Submitted:
28 March 2025
Posted:
31 March 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Unanswered Research Query

Methodology
Defining Scope and Objectives
Study Design
Search Strategy
Inclusion and Exclusion Criteria
Analysis Framework Using the Bradford Hill Criteria
Data Extraction
Analysis and Synthesis
Results and Discussion
Criteria 1: Strength of the Association Between Coffee Intake and Upper Gastrointestinal Diseases
Criteria 2: Consistency of the Association Between Coffee Intake and Upper Gastrointestinal Diseases
Criteria 3: Specificity of the Effect of Coffee Intake
Criteria 4: Temporality of Coffee Exposure and Upper Gastrointestinal Diseases
Criteria 5. Biological Gradient Effect of Coffee Intake and Upper Gastrointestinal Diseases
Criteria 6: Plausibility of the Mechanism of Coffee Intake and Upper Gastrointestinal Diseases
Criteria 7: Coherence
Criteria 8: Experiments on the Effects of Modifying Coffee Intake on Upper Gastrointestinal Diseases
Criteria 9: Analogy
| Criteria | Evidence |
| Strength | Risks, associations, study type, participants (n) |
| RR = 1.07 (0.96–1.19), second meta-analysis, n = 24,94 [2,3,45] RR = 1.05 (0.91–1.22, retrospective studies, n = 24,943 [2,3,45] RR = 1.08 (0.96–1.21, Asian studies, n = 24,943 [2,3,45] RR = 1.1 (0.84–1.21, questionnaire-based, n = 24,943 [2,3,45] RR = 1.01 (0.91–1.12, high-quality studies, n = 24,943 [2,3,45] RR = 1.13 (0.97–1.32, prospective studies, n = 24,943 [2,3,45] RR = 1.54 (0.40–5.93, cross-sectional studies, n = 24,943 [2,3,45] OR = 0.66 (0.29–1.50, multicenter case‒control study, n = 3224 [46] OR = 1.27 (0.78–2.05), multicenter case‒control study, n = 1518 subjects, 832 GERD patients and 686 controls [47] OR = 1.23 (0.76–2.00), epidemiologic, based on questionnaires, n = 2789 [48] OR = 1.18 (0.88–1.58), observational study, data from European participants in the UK Biobank, n = 379,713 [49] OR = 1.04 (0.76–1.42), cross-sectional study, n = 2038 veterans, 310 BE cases, 1728 without BE [50] OR: 0.77 (0.42–1.42), epidemiological study based on questionnaires, n = 2147 participants, 1036 men and 1111 women [51] HR: 0.51 (0.33–0.77), The Miyagi Cohort Study, n = [7] RR: 1.24 (1.03–1.49), meta-analysis, n=312,993 [8] OR 2.79, 95% CI 1.73e4), a Mendelian randomization study, n = 367,561 [10] | |
| Consistency | Settings Chest pain [52] Elderly group (OR = 1.40 (1.09–2.10) [53] Body mass index (OR 3.22 (1.84-5.63) [10] Smoking (OR 2.77 (1.71-4.88) [10] Alcohol consumption (OR 2.98 (1.56-5.70) [10] |
| Specificity | Criterion not met; see text for discussion. |
| Temporality | Coffee intake exposure and GI diseases |
| Postoperative nausea [16] Premenopausal [2] Preoperative [16] Postmenopausal [2] | |
| Biological-gradient | Exposure grade |
| Coffee intake (>1 vs. <1 cup/day) significantly related to chest pain [54]. ≤3 cups/month: PR = 0.93 (0.73–1.18), 1–6 cups/week: PR = 1.04 (0.85–1.29), ≥1 cup/day: PR = 1.02 (0.82–1.26) [55] 1–3 cups/day: OR = 0.92 (0.76–1.12); 4–6 cups/day: OR = 1.01 (0.82–1.25); ≥7 cups/day: OR = 1.10 (0.85–1.43) [56] 1–2 cups/day, OR = 0.88 (0.74–1.04); ≥3 cups/day: OR = 0.84 (0.70–1.01) [57] 1–3 cups/day: OR = 1.0 (0.8–1.1), 3 cups/day: OR = 1.1 (0.9–1.5) [58] 1–3 cups/day: OR = 0.92 (0.76–1.12); 4–6 cups/day: OR = 1.01 (0.82–1.25); ≥7 cups/day: OR = 1.10 (0.85–1.43) [59] OR = 1.06 (0.66–1.70) for those drinking more than 3 cups versus nondrinking or drinking less [2]. ≥2 cups/day: OR = 0.89 (0.52–1.51) [60] 1–3 cups/day: OR = 0.91 (0.73–1.12); 4–6 cups/day: OR = 0.86 (0.69–1.08); ≥7 cups/day: OR = 0.75 (0.57–0.98) [69] 3 cups/day: RR: 1.03 (0.95–1.11) [19] | |
| Plausibility and coherence | Proposed mechanisms of coffee-induced upper GI diseases |
| Enhanced gastroesophageal reflux [10] Prevents the endogenous formation of oxidative DNA damage [36] Anti-genotoxic activity [25] Lower esophageal sphincter (LES) [26] Stimulate the production of stomach acid [27] Increase gut microbiota [12] Stimulate gastric and pancreatic secretion [28] | |
| Experiment | Study design, intervention groups, outcome |
| Paper-filtered coffee, Results of a clinical trial, results of a clinical trial, decrease in DNA migration [36] Animal study, clinical trial: against the effects of carcinogens [37] Animal study, clinical trial: decreased the number of 2-amino-1-methyl-6-phenylimidazo (4,5-b) pyridine (PhIP-)induced colonic aberrant crypt foci (ACF) preneoplastic lesions, [39] Animal study, clinical trial: less gastric tumors [40] | |
| Analogy | Multiple myeloma (OR 2.25 (1.30-3.89) [10] Hepatocellular carcinoma in coffee drinkers (HR 0.50, (0.29-0.87) [10] Reduced ovarian cancer risk (OR 0.63, 95% CI 0.43-0.93 [10] Hepatocellular carcinoma in coffee drinkers (HR 0.50, 95% CI 0.29, 0.87) [42] Leukemia (OR 0.70, 95% CI 0.47-1.03) [10] Prostate cancer (OR 0.85, 95% CI 0.72-1.01) [10] |
Correlational
Inconclusive
Conclusion
- What is already known about this topic?
- This study's contributions
- How this study could impact policy, practice, or research
- Gaps in research
Limitations
Key Takeaway
Consent
Author Contributions
Conflicts of interest
References
- Machado, F.; Coimbra, M.A.; del Castillo, M.D.; Coreta-Gomes, F. Mechanisms of action of coffee bioactive compounds – a key to unveil the coffee paradox. Crit. Rev. Food Sci. Nutr. 2023, 64, 10164–10186. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients 2022, 14, 399. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; Uranga, J.A.; Del Castillo, M.D.; Abalo, R. Effects of Coffee and Its Components on the Gastrointestinal Tract and the Brain–Gut Axis. Nutrients 2020, 13, 88. [Google Scholar] [CrossRef]
- Rothman KJ, Greenland S. 6.11 Causation and causal inference.
- Nordestgaard, A.T. Causal relationship from coffee consumption to diseases and mortality: a review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases. Eur. J. Nutr. 2021, 61, 573–587. [Google Scholar] [CrossRef]
- Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Esmaillzadeh, A.; Adibi, P. Association of Coffee and Caffeine Intake With Irritable Bowel Syndrome in Adults. Front. Nutr. 2021, 8. [Google Scholar] [CrossRef]
- Naganuma, T.; Kuriyama, S.; Kakizaki, M.; Sone, T.; Nakaya, N.; Ohmori-Matsuda, K.; Nishino, Y.; Fukao, A.; Tsuji, I. Coffee Consumption and the Risk of Oral, Pharyngeal, and Esophageal Cancers in Japan: The Miyagi Cohort Study. Am. J. Epidemiology 2008, 168, 1425–1432. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, H.; Cao, H. Coffee consumption and risk of gastric cancer: An updated meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 245–253. [Google Scholar] [CrossRef]
- Shimonovich, M.; Pearce, A.; Thomson, H.; Keyes, K.; Katikireddi, S.V. Assessing causality in epidemiology: revisiting Bradford Hill to incorporate developments in causal thinking. Eur. J. Epidemiology 2020, 36, 873–887. [Google Scholar] [CrossRef]
- Carter, P.; Yuan, S.; Kar, S.; Vithayathil, M.; Mason, A.M.; Burgess, S.; Larsson, S.C. Coffee consumption and cancer risk: a Mendelian randomisation study. Clin. Nutr. 2022, 41, 2113–2123. [Google Scholar] [CrossRef]
- Hill, A.B. The environment and disease: association or causation? Journal of the Royal Society of Medicine. 2015, 108, 32–37. [Google Scholar]
- Saygili, S.; Hegde, S.; Shi, X.-Z. Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review. Nutrients 2024, 16, 3155. [Google Scholar] [CrossRef]
- Koterov, A.N.; Ushenkova, L.N.; Biryukov, A.P. Hill’s Temporality Criterion: Reverse Causation and Its Radiation Aspect. Biol. Bull. 2020, 47, 1577–1609. [Google Scholar] [CrossRef]
- Benamouzig R, Airinei G. Diet and reflux. Journal of clinical gastroenterology 2007, 41, S64–S71. [Google Scholar] [CrossRef]
- Nordenvall, C.; Oskarsson, V.; Wolk, A. Inverse Association Between Coffee Consumption and Risk of Cholecystectomy in Women but Not in Men. Clin. Gastroenterol. Hepatol. 2015, 13, 1096–1102.e1. [Google Scholar] [CrossRef] [PubMed]
- Eamudomkarn, N.; Kietpeerakool, C.; Kaewrudee, S.; Jampathong, N.; Ngamjarus, C.; Lumbiganon, P. Effect of postoperative coffee consumption on gastrointestinal function after abdominal surgery: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2018, 8, 17349. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.; Larsen, L.P.; Sivesgaard, K. , et al. Black or white coffee before anesthesia? A randomized crossover trial. European Journal of Anesthesiology EJA 2016, 33, 457–462. [Google Scholar] [CrossRef]
- Fedak, K.M.; Bernal, A.; Capshaw, Z.A.; Gross, S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg. Themes Epidemiology 2015, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gan, Y.; Wu, C.; Qu, X.; Sun, G.; Lu, Z. Coffee consumption and the risk of gastric cancer: a meta-analysis of prospective cohort studies. BMC Cancer 2015, 15, 1–14. [Google Scholar] [CrossRef]
- Shao-Bo, Z.; Hong, W.; Meng, Z. , et al. Long-Term Coffee Consumption and Risk of Gastric Cancer A PRISMA-Compliant Dose–Response Meta-Analysis of Prospective Cohort Studies. Medicine 2015, 94, e1640. [Google Scholar]
- Koterov, A.N.; Ushenkova, L.N. Causal Criteria in Medical and Biological Disciplines: History, Essence, and Radiation Aspect. Report 4, Part 2: Hierarchy of Criteria, Criticism of Them, and Other Methods for Establishing Causation. Biol. Bull. 2023, 50, 2881–2934. [Google Scholar] [CrossRef]
- Parra-Lara, L.G.; Mendoza-Urbano, D.M.; Bravo, J.C.; Salamanca, C.H.; Zambrano, Á.R. Coffee Consumption and Its Inverse Relationship with Gastric Cancer: An Ecological Study. Nutrients 2020, 12, 3028. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-L. Dietary polyphenols as antioxidants and anticancer agents: more questions than answers. Chang. Gung Med. J. 2011, 34, 449–460. [Google Scholar]
- Abraham, S.; Stopper, H. Anti-genotoxicity of coffee against N-methyl-N-nitro-N-nitrosoguanidine in mouse lymphoma cells. Mutat. Res. Toxicol. Environ. Mutagen. 2004, 561, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Gaascht, F.; Dicato, M.; Diederich, M. Coffee provides a natural multitarget pharmacopeia against the hallmarks of cancer. Genes Nutr. 2015, 10, 1–17. [Google Scholar] [CrossRef]
- Taborska, N.; Martyka, A.; Figiel, M.K.; Ujma, P. The impact of consumed coffee on the digestive system - review of the latest research. J. Educ. Heal. Sport 2024, 53, 32–43. [Google Scholar] [CrossRef]
- Santoso, P. Coffee Consumption With The Incident Of Gastritis: Literature Review. J. Appl. Nurs. Heal. 2023, 5, 225–232. [Google Scholar] [CrossRef]
- Seid, A.; Tamir, Z.; Demsiss, W. Uninvestigated dyspepsia and associated factors of patients with gastrointestinal disorders in Dessie Referral Hospital, Northeast Ethiopia. BMC Gastroenterol. 2018, 18, 13. [Google Scholar] [CrossRef]
- Ravisankar, P.; Koushik, O.; Reddy, A. , et al. A Detailed Analysis on Acidity and Ulcers in Esophagus, Gastric and Duodenal Ulcers and Management. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) 2016, 15, 94–114. [Google Scholar]
- Cuomo, R.; Sarnelli, G.; Savarese, M.; Buyckx, M. Carbonated beverages and gastrointestinal system: Between myth and reality. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 683–689. [Google Scholar] [CrossRef]
- Kacorova, A. How Do People with Inflammatory Bowel Disease Understand their Pain (Doctoral dissertation, UCL (University College London)).
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef]
- Strayhorn Jr, JM. Virtual controls as an alternative to randomized controlled trials for assessing efficacy of interventions. BMC Medical Research Methodology 2021, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Fass R, Boeckxstaens GE, El-Serag H, et al. Gastro-esophageal reflux disease. Nature reviews Disease primers 2021, 7, 55. [Google Scholar] [CrossRef]
- Robertson, BC. A systematic evaluation of the psychological and behavioral effects of the combined consumption of glucose and caffeine and comparison to the effects produced by consuming either substance in isolation. Lancaster University (United Kingdom); 2019.
- Mišík, M.; Hoelzl, C.; Wagner, K.-H.; Cavin, C.; Moser, B.; Kundi, M.; Simic, T.; Elbling, L.; Kager, N.; Ferk, F.; et al. Impact of paper filtered coffee on oxidative DNA-damage: Results of a clinical trial. Mutat. Res. Mol. Mech. Mutagen. 2010, 692, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Naveed, M.; BiBi, J.; Kamboh, A.A.; Phil, L.; Chao, S. Potential nutraceutical and food additive properties and risks of coffee: a comprehensive overview. Crit. Rev. Food Sci. Nutr. 2019, 59, 3293–3319. [Google Scholar] [CrossRef]
- Turesky, R.J.; Richoz, J.; Constable, A.; Curtis, K.D.; Dingley, K.H.; Turteltaub, K.W. The effects of coffee on enzymes involved in metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rats. Chem. Biol. Interact. 2003, 145, 251–265. [Google Scholar] [CrossRef]
- Carter, O.; Wang, R.; Dashwood, W.M.; Orner, G.A.; Fischer, K.A.; Löhr, C.V.; Pereira, C.B.; Bailey, G.S.; Williams, D.E.; Dashwood, R.H. Comparison of White Tea, Green Tea, Epigallocatechin-3-Gallate, and Caffeine as Inhibitors of PhIP-Induced Colonic Aberrant Crypts. Nutr. Cancer 2007, 58, 60–65. [Google Scholar] [CrossRef]
- Soares, P.V.; Kannen, V.; Junior, A.A.J.; Garcia, S.B. Coffee, but Neither Decaffeinated Coffee nor Caffeine, Elicits Chemoprotection Against a Direct Carcinogen in the Colon of Wistar Rats. Nutr. Cancer 2018, 71, 615–623. [Google Scholar] [CrossRef]
- Alshahrani, S.H.; Atia, Y.A.; Badir, R.A.; Almalki, S.G.; A Tayyib, N.; Shahab, S.; Romero-Parra, R.M.; Abid, M.K.; Hussien, B.M.; Ramaiah, P. Dietary caffeine intake is associated with favorable metabolic profile among apparently healthy overweight and obese individuals. BMC Endocr. Disord. 2023, 23, 1–10. [Google Scholar] [CrossRef]
- Kim Tu Tran, Helen G. Coleman, et al. British Journal of Cancer 2019, 120, 1059–1066. [Google Scholar]
- Grosso, G. , Godos, J., Galvano, F., et al. Coffee, caffeine, and health outcomes: An umbrella review. Annu. Rev. Nutr. 2017, 37, 131–156. [Google Scholar]
- Godos, J.; Micek, A.; Marranzano, M.; Salomone, F.; Del Rio, D.; Ray, S. Coffee Consumption and Risk of Biliary Tract Cancers and Liver Cancer: A Dose–Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2017, 9, 950. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, C.; Ouyang, Z.; et al. Prevalence and beverage-related risk factors for gastroesophageal reflux disease: An original study in Chinese college freshmen, a systemic review and meta-analysis. Neurogastroenterol. Motil. 2021, 34, e14266. [Google Scholar]
- Bhatia, S.J.; Reddy, D.N.; Ghoshal, U.C.; Jayanthi, V.; Abraham, P.; Choudhuri, G.; Broor, S.L.; Ahuja, V.; Augustine, P.; Balakrishnan, V.; et al. Epidemiology and symptom profile of gastroesophageal reflux in the Indian population: Report of the Indian Society of Gastroenterology Task Force. Indian J. Gastroenterol. 2011, 30, 118–127. [Google Scholar] [CrossRef]
- Wang, C.-C.; Wei, T.-Y.; Hsueh, P.-H.; Wen, S.-H.; Chen, C.-L. The role of tea and coffee in the development of gastroesophageal reflux disease. Tzu Chi Med J. 2019, 31, 169–176. [Google Scholar] [CrossRef]
- Wang, J.-H.; Luo, J.-Y.; Dong, L.; Gong, J.; Tong, M. Epidemiology of gastroesophageal reflux disease: A general population-based study in Xi’an of Northwest China. World J. Gastroenterol. 2004, 10, 1647–1651. [Google Scholar] [CrossRef]
- Green, H.D.; Beaumont, R.N.; Wood, A.R.; Hamilton, B.; E Jones, S.; Goodhand, J.R.; A Kennedy, N.; Ahmad, T.; Yaghootkar, H.; Weedon, M.N.; et al. Genetic evidence that higher central adiposity causes gastro-oesophageal reflux disease: a Mendelian randomization study. Leuk. Res. 2020, 49, 1270–1281. [Google Scholar] [CrossRef]
- Sajja, K.C.; El-Serag, H.B.; Thrift, A.P. Coffee or Tea, Hot or Cold, Are Not Associated with Risk of Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2016, 14, 769–772. [Google Scholar] [CrossRef]
- Walcher, T.; Haenle, M.M.; Mason, R.A.; Koenig, W.; Imhof, A.; Kratzer, W. The effect of alcohol, tobacco and caffeine consumption and vegetarian diet on gallstone prevalence. Eur. J. Gastroenterol. Hepatol. 2010, 22, 1345–1351. [Google Scholar] [CrossRef]
- Sloots, C.E.; Felt-Bersma, R.J.F.; West, R.L.; Kuipers, E.J. Stimulation of defecation: Effects of coffee use and nicotine on rectal tone and visceral sensitivity. Scand. J. Gastroenterol. 2005, 40, 808–813. [Google Scholar] [CrossRef]
- Martín-De-Argila, C.; Martínez-Jiménez, P. Epidemiological study on the incidence of gastroesophageal reflux disease symptoms in patients in acute treatment with NSAIDs. Expert Rev. Gastroenterol. Hepatol. 2013, 7, 27–33. [Google Scholar] [CrossRef]
- El–Serag, H.B.; Richardson, P.; Pilgrim, P.; Gilger, M.A. Determinants of Gastroesophageal Reflux Disease in Adults With a History of Childhood Gastroesophageal Reflux Disease. Clin. Gastroenterol. Hepatol. 2007, 5, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Pandeya, N.; Green, A.C.; Whiteman, D.C. ; for the Australian Cancer Study Prevalence and determinants of frequent gastroesophageal reflux symptoms in the Australian community. Dis. Esophagus 2011, 25, 573–583. [Google Scholar] [CrossRef]
- Zheng, Z.; Nordenstedt, H.; Pedersen, N.L.; Lagergren, J.; Ye, W. Lifestyle Factors and Risk for Symptomatic Gastroesophageal Reflux in Monozygotic Twins. Gastroenterology 2007, 132, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, T.; Yamamichi, N.; Kodashima, S.; et al. No association of coffee consumption with gastric ulcer, duodenal ulcer, reflux esophagitis, and nonerosive reflux disease: A cross-sectional study of 8013 healthy subjects in Japan. PLoS ONE 2013, 8, e65996. [Google Scholar]
- Kubo, A.; Block, G.; Quesenberry, C.P.; Buffler, P.; A Corley, D. Dietary guideline adherence for gastroesophageal reflux disease. BMC Gastroenterol. 2014, 14, 144–144. [Google Scholar] [CrossRef]
- Ganti, A.; Whitson, M.J. The Foregut. In Nutrition, Weight, and Digestive Health 2022 (pp. 73-87). Springer, Cham.
- Farah, A.; Lima, J.d.P. Consumption of Chlorogenic Acids through Coffee and Health Implications. Beverages 2019, 5, 11. [Google Scholar] [CrossRef]
- Saneei, P.; Esmaillzadeh, A.; Keshteli, A.H.; Roohafza, H.R.; Afshar, H.; Feizi, A.; Adibi, P. Combined Healthy Lifestyle Is Inversely Associated with Upper Gastrointestinal Disorders among Iranian Adults. Dig. Dis. 2020, 39, 77–88. [Google Scholar] [CrossRef]
- Pucci, G.; Forney, K.J. Associations among perceived taste and smell sensitivity, gastrointestinal symptoms, and restrictive eating in a community sample of adults. Eat. Behav. 2022, 46, 101647. [Google Scholar] [CrossRef]
- Tramacere, I.; Negri, E.; Pelucchi, C.; Bagnardi, V.; Rota, M.; Scotti, L.; Islami, F.; Corrao, G.; La Vecchia, C.; Boffetta, P. A meta-analysis on alcohol drinking and gastric cancer risk. Ann. Oncol. 2011, 23, 28–36. [Google Scholar] [CrossRef]
- Ladeiras-Lopes, R.; Pereira, A.K.; Nogueira, A.; Pinheiro-Torres, T.; Pinto, I.; Santos-Pereira, R.; Lunet, N. Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control. 2008, 19, 689–701. [Google Scholar] [CrossRef]
- Abioye, A.I.; Odesanya, M.O.; Abioye, A.I.; et al. Physical activity and risk of gastric cancer: A meta-analysis of observational studies. Br. J. Sports Med. 2015, 49, 224–229. [Google Scholar]
- Withrow, D.R.; Pole, J.D.; Nishri, E.D.; Tjepkema, M.; Marrett, L.D. Cancer Survival Disparities Between First Nation and Non-Aboriginal Adults in Canada: Follow-up of the 1991 Census Mortality Cohort. Cancer Epidemiology Biomarkers Prev. 2017, 26, 145–151. [Google Scholar] [CrossRef]
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.T.; Coleman, H.G.; McMenamin, Ú.C.; Cardwell, C.R. Coffee consumption by type and risk of digestive cancer: a large prospective cohort study. Br. J. Cancer 2019, 120, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Toriello, M.; Sessa, R.; Izzo, L.; Lombardi, S.; Narváez, A.; Ritieni, A.; Grosso, M. Antioxidant and Anti-Inflammatory Activity of Coffee Brew Evaluated after Simulated Gastrointestinal Digestion. Nutrients 2021, 13, 4368. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, T.; Yamamichi, N.; Kodashima, S. , et al. No association of coffee consumption with gastric ulcer, duodenal ulcer, reflux esophagitis, and nonerosive reflux disease: a cross-sectional study of 8,013 healthy subjects in Japan. PLoS One 2013, 8, e65996. [Google Scholar]
- Alsaleem, M.A.; Awadalla, N.J.; Shehata, S.F.; Alsamghan, A.S.; Alhumaidi, M.M.; Alwadai, M.S.; Althabet, F.S.; Alzahrani, M.S.; Alsaleem, S.A.; Mahfouz, A.A. Prevalence and factors associated with gastroesophageal reflux disease among primary health care attendants at Abha city, southwestern Saudi Arabia. Saudi Pharm. J. 2021, 29, 597–602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
