Myocardial heterogeneity is an attribute of the normal heart. We have developed integrative models of cardiomyocytes from the subendocardial (ENDO) and subepicardial (EPI) ventricular regions that take into account experimental data on specific features of intracellular electromechanical coupling in the guinea pig heart. The models adequately simulate experimental data on the action potential and contraction of the ENDO and EPI cells. The modeling results predict that heterogeneity in the parameters of calcium handling and myofilament mechanics in isolated ENDO and EPI cardiomyocytes via cooperative mechanisms of mechano-calcium-electric feedback are essential to produce the differences in Ca2+transients and contraction profiles and may further enhance transmural differences in the electrical properties between the cells. Simulation results predict that ENDO cells have greater sensitivity to changes in afterload than EPI cells. These data are important for understanding the behavior of cardiomyocytes in the intact heart.
Keywords:
Subject: Biology and Life Sciences - Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.