Preprint
Article

This version is not peer-reviewed.

Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control

A peer-reviewed article of this preprint also exists.

Submitted:

03 August 2016

Posted:

04 August 2016

You are already at the latest version

Abstract
This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that compromise seriously the quality of the workpiece. The active vibration control (AVC) device is composed by a host part integrated with sensors and actuators synchronized by a regulator, able to make a self-assessment and adjust to the environmental alteration. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving machine tool, PZT actuator and controller models. The Hardware-in-the-loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated