Submitted:
08 April 2025
Posted:
09 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Related Works
| Drone | Target Detection | Mobile Target Tracking | Air Pollution Detection | Monitoring & Various Purposes |
| Single Drone Operation | [5,6] | [12,13] | [37,38,39,40,41,42,43] | [27,28] |
| Cooperative Flight | [7,8,9,10] | [14,15,16] [17,18,19,20] |
[44,45,46,47] | [29,30,31,32] |
| Survey | [3,4] | [11] | [1,2,32,33,34,35,36] | [21,22,23,24,25,26] |
3. 3D Cube-Based Adaptive Cooperative Search Algorithm
3.1. Comparison of Exploration Methods in a 3D Space
3.2. Design of the 3D Cube-Based Adaptive Cooperative Search Algorithm
- Notation
- Step 1: Initialization
- Step 2: Cooperative Exploration and Data Collection
- Step 3: Threshold Check and Search Termination
4. Performance Analysis
4.1. Simulation
4.2. Development of a Quadcopter for Air Pollution Detection
4.3. Experiments
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CTO | Collaborative trajectory optimization |
| FHM | Forest health monitoring |
| GUI | Graphical user interface |
| IoT | Internet of Things |
| LoRa | Low-Rank Adaptation |
| PSO | Particle swarm optimization |
| PM | Particulate matter |
| UAV | Unmanned aerial vehicle |
| UGV | Unmanned ground vehicle |
| WSN | Wireless sensor network |
| YOLO | You Only Look Once |
References
- Hossein Motlagh, N.; Kortoçi, P.; Su, X.; Lovén, L.; Hoel, H.K.; Bjerkestrand Haugsvær, S.; Srivastava, V.; Gulbrandsen, C.F.; Nurmi, P.; Tarkoma, S. Unmanned Aerial Vehicles for Air Pollution Monitoring: A Survey. IEEE Internet Things J 2023, 10, 21687–21704. [Google Scholar] [CrossRef]
- Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors (Basel) 2022, 22, 1824. [Google Scholar] [CrossRef] [PubMed]
- Adoni, W.; Lorenz, S; Fareedh, J; Gloaguen, R.; Bussmann, M. Investigation of Autonomous Multi-UAV Systems for Target Detection in Distributed Environment: Current Developments and Open Challenges. Drones 2023, 7, 1–37. [Google Scholar] [CrossRef]
- Iftikhar, S.; Asim, M.; Zhang, Z.; Muthanna, A.; Chen, J.; El-Affendi, M.; Sedik, A.; Abd El-Latif, A.A. Target detection and recognition for traffic congestion in Smart cities using deep learning-enabled UAVs: A review and analysis. Appl Sci 2023, 13, 1–26. [Google Scholar] [CrossRef]
- Zhang, Z.; Drone, Y.O.L.O. An efficient neural network method for target detection in drone images. Drones 2023, 7, 1–23. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Qin, Z.; Tang, J. UAV target detection algorithm based on improved YOLOv8. IEEE Access 2023, 11, 116534–116544. [Google Scholar] [CrossRef]
- Minaeian, S.; Liu, J.; Son, Y.J. Vision-based target detection and localization via a team of cooperative UAV and UGVs. IEEE Trans Syst Man Cybern Syst 2016, 46, 1005–1016. [Google Scholar] [CrossRef]
- Zhu, K.; Han, B.; Zhang, T. Multi-UAV distributed collaborative coverage for target search using heuristic strategy. Guid Navigat Control 2021, 1, 1–24. [Google Scholar] [CrossRef]
- Stasinchuk, Y; Vrba, M.; Petrlik, M.; Baca, T.; Spurny, V.; Hert, D.; Zaitlik, D; T. Nascimento; M. Saska. A multi-UAV system for detection and elimination of multiple targets. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian China OCT 2021, 2021; Vol. 18. [CrossRef]
- Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A. LSAR: Multi-UAV collaboration for search and rescue missions. IEEE Access 2019, 7, 55817–55832. [Google Scholar] [CrossRef]
- Alhafnawi, M.; Bany Salameh, H.A.; Masadeh, A.; Al-Obiedollah, H.; Ayyash, M.; El-Khazali, R.; Elgala, H. A survey of indoor and outdoor UAV-based target tracking systems: Current status, challenges, technologies, and future directions. IEEE Access 2023, 11, 68324–68339. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, H.; Zhang, D.; Zhou, D.; Wang, Z. Using a fixed-wing UAV vision- based detection and tracking of a mobile ground target using a fixed- wing UAV. Int J Adv Robot Syst 2014, 11, 1–11. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Du, Y.C.; Ling, H.F.; Sheng, W.G.; Chen, S.Y. Evolutionary collaborative human-UAV search for escaped criminals. IEEE Trans Evol Computat 2020, 24, 217–231. [Google Scholar] [CrossRef]
- Amala Arokia Nathan, R.J.; Kurmi, I.; Bimber, O. Drone swarm strategy for the detection and tracking of occluded targets in complex environments. Commun Eng 2023, 2, 1–12. [Google Scholar] [CrossRef]
- Cimino, M.; Lega, M.; Monaco, M.; Vaglini, G. Adaptive exploration of a UAVs swarm for distributed targets detection and tracking. In Institutional Research Information System; SCITEPRESS - Science and Technology Publications, 2019; Vol. 1; pp. 837–844. [CrossRef]
- Opromolla, R.; Inchingolo, G.; Fasano, G. Airborne visual detection and tracking of cooperative UAVs exploiting deep learning. Sensors (Basel) 2019, 19, 4332. [Google Scholar] [CrossRef]
- Hentati, A.I.; Fourati, L.C.; Rezgui, J. Cooperative UAVs framework for Mobile Target Search and tracking. Comput Electr Eng 2022, 101, 1–13. [Google Scholar] [CrossRef]
- Zhou, L.; Leng, S.; Liu, Q.; Wang, Q. Intelligent UAV swarm cooperation for multiple targets tracking. IEEE Internet Things J 2022, 9, 743–754. [Google Scholar] [CrossRef]
- Saadaoui, H.; Bouanani, F.E.; Illi, E. Information sharing based on local PSO for UAVs cooperative search of moved targets. IEEE Access 2021, 9, 134998–135011. [Google Scholar] [CrossRef]
- Dai, J.; Pu, W.; Yan, J.; Shi, Q.; Liu, H. Multi-UAV collaborative trajectory optimization for asynchronous 3-D passive multitarget tracking. IEEE Trans Geosci Remote Sensing 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [Google Scholar] [CrossRef]
- Popescu, D.; Stoican, F.; Stamatescu, G.; Chenaru, O.; Ichim, L. A survey of collaborative UAV–WSN systems for efficient monitoring. Sensors (Basel) 2019, 19, 4690. [Google Scholar] [CrossRef]
- Gohari, A.; Ahmad, A.B.; Rahim, R.B.A.; Supa’at, A.S.M.; Abd Razak, S.; Gismalla, M.S.M. Involvement of surveillance drones in smart cities: A systematic review. IEEE Access 2022, 10, 56611–56628. [Google Scholar] [CrossRef]
- Chmaj, G.; Selvaraj, H. Distributed processing applications for UAV/drones: A survey. Adv Intell Syst Comput 2015, 366, 449–454. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.J.; Tiede, D.; Seifert, T. UAV-based forest health monitoring: A systematic review. Remote Sens 2022, 14, 1–45. [Google Scholar] [CrossRef]
- Alsamhi, S; Afghah, F; Sahal, R; Hawbani, A; Qaness, M; Lee, B; Guizani. M. Green internet of things using UAVs in B5G networks: A review of applications and strategies. Ad Hoc Networks 2021 117, 1–16. [CrossRef]
- Langhammer, J. UAV monitoring of stream restorations. Hydrology 2019, 6, 1–22. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens 2012, 4, 3390–3416. [Google Scholar] [CrossRef]
- Fu, Z.; Mao, Y.; He, D.; Yu, J.; Xie, G. Secure multi-UAV collaborative task allocation. IEEE Access 2019, 7, 35579–35587. [Google Scholar] [CrossRef]
- Elloumi, M.; Dhaou, R.; Escrig, B.; Idoudi, H.; Saidane, L.A. Monitoring road traffic with a UAV-based system. In Proceedings of the IEEE Wireless Communications and Networking Conference; IEEE: New York, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Li, J.; Bashir, A.K.; Yang, W. Securing collaborative environment monitoring in smart cities using blockchain enabled software-defined internet of drones. IEEE Internet Things M 2021, 4, 12–18. [Google Scholar] [CrossRef]
- Villa, T.; Gonzalez, F.; B. Miljievic; Z. Ristovski; L. Morawska. An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors 2016, 16, 1–29. [CrossRef]
- Javaid, S.; Saeed, N.; Qadir, Z.; Fahim, H.; He, B.; Song, H.; Bilal, M. Communication and control in collaborative UAVs: Recent advances and future trends. IEEE Trans Intell Transp Syst 2023, 24, 5719–5739. [Google Scholar] [CrossRef]
- Ye, Y.; Geng, P. A review of air pollution monitoring technology for ports. Appl Sci 2023, 13, 1–15. [Google Scholar] [CrossRef]
- Zhou, Y.; Rao, B.; Wang, W. UAV Swarm intelligence: Recent advances and future trends. IEEE Access 2020, 8, 183856–183878. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Irjala, M.; Zuniga, A.; Lagerspetz, E.; Rantala, V.; Flores, H.; Nurmi, P.; Tarkoma, S. Toward blue skies: City-scale air pollution monitoring using UAVs. IEEE Con Electron Mag 2023, 12, 21–31. [Google Scholar] [CrossRef]
- Araujo, J.O.; Valente, J.; Kooistra, L.; Munniks, S.; Peters, R.J.B. Experimental flight patterns evaluation for a UAV-based air pollutant sensor. Micromachines 2020, 11, 768. [Google Scholar] [CrossRef]
- Alvear, O.; Zema, N.R.; Natalizio, E.; Calafate, C.T. Using UAV-based systems to monitor air pollution in areas with poor accessibility. J Adv Transp 2017, 8204353, 14 pp. [CrossRef]
- Gu, Q.; Michanowicz, D.; Jia, C. Developing a modular unmanned aerial vehicle (UAV) platform for air pollution profiling. Sensors 2018, 18, 4363. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, S.; Wang, M.; Shen, A.; Liu, Z. The characteristics and contributing factors of air pollution in Nanjing: A case study based on an unmanned aerial vehicle experiment and multiple datasets. Atmosphere 2018, 9, 1–25. [Google Scholar] [CrossRef]
- Alvear, O.; Calafate, C.; Zema, N.; Matalizio, E.; Orallo, E.; Cano, J.; Manzoni, P. A discretized approach to air pollution monitoring using UAV-based sensing. Mob Netw Appl 2018, 23, 1693–1702. [Google Scholar] [CrossRef]
- Hernández-Vega, J.I.; Varela, E.R.; Romero, N.H.; Hernández-Santos, C.; Cuevas, J.L.S.; Gorham, D.G.P. Internet of things (IoT) for monitoring air pollutants with an unmanned aerial vehicle (UAV) in a smart city. Lect Notes Inst Comput Sci Soc Inform Telecommun Eng 2018, 213, 108–120. [Google Scholar] [CrossRef]
- Pochwala, S; Gardecki, A.; Lewandowski, P.; Somogyi, V.; Anweiler, S. Developing of low-cost air pollution sensor—measurements with the unmanned aerial vehicles in Poland. Sensors 2020, 20, 1–17. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, J.; Li, X.; Ahmed, S.H.; Lim, W.Y.B.; Miao, C. Federated learning in the sky: Aerial-ground air quality sensing framework with UAV swarms. IEEE Internet Things J 2021, 8, 9827–9837. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, Y.; Ding, Y.; He, D. Pollution source localization based on multi-UAV cooperative communication. IEEE Access 2019, 7, 29304–29312. [Google Scholar] [CrossRef]
- Bolla, G.; Casagrande, M.; Comazzetto, A.; Moro, R.; Destro, M.; Fantin, E.; Colombatti, G.; Aboudan, A.; Lorenzini, E. ARIA: Air Pollutants Monitoring Using UAVs. In Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome Italy, 20-22 June 2018. [Google Scholar]
- Naula, N.Y.; Castanon, L.E.G.; Zhang, Y; Avila, L.I.M. UAV-based air pollutant source localization using combined metaheuristic and probabilistic methods. Appl Sci 2019, 9, 1–18. [Google Scholar] [CrossRef]
















| Category | Value |
| Size of search area | 10 × 10 × 10 cells |
| Cell size | 1 × 1 × 1 m |
| Threshold value | 0.9 |
| Target (maximum) value | 1.0 |
| Number of targets | 1 (random) |
| Number of UAVs | 1 and 2 |
| Limitations on navigation rounds | 1000 |
| Components | Specifications |
| System controller | Raspberry Pi Pico, Dual-Core Arm Cortex-M0+, 133Mhz |
| Communication module | LoRa E22-900M22S |
| PM sensor | pms7003 |
| CO, CO2 sensor | MTP40-F NDIR CO2 sensor |
| Frame | TAROT S500 Quad-Copter frame, Diameter: 500mm, Height: 288mm |
| Motors | S2312-920KV Motor, 23x12mm |
| Propeller | 9x4.5inch Self-Lock Propeller, Universal Rype |
| Flight controller | Pixhawk 2.4.8 32bit |
| GPS sensor | UBlox M8N GPS |
| Battery | PT-B5200N-FX50 (14.8V, 4S1P, 50C+) |
| Components | Specifications |
| Number of Drones | 2 quadcopter type drones |
| Experimental Site | Site1. A University playground Site2. Outdoor Open Space |
| Initial Search Altitude | 15m |
| 1 Unit | 10 x 10 x 10m Cube Type |
| Number of Explorations in One Cube | 2 times |
| Maximum Search Altitude | 60m |
| Maximum Search Width | 100m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
