In this paper, a method is developed for presenting a novel virtual torque sensor based on precise model and position measurements avoids the need of traditional strain gauges and amplifiers. More specifically, the harmonic drive compliance model and the Gaussian process regression (GPR) technique are used together to achieve virtual torque sensor measurement. While the harmonic drive compliance model provides the analytic part, the Gaussian process regression method is used to reconstruct the unmolded part based on motor-side and link-side joint angles as well as motor current. After an automatic offline calibration, the method allows for a lean online implementation. The virtual torque sensor measurement is compared with measurements of a commercial torque sensor, and the results have attested the effectiveness of the proposed method.
Keywords:
Subject: Engineering - Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.