Preprint
Article

Experimental Identification and Vibration Control of A Non-Collocated Piezoelectric Flexible Manipulator Using Optimal Multi-Poles Placement Control

Altmetrics

Downloads

1649

Views

1070

Comments

0

Submitted:

08 January 2017

Posted:

09 January 2017

You are already at the latest version

Alerts
Abstract
This paper presents experimental identification and vibration suppression of a flexible manipulator with non-collocated piezoelectric actuators and strain sensors using optimal multi-poles placement control. To precisely identify the system model, a reduced order transfer function with relocated zeros is proposed, and a first-order inertia element is added to the model to compensate the non-collocation. Comparisons show the identified model match closely with the experimental results both in the time and frequency domains, and a fit of 97.2% is achieved. Based on the identified model, a full-state multi-poles placement controller is designed, and the optimal locations of the closed loop poles are determined. The feasibility of the proposed controller is validated by simulations. Moreover, the controller is tested for different locations of the closed loop poles, and an excellent performance of the optimal locations of the closed loop poles is shown. Finally, the effectiveness of the proposed controller is demonstrated by experiments. Results show that the vibrations of the expected modes are significantly diminished. Besides, vibrations of the higher modes are also slightly suppressed. Accordingly, multi-mode vibrations of the manipulator are well attenuated, and the tip displacement converges quickly with the proposed method.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated