo, G.; Tommasin, S.; Cuocolo, R.; Petracca, M.; Petsas, N.; Ugga, L.; Carotenuto, A.; Pozzilli, C.; Iodice, R.; Lanzillo, R.; et al. A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis. Am. J. Neuroradiol. 2021, 42, 1927–1933. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Huang, D.; Lyu, J.; Fang, M.; Hu, J.; Zang, Y.; Zhang, D.; Shao, H.; Ma, L.; et al. Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis. J. Magn. Reson. Imaging 2019, 49, 1113–1121. [Google Scholar] [CrossRef]
- Luo, X.; Piao, S.; Li, H.; Li, Y.; Xia, W.; Bao, Y.; Liu, X.; Geng, D.; Wu, H.; Yang, L. Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. Eur. Radiol. 2022, 32, 5700–5710. [Google Scholar] [CrossRef]
- Inglese, F.; Kant, I.M.J.; Monahan, R.C.; Steup-Beekman, G.M.; Huizinga, T.W.J.; van Buchem, M.A.; Magro-Checa, C.; Ronen, I.; de Bresser, J. Different phenotypes of neuropsychiatric systemic lupus erythematosus are related to a distinct pattern of structural changes on brain MRI. Eur. Radiol. 2021, 31, 8208–8217. [Google Scholar] [CrossRef]
- Magro Checa, C. , et al., Demyelinating disease in SLE: Is it multiple sclerosis or lupus? Best Practice & Research Clinical Rheumatology, 2013. 27(3): p. 405-424.
- Cesar, B.; Dwyer, M.; Shucard, J.; Polak, P.; Bergsland, N.; Benedict, R.; Weinstock-Guttman, B.; Shucard, D.; Zivadinov, R. Cognitive and White Matter Tract Differences in MS and Diffuse Neuropsychiatric Systemic Lupus Erythematosus. Am. J. Neuroradiol. 2015, 36, 1874–1883. [Google Scholar] [CrossRef]
- Gauthier, S.A.; Mandel, M.; Guttmann, C.; Glanz, B.I.; Khoury, S.J.; Betensky, R.A.; Weiner, H.L. Predicting short-term disability in multiple sclerosis. Neurology 2007, 68, 2059–2065. [Google Scholar] [CrossRef]
- Kurtzke, J.F. , Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 1983. 33(11): p. 1444-52.
- Piena, M.A. , et al., An Innovative Approach to Modelling the Optimal Treatment Sequence for Patients with Relapsing-Remitting Multiple Sclerosis: Implementation, Validation, and Impact of the Decision-Making Approach. Adv Ther, 2022. 39(2): p. 892-908.
- Jackson, C.H.; Sharples, L.D.; Thompson, S.G.; Duffy, S.W.; Couto, E. Multistate Markov models for disease progression with classification error. Journal of the Royal Statistical Society Series D: The Statistician 2003, 52, 193–209. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, S.; Lu, W.; Liu, Z.; Huang, J.; Zhou, Y.; Fang, J.; Huang, Y.; Guo, H.; Li, L.; et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci. 2020, 11, 1775–1797. [Google Scholar] [CrossRef] [PubMed]
- Gönen, M. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 2012, 28, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Wu, L.-Y.; Zhou, X.; Wong, S.T. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 2010, 4 (Suppl 2), S6. [Google Scholar] [CrossRef]
- Deandrés-Galiana, E.J.; Bea, G.; Fernández-Martínez, J.L.; Saligan, L.N. Analysis of defective pathways and drug repositioning in Multiple Sclerosis via machine learning approaches. Comput. Biol. Med. 2019, 115, 103492. [Google Scholar] [CrossRef]
- Palacios, R.; Goni, J.; Martinez-Forero, I.; Iranzo, J.; Sepulcre, J.; Melero, I.; Villoslada, P. A Network Analysis of the Human T-Cell Activation Gene Network Identifies Jagged1 as a Therapeutic Target for Autoimmune Diseases. PLOS ONE 2007, 2, e1222. [Google Scholar] [CrossRef]
- Agarwal, S.; Dugar, D.; Sengupta, S. Ranking Chemical Structures for Drug Discovery: A New Machine Learning Approach. J. Chem. Inf. Model. 2010, 50, 716–731. [Google Scholar] [CrossRef]
- Khamis, M.A. Gomaa, and W.F. Ahmed, Machine learning in computational docking. Artificial Intelligence in Medicine, 2015. 63(3): p. 135-152.
- Inojosa, H.; Voigt, I.; Wenk, J.; Ferber, D.; Wiest, I.; Antweiler, D.; Weicken, E.; Gilbert, S.; Kather, J.N.; Akgün, K.; et al. Integrating large language models in care, research, and education in multiple sclerosis management. Mult. Scler. J. 2024, 30, 1392–1401. [Google Scholar] [CrossRef]
- Wenk, J.; Voigt, I.; Inojosa, H.; Schlieter, H.; Ziemssen, T. Building digital patient pathways for the management and treatment of multiple sclerosis. Front. Immunol. 2024, 15, 1356436. [Google Scholar] [CrossRef]
- Palaniappan, R. and R. Siva. Revolutionizing MS Rehabilitation with Digital Twins and Machine Learning: A Promising Path to Precision Medicine. 2024. Cham: Springer Nature Switzerland.
- Falet, J.-P.R.; Durso-Finley, J.; Nichyporuk, B.; Schroeter, J.; Bovis, F.; Sormani, M.-P.; Precup, D.; Arbel, T.; Arnold, D.L. Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning. Nat. Commun. 2022, 13, 5645. [Google Scholar] [CrossRef]
- Inojosa, H.; Gilbert, S.; Kather, J.N.; Proschmann, U.; Akgün, K.; Ziemssen, T. Can ChatGPT explain it? Use of artificial intelligence in multiple sclerosis communication. Neurol. Res. Pr. 2023, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Maida, E.; Moccia, M.; Palladino, R.; Borriello, G.; Affinito, G.; Clerico, M.; Repice, A.M.; Di Sapio, A.; Iodice, R.; Spiezia, A.L.; et al. ChatGPT vs. neurologists: a cross-sectional study investigating preference, satisfaction ratings and perceived empathy in responses among people living with multiple sclerosis. J. Neurol. 2024, 271, 4057–4066. [Google Scholar] [CrossRef] [PubMed]
- Balas, M.; Kaplan, A.J.; Esmail, K.; Saleh, S.; Sharma, R.A.; Yan, P.; Arjmand, P. Translating ophthalmic medical jargon with artificial intelligence: a comparative comprehension study. Can. J. Ophthalmol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.C.; Schulte-Mecklenbeck, A.; Steinberg, O.V.; Wirth, T.; Lauks, S.; Bittner, S.; Schindler, P.; Baranzini, S.E.; Groppa, S.; Bellmann-Strobl, J.; et al. Multiple sclerosis endophenotypes identified by high-dimensional blood signatures are associated with distinct disease trajectories. Sci. Transl. Med. 2024, 16, eade8560. [Google Scholar] [CrossRef]
- Park, L.M.; Lannigan, J.; Jaimes, M.C. OMIP-069: Forty-Color Full Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in Human Peripheral Blood. Cytom. Part A 2020, 97, 1044–1051. [Google Scholar] [CrossRef]
- Van Gassen, S. , et al., FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A, 2015. 87(7): p. 636-45.
- Garcia, A.; Dugast, E.; Shah, S.; Morille, J.; Lebrun-Frenay, C.; Thouvenot, E.; De Sèze, J.; Le Page, E.; Vukusic, S.; Maurousset, A.; et al. Immune Profiling Reveals the T-Cell Effect of Ocrelizumab in Early Relapsing-Remitting Multiple Sclerosis. Neurol. - Neuroimmunol. Neuroinflammation 2023, 10. [Google Scholar] [CrossRef]
- Waede, M.; Voss, L.F.; Kingo, C.; Moeller, J.B.; Elkjaer, M.L.; Illes, Z. Longitudinal analysis of peripheral immune cells in patients with multiple sclerosis treated with anti-CD20 therapy. Ann. Clin. Transl. Neurol. 2024, 11, 2657–2672. [Google Scholar] [CrossRef]
- McInnes, L. and J. Healy, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. 2018.
- Samusik, N.; Good, Z.; Spitzer, M.H.; Davis, K.L.; Nolan, G.P. Automated mapping of phenotype space with single-cell data. Nat. Methods 2016, 13, 493–496. [Google Scholar] [CrossRef]
- Levine, J.H.; Simonds, E.F.; Bendall, S.C.; Davis, K.L.; Amir, E.-A.D.; Tadmor, M.D.; Litvin, O.; Fienberg, H.G.; Jager, A.; Zunder, E.R.; et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 2015, 162, 184–197. [Google Scholar] [CrossRef]
- Diebold, M.; Galli, E.; Kopf, A.; Sanderson, N.S.R.; Callegari, I.; Benkert, P.; Núñez, N.G.; Ingelfinger, F.; Herms, S.; Cichon, S.; et al. High-dimensional immune profiling identifies a biomarker to monitor dimethyl fumarate response in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2022, 119. [Google Scholar] [CrossRef]
- Abdelaal, T.; Michielsen, L.; Cats, D.; Hoogduin, D.; Mei, H.; Reinders, M.J.T.; Mahfouz, A. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol. 2019, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Esaulova, E.; Cantoni, C.; Shchukina, I.; Zaitsev, K.; Bucelli, R.C.; Wu, G.F.; Artyomov, M.N.; Cross, A.H.; Edelson, B.T. Single-cell RNA-seq analysis of human CSF microglia and myeloid cells in neuroinflammation. Neurol. - Neuroimmunol. Neuroinflammation 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Sankowski, R.; Böttcher, C.; Masuda, T.; Geirsdottir, L.; Sagar; Sindram, E.; Seredenina, T.; Muhs, A.; Scheiwe, C.; Shah, M.J.; et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 2019, 22, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Ostkamp, P.; Deffner, M.; Schulte-Mecklenbeck, A.; Wünsch, C.; Lu, I.-N.; Wu, G.F.; Goelz, S.; De Jager, P.L.; Kuhlmann, T.; Gross, C.C.; et al. A single-cell analysis framework allows for characterization of CSF leukocytes and their tissue of origin in multiple sclerosis. Sci. Transl. Med. 2022, 14, eadc9778. [Google Scholar] [CrossRef]
- Barone, S.M.; Paul, A.G.; Muehling, L.M.; A Lannigan, J.; Kwok, W.W.; Turner, R.B.; A Woodfolk, J.; Irish, J.M. Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy. eLife 2021, 10. [Google Scholar] [CrossRef]
- Arvaniti, E.; Claassen, M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat. Commun. 2017, 8, 14825. [Google Scholar] [CrossRef]
- Fišer, K.; Sieger, T.; Schumich, A.; Wood, B.; Irving, J.; Mejstříková, E.; Dworzak, M.N. Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytom. Part A 2012, 81, 25–34. [Google Scholar] [CrossRef]
- Ford, R.K.; Juillard, P.; Hawke, S.; Grau, G.E.; Marsh-Wakefield, F. Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier. J. Clin. Med. 2022, 11, 6006. [Google Scholar] [CrossRef]
- Patel, M.A. , et al., Generative artificial intelligence versus clinicians: Who diagnoses multiple sclerosis faster and with greater accuracy? Mult Scler Relat Disord, 2024. 90: p. 105791.
- Lee, J. , Is Artificial Intelligence Better Than Human Clinicians in Predicting Patient Outcomes? J Med Internet Res, 2020. 22(8): p. e19918.
- Bradshaw, A.; Hughes, N.; Vallez-Garcia, D.; Chokoshvili, D.; Owens, A.; Hansen, C.; Emmert, K.; Maetzler, W.; Killin, L.; Barnes, R.; et al. Data sharing in neurodegenerative disease research: challenges and learnings from the innovative medicines initiative public-private partnership model. Front. Neurol. 2023, 14, 1187095. [Google Scholar] [CrossRef]
- Giehl, K. , et al., Sharing brain imaging data in the Open Science era: how and why? The Lancet Digital Health, 2024. 6(7): p. e526-e535.
- Sonicki, Z. , Large multi-modal models - the present or future of artificial intelligence in medicine? Croat Med J, 2024. 65(1): p. 1-2.
- Rocca, M.A.; Preziosa, P.; Barkhof, F.; Brownlee, W.; Calabrese, M.; De Stefano, N.; Granziera, C.; Ropele, S.; Toosy, A.T.; Vidal-Jordana, À.; et al. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. Lancet Reg. Heal. - Eur. 2024, 44, 100978. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).