Preprint
Article

Holistic Context-Sensitivity for Run-time Optimization of Flexible Manufacturing Systems

Altmetrics

Downloads

1010

Views

948

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

28 December 2016

Posted:

28 December 2016

You are already at the latest version

Alerts
Abstract
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to various parameters, e.g. efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach. Thereby the Cyber-Physical Systems play an important role as sources of information to achieve context sensitivity. In this paper it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of Cyber-Physical System integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution is propos encompassing run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes. This paper proposes a holistic solution to achieve context sensitivity for Flexible Manufacturing Systems, whereby the knowledge created by applying the context sensitivity approach can be used for (self-) optimization of manufacturing processes.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated