Submitted:
03 April 2025
Posted:
07 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- To examine how temporal trends in cave ecology studies in southern Africa compare with trends from the rest of the world.
- To demonstrate the need for cave biodiversity research in southern Africa using Botswana, Namibia and South Africa as case studies.
- To identify subterranean research and conservation priorities for southern Africa.
2. Materials and Methods
3. Results
3.1. Temporal Patterns of Cave Ecological Studies in Southern Africa and the World

4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Culver, D. C., & Pipan, T. (2019). The biology of caves and other subterranean habitats. Oxford University Press.
- Mammola, S., Piano, E., Cardoso, P., Vernon, P., Domínguez-Villar, D., Culver, D. C., ... & Isaia, M. (2019). Climate change going deep: The effects of global climatic alterations on cave ecosystems. The Anthropocene Review, 6(1-2), 98-116. [CrossRef]
- Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., ... & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. science, 344(6187), 1246752. [CrossRef]
- Souza, M.F.V.R., Alvarenga, D.A., Souza-Silva, M., Ferreira, R.L., 2021. Do different relevance attributes indicate the same conservation priorities? A case study in caves of southeastern Brazil. International Journal of Speleology, 50(3), 223-238.
- Benayas, J. M. R., & de la Montaña, E. (2003). Identifying areas of high-value vertebrate diversity for strengthening conservation. Biological Conservation, 114(3), 357-370. [CrossRef]
- Duke, J. M., Dundas, S. J., & Messer, K. D. (2013). Cost-effective conservation planning: Lessons from economics. Journal of environmental management, 125, 126-133. [CrossRef]
- Hughes, A. C. (2017). Mapping priorities for conservation in Southeast Asia. Biological Conservation, 209, 395-405. [CrossRef]
- Conenna, I., Rocha, R., Russo, D., & Cabeza, M. (2017). Insular bats and research effort: a review of global patterns and priorities. Mammal Review, 47(3), 169-182. [CrossRef]
- Hernández-Quiroz, N. S., Badano, E. I., Barragán-Torres, F., Flores, J., & Pinedo-Álvarez, C. (2018). Habitat suitability models to make conservation decisions based on areas of high species richness and endemism. Biodiversity and Conservation, 27, 3185-3200. [CrossRef]
- Wintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., ... & Bekessy, S. A. (2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences, 116(3), 909-914. [CrossRef]
- Chandra, A., & Idrisova, A. (2011). Convention on Biological Diversity: a review of national challenges and opportunities for implementation. Biodiversity and Conservation, 20, 3295-3316. [CrossRef]
- Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: land sharing and land sparing compared. science, 333(6047), 1289-1291. [CrossRef]
- Pullin, A. S., Knight, T. M., Stone, D. A., & Charman, K. (2004). Do conservation managers use scientific evidence to support their decision-making? Biological conservation, 119(2), 245-252. [CrossRef]
- Zhang, L., Xu, W. H., Ouyang, Z. Y., & Zhu, C. Q. (2014). Determination of priority nature conservation areas and human disturbances in the Yangtze River Basin, China. Journal for nature conservation, 22(4), 326-336. [CrossRef]
- Tanalgo, K. C., & Hughes, A. C. (2018). Important but not a priority? Conservation concerns & priorities for Philippine bats in the Anthropocene. PeerJ Preprints, 6, e27169v1.
- Deltshev, C., Blagoev, G., & Hubenov, Z. (1998). Conservation priorities on biodiversity of invertebrates (non-Insecta) in Bulgarian Mountains. Ambio, 330-334.
- Sharratt, N. J., Picker, M. D., & Samways, M. J. (2000). The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities. Biodiversity & Conservation, 9, 107-143. [CrossRef]
- Munasinghe, C. S., & Ranawana, K. B. (2013). Ecology, Diversity and Conservation Priorities of Cave Dwelling Fauna in Mandaramnuwara Cave, Nuwara Eliya District. In Proceedings of International Forestry and Environment Symposium (Vol. 18). [CrossRef]
- Cardoso, G. M., Du Preez, G., Taiti, S., & Ferreira, R. L. (2021). New troglobitic species of Niambia from Botswana and Namibia (Crustacea, Isopoda, Oniscidea). Subterranean Biology, 40, 91-108.
- Engel, A. S. (2019). Chemolithoautotrophy. In Encyclopedia of Caves (pp. 267-276). Academic Press.
- Horváth, G., Kerekes, K., Nyitrai, V., Balazs, G., Berisha, H., & Herczeg, G. (2023). Exploratory behaviour divergence between surface populations, cave colonists and a cave population in the water louse, Asellus aquaticus. Behavioral Ecology and Sociobiology, 77(1), 15. [CrossRef]
- Lunghi, E., Mammola, S., Martínez, A., & Hesselberg, T. (2024). Behavioural adjustments enable the colonization of subterranean environments. Zoological Journal of the Linnean Society, 201(2), 549-559. [CrossRef]
- Simonsen, D., & Hesselberg, T. (2021). Unique behavioural modifications in the web structure of the cave orb spider Meta menardi (Araneae, Tetragnathidae). Scientific Reports, 11(1), 92. [CrossRef]
- Jacobs, F. J., Jacobs, P. G., Hay, C. J., & Naesje, T. F. (2021). Status update of the endemic and critically endangered cave catfish Clarias cavernicola Trewavas 1936, from the Aigamas Cave system, Namibia. African Journal of Aquatic Science, 46(1), 18-21. [CrossRef]
- Chiarini, V., Duckeck, J., & De Waele, J. (2022). A global perspective on sustainable show cave tourism. Geoheritage, 14(3), 82. [CrossRef]
- Ramaano, A. I. (2022). The potential role of cultural heritage resources in tourism and community development at Musina municipality, Limpopo province, South Africa. Journal of Cultural Heritage Management and Sustainable Development, (ahead-of-print). [CrossRef]
- Cigna, A. A., & Burri, E. (2000). Development, management and economy of show caves. [CrossRef]
- Baquedano Estévez, C., Moreno Merino, L., de la Losa Román, A., & Duran Valsero, J. J. (2019). The lampenflora in show caves and its treatment: an emerging ecological problem. International Journal of Speleology, 48(3), 4. [CrossRef]
- Duval, M., Smith, B., Hœrlé, S., Bovet, L., Khumalo, N., & Bhengu, L. (2019). Towards a holistic approach to heritage values: a multidisciplinary and cosmopolitan approach. International Journal of Heritage Studies, 25(12), 1279-1301. [CrossRef]
- Rüther, H., Chazan, M., Schroeder, R., Neeser, R., Held, C., Walker, S. J., ... & Horwitz, L. K. (2009). Laser scanning for conservation and research of African cultural heritage sites: the case study of Wonderwerk Cave, South Africa. Journal of Archaeological Science, 36(9), 1847-1856. [CrossRef]
- Pule, O. J., & Lindsay, R. (2008). Exposure of tour guides to Radon at the Cango caves.
- Clarke, R. J., & Kuman, K. (2019). The skull of StW 573, a 3.67 ma Australopithecus prometheus skeleton from Sterkfontein Caves, South Africa. Journal of Human Evolution, 134, 102634. [CrossRef]
- Ferreira, R. L., Giribet, G., Du Preez, G., Ventouras, O., Janion, C., & Silva, M. S. (2020). The Wynberg cave system, the most important site for cave fauna in South Africa at risk. Subterranean Biology, 36, 73-81. [CrossRef]
- Mumbengegwi, P., Odmell, C., Doreen, M., & Candida, C. (2023). Cave tourism as an alternative form of sustainable tourism and heritage preservation: insights from chirorodziva calabash festival. Gph-International Journal of Social Science and Humanities Research, 6(05), 33-46.
- Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., ... & Veni, G. (2020). Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal, 28, 1661-1677. [CrossRef]
- Masilela, M., & Beckedahl, H. (2022). Karst geomorphology and related environmental problems in Southern Africa–A review. Journal of African Earth Sciences, 196, 104686. [CrossRef]
- Hollingsworth, E., Brahana, V., & Inlander, E. (2008). Karst Regions of the World (KROW): global Karst datasets and maps to advance the protection of Karst species and habitats worldwide USGS Scientific Investigations Report 2008-5023.
- Teng-Zeng, F. K. (2009). Financing science and innovation in Africa: institutional development and challenges. Science, technology and innovation for public health in Africa, 167-197.
- Petterson, M. G. (2008). Minerals sustainability, emerging economies, the developing world, and the ’truth ‘behind the rhetoric. Estonian Journal of Earth Sciences, 57(2).
- Mammola, S., & Martinez, A. (2020). Let research on subterranean habitats resonate!. Subterranean Biology, 36, 63-71. [CrossRef]
- Klopper, R. R., Smith, G. F., & Van Rooy, J. (2002). The biodiversity of Africa. Rebirth of science in Africa: a shared vision for life and environmental sciences, 60-86.
- Titley, M. A., Snaddon, J. L., & Turner, E. C. (2017). Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PloS one, 12(12), e0189577. [CrossRef]
- Cardoso, P., Erwin, T. L., Borges, P. A., & New, T. R. (2011). The seven impediments in invertebrate conservation and how to overcome them. Biological conservation, 144(11), 2647-2655. [CrossRef]
- Du Preez, G., Theron, P., & Fourie, D. (2013, July). Terrestrial mesofauna biodiversity in unique karst environments in southern Africa. In Proceedings of the 16th International Congress of Speleology. Brno, Czech Speleological Society (pp. 386-390).
- Mazebedi, R., & Hesselberg, T. (2020). A preliminary survey of the abundance, diversity and distribution of terrestrial macroinvertebrates of Gcwihaba cave, northwest Botswana. Subterranean Biology, 35. [CrossRef]
- Edgecombe, G. D., Akkari, N., Netherlands, E. C., & Du Preez, G. (2020). A troglobitic species of the centipede Cryptops (Chilopoda, Scolopendromorpha) from northwestern Botswana. ZooKeys, 977, 25.
- Harvey, M. S., & Du Preez, G. (2014). A new troglobitic ideoroncid pseudoscorpion (Pseudoscorpiones: Ideoroncidae) from southern Africa. The Journal of Arachnology, 42(1), 105-110.
- Visagie, C. M., Goodwell, M., & Nkwe, D. O. (2021). Aspergillus diversity from the Gcwihaba Cave in Botswana and description of one new species. Fungal Systematics and Evolution, 8(1), 81-89. [CrossRef]
- Dandurand, G., Duranthon, F., Jarry, M., Stratford, D. J., & Bruxelles, L. (2019). Biogenic corrosion caused by bats in Drotsky’s Cave (the Gcwihaba Hills, NW Botswana). Geomorphology, 327, 284-296.
- van der Schyff, V., Serfontein, C., Theron, P., van Rooyen, D., Dickie, B., hew Dickie, M., ... & Stander, R. (2015). Armageddon Cave Survey. South African Spelaeological Associa on, 39.
- Mbaiwa, J. E., & Sakuze, L. K. (2009). Cultural tourism and livelihood diversification: The case of Gcwihaba Caves and XaiXai village in the Okavango Delta, Botswana. Journal of Tourism and Cultural Change, 7(1), 61-75. [CrossRef]
- Matos, D. D., Zastrow, J., Val, A., & Mendelsohn, J. (2023). Caves and their fauna in Highlands and Escarpments of Angola and Namibia. Namibian Journal of Environment. Endemism in the Highlands and Escarpments of Angola and Namibia. Monograph., 8, 323-330.
- Reimold, W. U., Whitfield, G., & Wallmach, T. (2006). Geotourism potential of southern Africa. In Geotourism (pp. 42-62). Routledge.
- Marope, Mmantsetsa Toka. Namibia human capital and knowledge development for economic growth with equity. Washington, DC: World Bank, 2005.
- Geingos-Onuegbu, I. L. (2015). Technology and innovation landscapes in the context of a knowledge-based economy. Journal of Namibian Studies: History Politics Culture, 18, 111-121.
- Dowling, R., & Pforr, C. (2021). Geotourism–a sustainable development option for Namibia. Journal of Ecotourism, 20(4), 371-385. [CrossRef]
- Magnussen, A., & Visser, G. (2003). Developing a World Heritage Site: the cradle of humankind. Africa Insight, 33(1/2), 78-86. [CrossRef]
- Caruana, M. V., & Stratford, D. J. (2019). Historical perspectives on the significance of archaeology in the Cradle of Humankind, South Africa. South African Archaeological Society Goodwin Series, 12, 44-55.
- Dirks, P. H., & Berger, L. R. (2013). Hominin-bearing caves and landscape dynamics in the Cradle of Humankind, South Africa. Journal of African Earth Sciences, 78, 109-131. [CrossRef]
- Gommery, D., Thackeray, J. F., Sénégas, F., Potze, S., & Kgasi, L. (2008). The earliest primate (Parapapio sp.) from the Cradle of Humankind World Heritage site (Waypoint 160, Bolt’s Farm, South Africa). South African Journal of Science, 104(9), 405-408.
- Adams, J. W., Hemingway, J., Kegley, A. D. T., & Thackeray, J. F. (2007). Luleche, a new paleontological site in the Cradle of Humankind, North-West Province, South Africa. Journal of human evolution, 53(6), 751-754. [CrossRef]
- Leichliter, J. (2011). Micromammal paleoecology: Theory, methods, and application to modern and fossil assemblages in the Cradle of Humankind World Heritage Site, South Africa (Doctoral dissertation, University of Colorado at Boulder).
- Pavia, M., Val, A., Carrera, L., & Steininger, C. M. (2022). Fossil birds from Cooper’s D aid in reconstructing the Early Pleistocene paleoenvironment in the Cradle of Humankind (Gauteng, South Africa). Journal of Human Evolution, 167, 103185. [CrossRef]
- Pavia, M. (2020). Palaeoenvironmental reconstruction of the Cradle of Humankind during the Plio-Pleistocene transition, inferred from the analysis of fossil birds from Member 2 of the hominin-bearing site of Kromdraai (Gauteng, South Africa). Quaternary Science Reviews, 248, 106532. [CrossRef]
- Matshusa, K. (2020). The potential for geotourism at the Kruger National Park for social sustainability. University of Johannesburg (South Africa).


| Cave and its location |
Show cave? | Cave length | No. of visitors per year | Studies addressing fundamental questions in subterranean biology | ||||
|---|---|---|---|---|---|---|---|---|
|
Q1: What are the main ecological and ecosystem services provided by subterranean populations and communities? |
Q2. How do basic life-history characteristics differ among subterranean communities and between subterranean and surface communities? |
Q3. How does climate change affect subterranean-adapted organisms? |
Q4. How does the use of caves by humans (e.g. tourism, religious, therapeutic, and recreational activities) affect subterranean ecosystems? |
Additional Q5. What are the organisms found in subterranean ecosystems? | ||||
|
Gcwihaba cave 20° 01’ 43’‘ S, 21° 21’ 22’’E (Botswana) |
Yes | 400m | ~200 | None | None | None | None | Mazebedi and Hesselberg 2020; Visagie et al. 2021 Cardoso et al 2021; Harvey and Du Preez 2014 |
|
Arnhem cave 22° 70’ 14’‘ S, 18°09’ 65’‘ E (Namibia) |
Yes | ~4,500m | Unknown | None | None | None | None |
aChurchill et al 1997 aMatos et al. 2023 Spriggs et al 2010 |
| Aigamas (19°27’33.9”S, 17°16’59.3”E) (Namibia) |
No | 250m | Not open to tourists | None | None | None | None |
aChurchill et al 1997 aMatos et al. 2023 Jacobs et al 2021 Jacobs et al 2019 Kensley 1995 |
| Cango Caves 33°23′34″S, 22°12′53″E (South Africa) |
Yes | 4km | ~250,000 | None | None | None | Craven 1992, Baker and Genty 1998 | Cipola and Bellini 2016, Babalola et al. 2024 |
| Sterkfontein Caves 26°00′57″S 27°44′05″E (South Africa) |
Yes | 5.23km | Unknown | None | None | Hopley and Maslin 2010 | None | Zumpt, 1950 |
| Wonderwerk cave 27°50′44.7″S 23°33′12.3″E (South Africa) |
Yes | 140 m | Unknown | None | None | None | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
