Preprint
Article

Comparison of Small Unmanned Aerial Vehicles Performance Using Image Processing

Altmetrics

Downloads

1340

Views

1194

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 October 2016

Posted:

12 October 2016

You are already at the latest version

Alerts
Abstract
Precision agriculture is a farm management technology that involves sensing and then responding to the observed variability in the field. Remote sensing is one of the tools of precision agriculture. The emergence of small unmanned aerial vehicles (sUAV) have paved the way to accessible remote sensing tools for farmers. This paper describes the comparison of two popular off-the-shelf sUAVs: 3DR Iris and DJI Phantom 2. Both units are equipped with a camera gimbal attached with a GoPro camera. The comparison of the two sUAV involves a hovering test and a rectilinear motion test. In the hovering test, the sUAV was allowed to hover over a known object and images were taken every second for two minutes. The position of the object in the images was measured and this was used to assess the stability of the sUAV while hovering. In the rectilinear test, the sUAV was allowed to follow a straight path and images of a lined track were acquired. The lines on the images were then measured on how accurate the sUAV followed the path. Results showed that both sUAV performed well in both the hovering test and the rectilinear motion test. This demonstrates that both sUAVs can be used for agricultural monitoring.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated