Preprint
Article

High Step-up Voltage Gain Converter with Ripple-free Input Current for Renewable Energy Sources

Altmetrics

Downloads

1896

Views

939

Comments

0

This version is not peer-reviewed

Submitted:

16 January 2017

Posted:

17 January 2017

You are already at the latest version

Alerts
Abstract
Abstract: High step-up voltage gain nonisolated DC-DC converter have attracted much attention in photovoltaic, fuel cells and other renewable energy system applications. In this paper, by combining input current ripple-free boost cell with coupled-inductor voltage-doubler cell, an input current ripple-free high voltage gain nonisolated converter is proposed. In addition, passive lossless clamp circuit is adopted to recycle the leakage inductor energy and to reduce the voltage spike across the power switch. By utilizing voltage-doubler cell consisting of diode and capacitor, the voltage stress of switch is further reduced and the resonance between the leakage inductor and the stray capacitor of the output diode is eliminated. A low switch-on-resistance low-voltage-rated MOSFET can therefore be employed to reduce the conduction loss and cost. The reverse recovery loss of output diode is reduced, and the efficiency of converter can be improved. Furthermore, the proposed converter can achieve nearly zero input current-ripple and make the design of electromagnetic interference (EMI) filter easy. Steady state analysis and operation mode of the converter is performed. Finally, experimental results are presented to verify the analysis results of the proposed converter.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated